Oscillatory asymptotic behavior for some vacuum Bianchi spacetimes

François Béguin Université Paris-Sud 11 & ÉNS

November 3rd, 2010

Bianchi cosmological models : presentation

Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models.

Bianchi cosmological models : presentation

Bianchi spacetimes are spatially homogeneous (not isotropic) cosmological models.

Raisons d'être :

- natural finite dimensional class of spacetimes;
- ▶ BKL conjecture : general spacetimes behave like homogeneous spacetimes near their initial singularity.

▶ A **Bianchi spacetime** is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime.

▶ A **Bianchi spacetime** is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime.

▶ A **Bianchi spacetime** is a spacetime (M, g) with

$$M \simeq I \times G$$
 $g = -dt^2 + h_t$

where $I=(t_-,t_+)\subset \mathbb{R}$,

G is 3-dimensional Lie group,

 h_t is a left-invariant riemannian metric on G.

▶ A **Bianchi spacetime** is a globally hyperbolic spatially homogeneous (but not isotropic) spacetime.

▶ A **Bianchi spacetime** is a spacetime (M, g) with

$$M\simeq I imes G \qquad g=-dt^2+h_t$$
 where $I=(t_-,t_+)\subset \mathbb{R},$ G is 3-dimensional Lie group, h_t is a left-invariant riemannian metric on G .

▶ A **Bianchi spacetime** amounts to a one-parameter family of left-invariant metrics $(h_t)_{t\in I}$ on a 3-dimensional Lie group G.

We will consider vacuum type A Bianchi models.

► **Type A** : *G* is unimodular.

Vacuum: Ric(g) = 0.

Einstein equation

The space of left-invariant metrics on G is finite-dimensional \implies the Einstein equation Ric(g) = 0 is a system of ODEs.

Einstein equation : coordinate choice

Einstein equation : coordinate choice

Consider a Bianchi spacetime $(I \times G, -dt^2 + h_t)$. There exists a frame field $(\frac{\partial}{\partial t}, e_1, e_2, e_3)$ such that :

• (e_1, e_2, e_3) is left-invariant;

Einstein equation: coordinate choice

- (e_1, e_2, e_3) is left-invariant;
- $ightharpoonup
 abla_{rac{\partial}{\partial t}}e_i=0$;

Einstein equation: coordinate choice

- (e_1, e_2, e_3) is left-invariant;
- $ightharpoonup
 abla_{rac{\partial}{\partial t}}e_i=0$;
- (e_1, e_2, e_3) is orthonormal for h_t ;

Einstein equation : coordinate choice

- (e_1, e_2, e_3) is left-invariant;
- (e_1, e_2, e_3) is orthonormal for h_t ;
- ▶ the second fundamental form of h_t is diagonal in (e_1, e_2, e_3) ;

Einstein equation: coordinate choice

- (e_1, e_2, e_3) is left-invariant;
- (e_1, e_2, e_3) is orthonormal for h_t ;
- ▶ the second fundamental form of h_t is diagonal in (e_1, e_2, e_3) ;
- $[e_1, e_2] = n_3(t)e_3;$ $[e_2, e_3] = n_1(t)e_1;$ $[e_3, e_1] = n_2(t)e_2;$

Why taking an ortho**normal** frame?

▶ One studies the behavior of the **structure constants** n_1 , n_2 , n_3 instead of the behavior of **metric coefficients** $h_t(e_i, e_i)$;

Why taking an ortho**normal** frame?

▶ One studies the behavior of the **structure constants** n_1 , n_2 , n_3 instead of the behavior of **metric coefficients** $h_t(e_i, e_j)$;

► Key advantage : the various 3-dimensional Lie groups are treated altogether.

Variables

- ▶ The three structure constants $n_1(t)$, $n_2(t)$, $n_3(t)$;
- ► The three diagonal components $\sigma_1(t)$, $\sigma_2(t)$, $\sigma_3(t)$ of the traceless second fundamental form;
- ▶ The mean curvature of $\theta(t)$.

Variables

- ▶ The three structure constants $n_1(t)$, $n_2(t)$, $n_3(t)$;
- ► The three diagonal components $\sigma_1(t)$, $\sigma_2(t)$, $\sigma_3(t)$ of the traceless second fundamental form;
- ▶ The mean curvature of $\theta(t)$.

Actually, it is convenient to replace

- $ightharpoonup n_i$ and σ_i by $N_i = \frac{n_i}{\theta}$ and $\Sigma_i = \frac{\sigma_i}{\theta}$
- ▶ t by τ such that $\frac{d\tau}{dt} = -\frac{\theta}{3}$.

(Hubble renormalisation; the equation for θ decouples).

The phase space

With these variables, the phase space \mathcal{B} is a (non-compact) four dimensional submanifold in \mathbb{R}^6 .

The phase space

With these variables, the phase space \mathcal{B} is a (non-compact) four dimensional submanifold in \mathbb{R}^6 .

$$\mathcal{B} = \left\{ \left(\Sigma_1, \Sigma_2, \Sigma_3, \textit{N}_1, \textit{N}_2, \textit{N}_3\right) \in \mathbb{R}^6 \mid \Sigma_1 + \Sigma_2 + \Sigma_3 = 0 \,,\, \Omega = 0 \right\}$$

where

$$\Omega = 6 - (\Sigma_1^2 + \Sigma_2^2 + \Sigma_3^2) + \frac{1}{2} (N_1^2 + N_2^2 + N_3^2) - (N_1 N_2 + N_1 N_3 + N_2 N_3).$$

Wainwright-Hsu equations

$$\Sigma'_1 = (2-q)\Sigma_1 - R_1$$

 $\Sigma'_2 = (2-q)\Sigma_2 - R_2$
 $\Sigma'_3 = (2-q)\Sigma_3 - R_3$
 $N'_1 = -(q+2\Sigma_1)N_1$
 $N'_2 = -(q+2\Sigma_2)N_2$
 $N'_3 = -(q+2\Sigma_3)N_3$

where

$$q = \frac{1}{3} (\Sigma_1^2 + \Sigma_2^2 + \Sigma_3^2)$$

$$R_1 = \frac{1}{3} (2N_1^2 - N_2^2 - N_3^3 + 2N_2N_3 - N_1N_3 - N_1N_2)$$

$$R_2 = \frac{1}{3} (2N_2^2 - N_3^2 - N_1^3 + 2N_3N_1 - N_2N_1 - N_2N_3)$$

$$R_3 = \frac{1}{3} (2N_3^2 - N_1^2 - N_2^3 + 2N_1N_2 - N_3N_2 - N_3N_1)$$

Wainwright-Hsu equations

We denote by $X_{\mathcal{B}}$ the vector field on \mathcal{B} corresponding to this system of ODEs.

The vaccum type A Bianchi spacetimes can be seen as the orbits of X_B .

The stratification of $\mathcal B$ given by the various isomorphism classes of Lie groups is $X_{\mathcal B}$ -invariant.

Bianchi classification

Name	N_1	N_2	N_3	G
Ivallic	, v T	142	143	
I	0	0	0	\mathbb{R}^3
П	+	0	0	Heis ₃
VI ₀	+	_	0	$O(1,1)\ltimes\mathbb{R}^2$
VII_0	+	+	0	$O(2) \ltimes \mathbb{R}^2$
VIII	+	+	_	$SL(2,\mathbb{R})$
IX	+	+	+	SO(3, ℝ)

Type I models (
$$G = \mathbb{R}^3$$
, $N_1 = N_2 = N_3 = 0$)

▶ The subset of \mathcal{B} corresponding to type I Bianchi spacetimes is a euclidean circle : the *Kasner circle* \mathcal{K} .

Type I models (
$$G = \mathbb{R}^3$$
, $N_1 = N_2 = N_3 = 0$)

▶ The subset of \mathcal{B} corresponding to type I Bianchi spacetimes is a euclidean circle : the *Kasner circle* \mathcal{K} .

ightharpoonup Every point of $\mathcal K$ is a fixed point for the flow.

Type I models (
$$G = \mathbb{R}^3$$
, $N_1 = N_2 = N_3 = 0$)

- ▶ For every $p \in \mathcal{K}$, the derivative $DX_{\mathcal{B}}(p)$ has :
 - two distinct negative eignevalues,
 - a zero eigenvalue,
 - a positive eigenvalue.

Type I models (
$$G = \mathbb{R}^3$$
, $N_1 = N_2 = N_3 = 0$)

- ▶ For every $p \in \mathcal{K}$, the derivative $DX_{\mathcal{B}}(p)$ has :
 - two distinct negative eignevalues,
 - a zero eigenvalue,
 - a positive eigenvalue.

- Except if p is one of the three special points T_1 , T_1 , T_3 , in which case $DX_B(p)$ has :
 - a negative eigenvalue,
 - a triple-zero eigenvalue.

The subset B_{II} of B corresponding to type II models is the union of three ellipsoids which intersect along the Kasner circle.

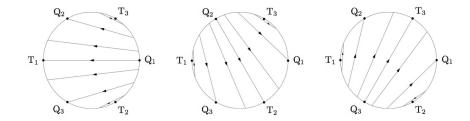
The subset B_{II} of B corresponding to type II models is the union of three ellipsoids which intersect along the Kasner circle.

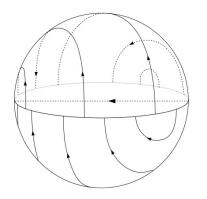
▶ Every type II orbit converges to a point of \mathcal{K} in the past, and converges to another point of \mathcal{K} in the future.

► The subset B_{II} of B corresponding to type II models is the union of three ellipsoids which intersect along the Kasner circle.

▶ Every type II orbit converges to a point of \mathcal{K} in the past, and converges to another point of \mathcal{K} in the future.

► The orbits on one ellipsoid "take off" from one third of K, and "land on" the two other thirds.





▶ We restrict to the subset \mathcal{B}^+ of \mathcal{B} where the N_i 's are non-negative.

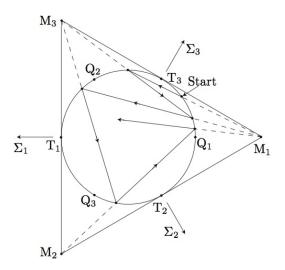
▶ We restrict to the subset \mathcal{B}^+ of \mathcal{B} where the N_i 's are non-negative.

▶ For every $p \in \mathcal{K}$, there is one (and only one) type II orbit "taking off" from p. In the future, this orbit "land on" at some point $f(p) \in \mathcal{K}$.

▶ We restrict to the subset \mathcal{B}^+ of \mathcal{B} where the N_i 's are non-negative.

▶ For every $p \in \mathcal{K}$, there is one (and only one) type II orbit "taking off" from p. In the future, this orbit "land on" at some point $f(p) \in \mathcal{K}$.

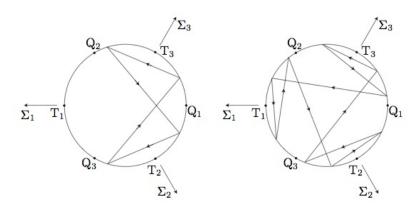
▶ This defines a map $f: \mathcal{K} \longrightarrow \mathcal{K}$: the *Kasner map*.



The Kasner map

The Kasner map is a prototype of a chaotic dynamical system.

The Kasner map



Type IX models ($G = SO(3, \mathbb{R})$, all the N_i 's are positive)

Type IX models ($G = SO(3, \mathbb{R})$, all the N_i 's are positive)

► **Vague conjecture.** The dynamics of of type IX orbits "reflects" the dynamics of the Kasner map.

Type IX models $(G = SO(3, \mathbb{R})$, all the N_i 's are positive)

► Vague conjecture. The dynamics of of type IX orbits "reflects" the dynamics of the Kasner map.

► Example of more precise conjecture. Almost every type IX orbit accumulates on the whole Kasner circle.

Ringström's theorem

Let $\mathcal{A}:=\mathcal{K}\cup\mathcal{B}_{II}$ be the union of all type I and type II orbits.

Theorem (Ringström 2000). \mathcal{A} is attracting all type IX orbits (except for the Taub type orbits).

Ringström's theorem

▶ Ringström's result does not imply that the dynamics of type IX orbits "reflects" the dynamics of the Kasner map.

► For example, it could be possible that every type IX orbit is attracted by the period 3 orbit of *f*.

For $q \in \mathcal{K}$, we can define the stable manifold $W^s(q)$ as follows

$$W^s(q) = \left\{r \in \mathcal{B} \mid \exists \ t_0 < t_1 < \dots \ \text{s.t. } \mathsf{dist}(X^{t_n}_{\mathcal{B}}(r), f^n(q))
ightarrow 0
ight\}$$

Theorem (Béguin 2010) Consider $q \in \mathcal{K}$ such that the closure of the orbit of q under f does not contain any periodic orbit of f. Then $W^s(q)$ is non-empty.

Theorem (Béguin 2010) Consider $q \in \mathcal{K}$ such that the closure of the orbit of q under f does not contain any periodic orbit of f. Then $W^s(q)$ is non-empty.

Actually, $W^s(q)$ is a three-dimensional injectively immersed manifold which depends continuously on q (when q ranges in a closed f-invariant subset of $\mathcal K$ without any periodic orbit).

Theorem (Béguin 2010) Consider $q \in \mathcal{K}$ such that the closure of the orbit of q under f does not contain any periodic orbit of f. Then $W^s(q)$ is non-empty.

Actually, $W^s(q)$ is a three-dimensional injectively immersed manifold which depends continuously on q (when q ranges in a closed f-invariant subset of $\mathcal K$ without any periodic orbit).

Proposition. The set of the points q satisfying the hypothesis of the theorem above is dense in \mathcal{K} , but has zero Lebesgue measure.

Theorem (Georgi, Häterich, Liebscher, Webster, 2010). Consider a point $q \in \mathcal{K}$ which is periodic point for f. Then $W^s(q)$ is non-empty.

Theorem (Georgi, Häterich, Liebscher, Webster, 2010). Consider a point $q \in \mathcal{K}$ which is periodic point for f. Then $W^s(q)$ is non-empty.

Theorem (Reiterer, Trubowitz, 2010). There is a full Lebesgue measure subsets of points q in K such that $W^s(q)$ is non-empty.

Theorem (Georgi, Häterich, Liebscher, Webster, 2010). Consider a point $q \in \mathcal{K}$ which is periodic point for f. Then $W^s(q)$ is non-empty.

Theorem (Reiterer, Trubowitz, 2010). There is a full Lebesgue measure subsets of points q in K such that $W^s(q)$ is non-empty.

Caution. This does not imply that almost every Bianchi spacetime is in $W^s(q)$ for some q.

Interpretation. Close to the initial singularity :

▶ For all Bianchi spacetimes, the spacelike slice $G \times \{t\}$ is curved in only one direction (Ringström).

Interpretation. Close to the initial singularity :

- ▶ For all Bianchi spacetimes, the spacelike slice $G \times \{t\}$ is curved in only one direction (Ringström).
- For "many" Bianchi spacetimes, this direction oscillates in a complicated periodic or aperiodic way.

Interpretation. Close to the initial singularity:

- ▶ For all Bianchi spacetimes, the spacelike slice $G \times \{t\}$ is curved in only one direction (Ringström).
- For "many" Bianchi spacetimes, this direction oscillates in a complicated periodic or aperiodic way.
- The way this direction oscillates is sensitive to initial conditions.

Link with the asymptotic silence conjecture

A Bianchi spacetime is said to be **asymptotically silent** if "different particles cannot have exchanged information arbitrarily close to the initial singularity".

Link with the asymptotic silence conjecture

A Bianchi spacetime is said to be **asymptotically silent** if "different particles cannot have exchanged information arbitrarily close to the initial singularity".

Formally : for every past inextendible timelike curve γ , the diameter of the set $J^+(\gamma) \cap (\{t\} \times G)$ goes to 0 as $t \to t_-$.

Link with the asymptotic silence conjecture

A Bianchi spacetime is said to be **asymptotically silent** if "different particles cannot have exchanged information arbitrarily close to the initial singularity".

Formally : for every past inextendible timelike curve γ , the diameter of the set $J^+(\gamma) \cap (\{t\} \times G)$ goes to 0 as $t \to t_-$.

Theorem. For q as in one of the three preceding theorems, the orbits in $W^s(q)$ correspond to asymptotically silent spacetimes.

Bianchi VIII cosmological models

All this is also valid for Bianchi VIII spacetimes.

About the proof of the theorem.

About the proof of the theorem.

► The key is to understand what happens to type IX orbits when they pass close to the Kasner circle.

About the proof of the theorem.

► The key is to understand what happens to type IX orbits when they pass close to the Kasner circle.

► For this purpose, we need to find some "good" coordinates.

Hartman Grobman theorem.

Consider a vector field X and a point p such that X(p) = 0.

Theorem. Assume that DX(p) does not have any purely imaginary eigenvalue.

Then, there is a C^0 local coordinate system on a neighborhood of p, such that X is linear in these coordinates.

Sternberg's theorem

Theorem. Assume that DX(p) does not have any purely imaginary eigenvalue. Assume moreover that the eigenvalues of DX(p) are independent other \mathbb{Q} .

Then, there is a C^{∞} local coordinate system on a neighbourhood of p, such that X is linear in these coordinates.

Takens' theorem

Generalization of Sternberg's theorem to the case where DX(p) has some purely imaginary eigenvalues.

There is a C^A local coordinate system on a neighbourhood of p, such that "X depends linearly on the coordinates corresponding to non purely imaginary eigenvalues".

Linearization of the Wainwright-Hsu vector field near of point of $\ensuremath{\mathcal{K}}$

Let X_B be the Wainwright-Hsu vector field and p be a point of the Kasner circle.

Linearization of the Wainwright-Hsu vector field near of point of $\ensuremath{\mathcal{K}}$

Let X_B be the Wainwright-Hsu vector field and p be a point of the Kasner circle.

Proposition. If the three non-zero eigenvalues of $DX_{\mathcal{B}}(p)$ are independant over \mathbb{Q} , then there is a C^{∞} local coordinate system (x, x', y, z) on a neighbourhood of p, such that

$$X(x,x',y,z) = \lambda^{s}(y)x\frac{\partial}{\partial x} + \lambda^{s'}(y)x'\frac{\partial}{\partial x'} + \lambda^{u}(y)z\frac{\partial}{\partial z}$$

with
$$\lambda^s(y) < \lambda^{s'}(y) < 0 < \lambda^u(y)$$
.

Characterization of linearizable points

Proposition. For $p \in \mathcal{K}$, the following conditions are equivalent :

- 1. the non-zero eigenvalues of DX(p) are independent over \mathbb{Q} ;
- 2. the orbit of p under the Kasner map is not pre-periodic.

▶ Consider $p \in \mathcal{K}$ such that there is a C^{∞} local coordinate system (x, x', y, z) on a neighbourhood of p, such that

$$X(x,x',y,z) = \lambda^{s}(y)x\frac{\partial}{\partial x} + \lambda^{s'}(y)x'\frac{\partial}{\partial x'} + \lambda^{u}(y)z\frac{\partial}{\partial z}.$$

▶ The y-direction is tangent to \mathcal{A} . The x, x' and z-directions are transverse to \mathcal{A}

▶ Consider $p \in \mathcal{K}$ such that there is a C^{∞} local coordinate system (x, x', y, z) on a neighbourhood of p, such that

$$X(x,x',y,z) = \lambda^{s}(y)x\frac{\partial}{\partial x} + \lambda^{s'}(y)x'\frac{\partial}{\partial x'} + \lambda^{u}(y)z\frac{\partial}{\partial z}.$$

- ▶ The y-direction is tangent to \mathcal{A} . The x, x' and z-directions are transverse to \mathcal{A}
- ▶ We consider the neighborhood of p in \mathcal{B}^+

$$V = \{0 \le x \le 1 , \ 0 \le x' \le 1 , \ -1 \le y \le 1 , \ 0 \le z \le 1\}.$$

▶ The orbits enter in V by crossing $M = \{x = 1\} \cup \{x' = 1\}$. They exit from V by crossing $N = \{z = 1\}$.

▶ The orbits enter in V by crossing $M = \{x = 1\} \cup \{x' = 1\}$. They exit from V by crossing $N = \{z = 1\}$.

▶ Given $q \in M$, if z(q) > 0, the orbit of q will exit V by crossing N at some point $\Phi(q)$.

▶ The orbits enter in V by crossing $M = \{x = 1\} \cup \{x' = 1\}$. They exit from V by crossing $N = \{z = 1\}$.

▶ Given $q \in M$, if z(q) > 0, the orbit of q will exit V by crossing N at some point $\Phi(q)$.

► This defines a map

$$\Phi:M\cap\{z>0\}\longrightarrow N.$$

$$\qquad \qquad \Phi(1,x',y,z) = \left(z^{-\lambda_s(y)/\lambda_u(y)} \;,\; x'.z^{-\lambda_s'(y)/\lambda_u(y)} \;,\; y \;,\; 1\right).$$

$$\qquad \Phi(1,x',y,z) = \left(z^{-\lambda_s(y)/\lambda_u(y)} \;,\; x'.z^{-\lambda_s'(y)/\lambda_u(y)} \;,\; y \;,\; 1\right).$$

▶ **Important observation.** The negative eigenvalues dominate the positive one :

$$-\lambda_s(y)/\lambda_u(y) > 1$$
 $-\lambda_s'(y)/\lambda_u(y) > 1$.

$$\Phi(1,x',y,z) = \left(z^{-\lambda_s(y)/\lambda_u(y)}, \ x'.z^{-\lambda_s'(y)/\lambda_u(y)}, \ y \ , \ 1\right).$$

▶ **Important observation.** The negative eigenvalues dominate the positive one :

$$-\lambda_s(y)/\lambda_u(y) > 1$$
 $-\lambda_s'(y)/\lambda_u(y) > 1$.

▶ **Consequence.** Φ extends to a C^1 -map on $M \cap \{z = 0\}$.

If
$$z(q) = 0$$
, $d\Phi(q) \cdot \frac{\partial}{\partial x'} = d\Phi(c) \cdot \frac{\partial}{\partial z} = 0$
$$d\Phi(q) \cdot \frac{\partial}{\partial y} = \frac{\partial}{\partial y}$$

► The distance from the orbit to A is contracted when the orbit passes close to the Kasner circle. This contraction is "super-linear".

► The distance from the orbit to A is contracted when the orbit passes close to the Kasner circle. This contraction is "super-linear".

▶ The drift in the direction tangent to A is neglectible as compared to this contraction.

▶ The distance from the orbit to A is contracted when the orbit passes close to the Kasner circle. This contraction is "super-linear".

▶ The drift in the direction tangent to A is neglectible as compared to this contraction.

▶ No matter what happens far from the Kasner circle! This will never compensate the "super-linear contraction".

Stable manifold theorem

Theorem. Let $\psi: M \to M$ be a C^1 map, and $C \subset M$ be a compact ψ -invariant set.

Stable manifold theorem

Theorem. Let $\psi: M \to M$ be a C^1 map, and $C \subset M$ be a compact ψ -invariant set.

Assume that there is a splitting $T_qM=E_q^s\oplus E_q^u$ for every $q\in C$ and some constant $\mu<1$ and $\nu>1$ such that, for every $q\in C$,

- ▶ $d\psi(q)(E_q^s) \subset E_{\psi(q)}^s$ and $\|d\psi(q).v\| \leq \mu.\|v\|$ for every $v \in E_q^s$;
- ▶ $d\psi(q)(E_q^u) = E_{\psi(q)}^u$ and $\|d\psi(q).v\| \ge \nu.\|v\|$ for every $v \in E_q^u$.

Stable manifold theorem

Theorem. Let $\psi: M \to M$ be a C^1 map, and $C \subset M$ be a compact ψ -invariant set.

Assume that there is a splitting $T_qM=E_q^s\oplus E_q^u$ for every $q\in C$ and some constant $\mu<1$ and $\nu>1$ such that, for every $q\in C$,

- ▶ $d\psi(q)(E_q^s) \subset E_{\psi(q)}^s$ and $\|d\psi(q).v\| \leq \mu.\|v\|$ for every $v \in E_q^s$;
- $d\psi(q)(E_q^u)=E_{\psi(q)}^u$ and $\|d\psi(q).v\|\geq \nu.\|v\|$ for every $v\in E_q^u$.

Then, for every $q \in C$, the set

$$W^s(q) := \{ r \in M \mid \operatorname{dist}(\psi^n(r), \psi^n(q)) \to 0 \text{ when } n \to \infty \}$$

contains a $\dim(E_q^s)$ -dimensional disc C^1 -embedded in M.

► Consider a closed *f*-invariant aperiodic subset *C* of *K*.

► Consider a closed *f*-invariant aperiodic subset *C* of *K*.

▶ For each $p \in C$, consider the linearizing neighbourhood V_p .

► Consider a closed *f*-invariant aperiodic subset *C* of *K*.

lacktriangle For each $p\in \mathcal{C}$, consider the linearizing neighbourhood V_p .

▶ Choose p_1, \ldots, p_n such that V_{p_1}, \ldots, V_{p_n} cover C.

► Consider a closed *f*-invariant aperiodic subset *C* of *K*.

- ▶ For each $p \in C$, consider the linearizing neighbourhood V_p .
- ▶ Choose p_1, \ldots, p_n such that V_{p_1}, \ldots, V_{p_n} cover C.

▶ **Proposition.** The first return map of the orbits of the Wainwright-Hsu vector field on $M_{p_1} \cup \cdots \cup M_{p_n}$ satisfies the hypotheses of the stable manifold theorem.