Theory of Fuchsian equations and applications to general relativity

Florian Beyer
Joint work with P. LeFloch.
Preprints: arXiv:1004.4885, 1006.2525.

University of Otago, Dunedin, New Zealand

July 28, 2010

"Backward" approach: (Standard) initial value problem of Einstein's field equations and evolution backward to the "singularity":

- Allows to study the full solution space in principle.
- Analytic study: requires global-in-time control.
- Numeric study: requires stable reliable numerical schemes.

In general very difficult!

"Backward" approach: (Standard) initial value problem of Einstein's field equations and evolution backward to the "singularity":

- Allows to study the full solution space in principle.
- Analytic study: requires global-in-time control.
- Numeric study: requires stable reliable numerical schemes.

In general very difficult!

"Forward" approach (→ "Fuchsian" method): Guess the leading-order behavior of solutions at the "singularity" and show existence of such solutions. Singular initial value problem.

- Analytic study: Requires only local-in-time control away from the "singularity".
- Numeric study: how?

"Backward" approach: (Standard) initial value problem of Einstein's field equations and evolution backward to the "singularity":

- Allows to study the full solution space in principle.
- Analytic study: requires global-in-time control.
- Numeric study: requires stable reliable numerical schemes.

In general very difficult!

"Forward" approach (→ "Fuchsian" method): Guess the leading-order behavior of solutions at the "singularity" and show existence of such solutions. Singular initial value problem.

- Analytic study: Requires only local-in-time control away from the "singularity".
- Numeric study: how?

Hope: Forward approach is sometimes easier in practice.

Second-order hyperbolic Fuchsian PDEs

Class of equations

$$u_{tt}(t,x) + \frac{2a(x)+1}{t}u_t(t,x) + \frac{b(x)}{t^2}u(t,x)$$

= $t^{-2}f(t,x,u,u_x,u_t) + c^2(t,x)u_{xx}(t,x)$

Here,

- **1** $u:(0,\delta]\times\mathbb{R}^k\to\mathbb{R}^m$ is the unknown (periodic in space).
- ② a, b are smooth periodic functions on \mathbb{R}^k .
- c is the speed of propagation.
- Left side is called Fuchsian principal part.
- Sight side is the Fuchsian source-term with certain "decay properties" at t = 0.

Heuristics for canonical leading-order terms

Fuchsian Heuristics: Solutions "dominated by the principal part" of the equation at t = 0 (Fuchsian ODEs, BKL!).

Heuristics for canonical leading-order terms

Fuchsian Heuristics: Solutions "dominated by the principal part" of the equation at t = 0 (Fuchsian ODEs, BKL!).

Canonical two-term expansion

$$u(t,x) = \begin{cases} u_*(x)t^{-\lambda_1} + u_{**}(x)t^{-\lambda_2} + O(t^{-\Re\lambda_2 + \alpha}), & a^2(x) \neq b(x), \\ u_*(x)t^{-\lambda_1}\log t + u_{**}(x)t^{-\lambda_1} + O(t^{-\lambda_1 + \alpha}), & a^2(x) = b(x), \end{cases}$$

at t = 0 for some $\alpha > 0$, where

$$\lambda_1(x) := a(x) + \sqrt{a^2(x) - b(x)}, \quad \lambda_2(x) := a(x) - \sqrt{a(x)^2 - b(x)}.$$

Note: Functions u_* , u_{**} are called asymptotic data.

July 28, 2010

4/18

Florian Beyer (Otago) Fuchsian equations

Examples

① Euler–Poisson–Darboux equation: For $\kappa \ge 0$,

$$u_{tt}-(\kappa-1)u_t/t=u_{xx}$$
.

Examples

1 Euler–Poisson–Darboux equation: For $\kappa \geq 0$,

$$u_{tt} - (\kappa - 1)u_t/t = u_{xx}$$
.

Canonical leading-order behavior:

$$u(t,x) = \begin{cases} u_*(x) + u_{**}(x)t^{\kappa} + \dots & \kappa > 0, \\ u_*(x)\log t + u_{**}(x) + \dots & \kappa = 0. \end{cases}$$

Examples

1 Euler–Poisson–Darboux equation: For $\kappa \ge 0$,

$$u_{tt} - (\kappa - 1)u_t/t = u_{xx}$$

Canonical leading-order behavior:

$$u(t,x) = \begin{cases} u_*(x) + u_{**}(x)t^{\kappa} + \dots & \kappa > 0, \\ u_*(x)\log t + u_{**}(x) + \dots & \kappa = 0. \end{cases}$$

(Main evolution part of the) Gowdy vacuum equations:

$$P_{tt} + P_t/t = P_{xx} + e^{2P}(Q_t^2 - Q_x^2),$$

 $Q_{tt} + Q_t/t = Q_{xx} - 2(P_tQ_t - P_xQ_x).$

Canonical leading-order behavior:

$$P(t,x) = -k(x)\log t + P_{**}(x) + \dots,$$

$$Q(t,x) = Q_{*}(x) + Q_{**}(x)t^{2k(x)} + \dots$$

Singular initial value problem for 2nd-order hyperbolic Fuchsian systems

Singular initial value problem

Look for solutions of the form

Solution
$$u = \frac{\text{Leading-order term}}{\text{(prescribed)}} u_0 + \frac{\text{Remainder}}{\text{(unknown)}} w$$

where the remainder must be "higher-order" at t = 0 in the sense of weighted Sobolev spaces.

Singular initial value problem for 2nd-order hyperbolic Fuchsian systems

Singular initial value problem

Look for solutions of the form

Solution
$$u = \frac{\text{Leading-order term}}{\text{(prescribed)}} u_0 + \frac{\text{Remainder}}{\text{(unknown)}} w$$

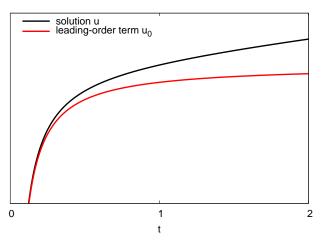
where the remainder must be "higher-order" at t = 0 in the sense of weighted Sobolev spaces.

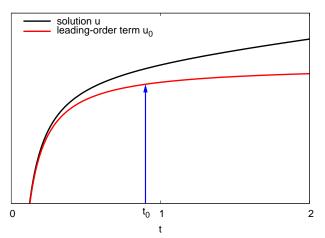
Existence and uniqueness for Fuchsian systems by Kichenassamy and Rendall. However:

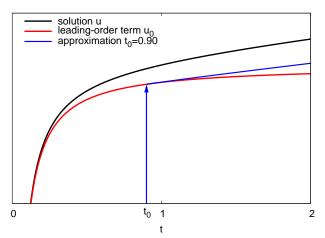
- Proof not natural for hyperbolic equations. Make direct use of hyperbolic structure?
- Approximation scheme not of "practical" use for the numerical treatment. Moreover, "practical" error estimates?

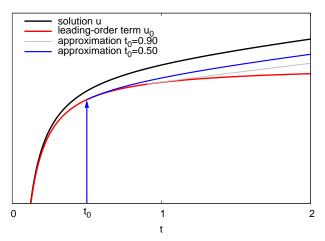
Florian Beyer (Otago) Fuchsian equations July 28, 2010

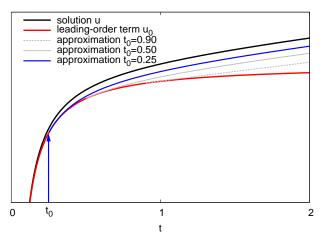
6/18











Hope: Convergence in the limit $t_0 \rightarrow 0$.

Well-Posedness in an important case

Consider $f(t, x, u, \partial_x u, Du) = f_0(t, x)$ for a given function f_0 .

Well-Posedness in an important case

Consider $f(t, x, u, \partial_x u, Du) = f_0(t, x)$ for a given function f_0 .

Result

For any asymptotic data $u_*, u_{**} \in H^2(U)$, there exists a unique solution of the SIVP with remainder $w \in \tilde{X}_{\delta,\alpha,1}$ and the previous sequence of approximate solutions converges, provided:

• we can choose $\delta, \alpha > 0$ so that the matrix

$$\begin{pmatrix} \lambda_1 - \lambda_2 + \alpha & -\eta/2 & 0 \\ -\eta/2 & \alpha & t\partial_x c - \partial_x (\lambda_1 - \lambda_2)(tc\ln t) \\ 0 & t\partial_x c - \partial_x (\lambda_1 - \lambda_2)(tc\ln t) & \lambda_1 - \lambda_2 + \alpha - 1 - Dc/c \end{pmatrix}$$

is positive semidef. at each $(t,x) \in (0,\delta) \times U$ for a $\eta > 0$.

- 2 $f_0 \in X_{\delta,\alpha+\epsilon,0}$ for some $\epsilon > 0$.
- **③** α < 2(β (x) + 1) − (λ ₁(x) − λ ₂(x)) for all x ∈ U.

Well-Posedness in an important case

Consider $f(t, x, u, \partial_x u, Du) = f_0(t, x)$ for a given function f_0 .

Result

For any asymptotic data $u_*, u_{**} \in H^2(U)$, there exists a unique solution of the SIVP with remainder $w \in \tilde{X}_{\delta,\alpha,1}$ and the previous sequence of approximate solutions converges, provided:

1 we can choose $\delta, \alpha > 0$ so that the matrix

$$\begin{pmatrix} \lambda_1 - \lambda_2 + \alpha & -\eta/2 & 0 \\ -\eta/2 & \alpha & t\partial_x c - \partial_x (\lambda_1 - \lambda_2)(tc\ln t) \\ 0 & t\partial_x c - \partial_x (\lambda_1 - \lambda_2)(tc\ln t) & \lambda_1 - \lambda_2 + \alpha - 1 - Dc/c \end{pmatrix}$$

is positive semidef. at each $(t,x) \in (0,\delta) \times U$ for a $\eta > 0$.

- 2 $f_0 \in X_{\delta,\alpha+\varepsilon,0}$ for some $\varepsilon > 0$.
- **③** α < 2($\beta(x)$ + 1) − ($\lambda_1(x)$ − $\lambda_2(x)$) for all $x \in U$.

Note: It is possible to generalize the result to non-linear sources.

Florian Bever (Otago) Fuchsian equations July 28, 2010 8 / 18

Results

Approximation scheme for numerics of the singular initial value problem (F.B., P. LeFloch, arXiv:1006.2525)

We have found an approximation scheme for numerical construction of solutions of the singular initial value problem with "practical" error estimates.

Numerics of the singular initial value problem

General numerical approach, using EPD-equation as a model:

$$u_{tt}-(\kappa-1)u_t/t=u_{xx}$$
.

Introduce time variable $\tau := \ln t$. Then equation becomes

$$\partial_{\tau}^{2} u - \kappa \partial_{\tau} u - e^{2\tau} \partial_{x}^{2} u = 0.$$

Singularity is "shifted to $\tau = -\infty$ ".

- Write the equation for the remainder w, after having fixed asymptotic data u_* , u_{**} .
- Direct discretization of the second-order equation (following) the ideas of Kreiss et al.).
- Solve sequence (w_n) of solutions of RIVPs with initial times $\tau_n \to -\infty$ with data

$$w_n(\tau_n)=0, \quad \partial_{\tau}w_n(\tau_n)=0.$$

Theorem (Kichenassamy, Rendall; F.B., P.LeFloch)

Let $k, P_{**}, Q_*, Q_{**} \in C^{\infty}(U)$ and 0 < k < 1. Choose as leading-order term

$$P(t,x) = -k(x)\log t + P_{**}(x) + ...,$$

$$Q(t,x) = Q_{*}(x) + Q_{**}(x)t^{2k(x)} +$$

Then there exists a unique solution of the Gowdy equations

$$\begin{split} P_{tt} + P_t/t &= P_{xx} + e^{2P} (Q_t^2 - Q_x^2), \\ Q_{tt} + Q_t/t &= Q_{xx} - 2(P_tQ_t - P_xQ_x), \end{split}$$

which obeys this leading-order term (up to some minor subtleties).

Florian Beyer (Otago)

Remarks:

- Interpretation of the condition 0 < k < 1: prevent the solutions from forming "spikes".
- We are allowed to choose $k \ge 1$ if $Q_* = const$. Note that the curvature stays bounded at points at t = 0 where k = 1.

To solve Einstein's field equations, we need to solve additionally

$$\Lambda_{tt} - \Lambda_{xx} = P_x^2 - P_t^2 + e^{2P}(Q_x^2 - Q_t^2).$$

and

$$\Lambda_{x} = 2t \left(P_{x} P_{t} + e^{2P} Q_{x} Q_{t} \right), \quad \Lambda_{t} = t \left(P_{x}^{2} + t e^{2P} Q_{x}^{2} + P_{t}^{2} + e^{2P} Q_{t}^{2} \right).$$

To solve Einstein's field equations, we need to solve additionally

$$\Lambda_{tt} - \Lambda_{xx} = P_x^2 - P_t^2 + e^{2P}(Q_x^2 - Q_t^2).$$

and

$$\Lambda_{\mathsf{X}} = 2t \left(P_{\mathsf{X}} P_t + \mathsf{e}^{2P} \mathsf{Q}_{\mathsf{X}} \mathsf{Q}_t \right), \quad \Lambda_t = t \left(P_{\mathsf{X}}^2 + t \mathsf{e}^{2P} \mathsf{Q}_{\mathsf{X}}^2 + P_t^2 + \mathsf{e}^{2P} \mathsf{Q}_t^2 \right).$$

We can show:

Implies a 2nd-order hyperbolic Fuchsian equation for Λ.
 Canonical leading-order term:

$$\Lambda(t,x) = \Lambda_*(x) \ln t + \Lambda_{**}(x) + \dots$$

Constraints imply:

$$egin{aligned} \Lambda_* &= k^2, \ \Lambda_{**} &= \Lambda_0 + 2 \int_0^x k (-\partial_{ ilde{x}} P_{**} + 2 e^{2P_{**}} \, Q_{**} \partial_{ ilde{x}} \, Q_*) \, d ilde{x}, \end{aligned}$$

 \Rightarrow Solution of full Einstein's field equations for all t > 0.

Note: The strong cosmic censorship conjecture suggests that solutions with Cauchy horizons cannot be constructed numerically by means of the backward approach.

Note: The strong cosmic censorship conjecture suggests that solutions with Cauchy horizons cannot be constructed numerically by means of the backward approach.

But: For Gowdy solutions, we know conditions on asymptotic data which guarantee t = 0-surface to be a Cauchy horizon.

Note: The strong cosmic censorship conjecture suggests that solutions with Cauchy horizons cannot be constructed numerically by means of the backward approach.

But: For Gowdy solutions, we know conditions on asymptotic data which guarantee t = 0-surface to be a Cauchy horizon.

Hence: It should be possible to compute such solutions numerically with the Fuchsian forward approach!

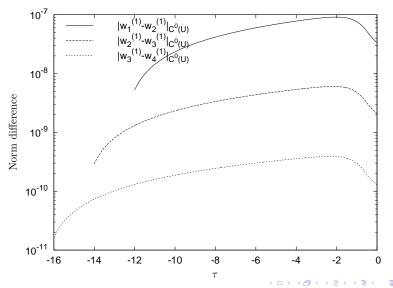
A particular choice of asymptotic data:

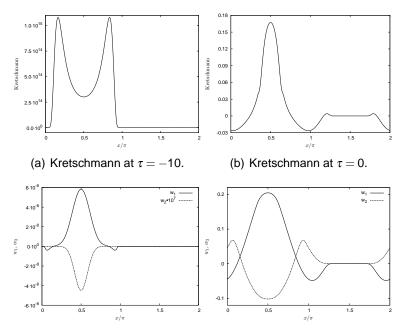
Solution with an incomplete Cauchy horizon (smooth, but not analytic!):

$$\begin{split} k(x) &= \begin{cases} 1, & x \in [\pi, 2\pi], \\ 1 - e^{-1/x} e^{-1/(\pi - x)}, & x \in (0, \pi), \end{cases} \\ P_{**}(x) &= 1/2, \quad Q_*(x) = 0, \\ Q_{**}(x) &= \begin{cases} 0, & x \in [\pi, 2\pi], \\ e^{-1/x} e^{-1/(\pi - x)}, & x \in (0, \pi), \end{cases} \\ \Lambda_*(x) &= k^2(x), \quad \Lambda_{**}(x) = 2. \end{split}$$

Num. solutions of Gowdy equations for previous data

Convergence of approximate solutions:





(c) Remainders of P, Q at $\tau = -10$. (d) Remainders of P, Q at $\tau = 0$.

Summary and outlook

We have applied the theory so far to the \mathbb{T}^3 -Gowdy vacuum equations:

- Simpler proof of well-posedness than Kichenassamy/Rendall.
- Computed numerical solutions in various test cases in order to understand the numerical approximation scheme.
- Numerical solutions for Gowdy solutions with (incomplete) Cauchy horizons.

We plan to do in the near future:

- Analyze the geometry of Gowdy solutions with (incomplete) Cauchy horizons.
- Reconsider the problem of Gowdy solutions with spatial topologies \mathbb{S}^3 and $\mathbb{S}^1 \times \mathbb{S}^2$ (Stahl).
- Behavior of solutions of the Einstein-Euler equations under Gowdy symmetry. "Interaction of shocks and cosmological singularity"?