Asymptotic behavior of convex Cauchy hypersurfaces

Belraouti Mehdi

Institut Fourier, UJF Grenoble

Novembre 2012

Table of contents

- Introduction
- 2 Classification of MGHC flat space-time
- 3 asymptotic behavior

Table of contents

Introduction

A Lorentzian manifold (M,g) is a manifold M equipped with a pseudo-Riemannian metric g of signature (-+....+).

• Every tangent space is a Minkowski space \longrightarrow spacelike vectors $(|v|^2 > 0)$

A Lorentzian manifold (M,g) is a manifold M equipped with a pseudo-Riemannian metric g of signature (-+....+).

• Every tangent space is a Minkowski space \longrightarrow spacelike vectors $(|v|^2 > 0)$, timelike vectors $(|v|^2 < 0)$

A Lorentzian manifold (M,g) is a manifold M equipped with a pseudo-Riemannian metric g of signature (-+....+).

• Every tangent space is a Minkowski space \longrightarrow spacelike vectors ($|v|^2 > 0$), timelike vectors ($|v|^2 < 0$)and lightlike vectors ($|v|^2 = 0$).

- Every tangent space is a Minkowski space \longrightarrow spacelike vectors $(|v|^2 > 0)$, timelike vectors $(|v|^2 < 0)$ and lightlike vectors $(|v|^2 = 0)$.

- Every tangent space is a Minkowski space \longrightarrow spacelike vectors ($|v|^2 > 0$), timelike vectors ($|v|^2 < 0$)and lightlike vectors ($|v|^2 = 0$).
- ullet Orientation+chronological orientation \longrightarrow a spacetime.

- Every tangent space is a Minkowski space \longrightarrow spacelike vectors ($|v|^2 > 0$), timelike vectors ($|v|^2 < 0$)and lightlike vectors ($|v|^2 = 0$).
- Orientation+chronological orientation → a spacetime.
- $T: M \to \mathbb{R}$ is strictly increasing along causal curves $\longrightarrow T$ is a time function.

- Every tangent space is a Minkowski space \longrightarrow spacelike vectors ($|v|^2 > 0$), timelike vectors ($|v|^2 < 0$)and lightlike vectors ($|v|^2 = 0$).
- ullet Orientation+chronological orientation \longrightarrow a spacetime.
- $T: M \to \mathbb{R}$ is strictly increasing along causal curves $\longrightarrow T$ is a time function.
- The level sets of T are compact $\longrightarrow T$ Cauchy time function and the level sets of T are the Cauchy hypersurfaces.

- Every tangent space is a Minkowski space \longrightarrow spacelike vectors ($|v|^2 > 0$), timelike vectors ($|v|^2 < 0$)and lightlike vectors ($|v|^2 = 0$).
- ullet Orientation+chronological orientation \longrightarrow a spacetime.
- $T: M \to \mathbb{R}$ is strictly increasing along causal curves $\longrightarrow T$ is a time function.
- The level sets of T are compact $\longrightarrow T$ Cauchy time function and the level sets of T are the Cauchy hypersurfaces.
- Existence of a Cauchy time function → Globally hyperbolic Cauchy compact.

Table of contents

2 Classification of MGHC flat space-time

Definition

If Ω is non empty and if Λ contains at least two elements, then Ω is called a flat regular domain.

Definition

If Ω is non empty and if Λ contains at least two elements, then Ω is called a flat regular domain.

• Ω is a convex domain of $\mathbb{R}^{1,n}$.

Definition

If Ω is non empty and if Λ contains at least two elements, then Ω is called a flat regular domain.

- Ω is a convex domain of $\mathbb{R}^{1,n}$.
- $\partial\Omega$ is the graph of a 1-Lipschitz convex function $\Phi:\mathbb{R}^n\to\mathbb{R}$.

Definition

If Ω is non empty and if Λ contains at least two elements, then Ω is called a flat regular domain.

- Ω is a convex domain of $\mathbb{R}^{1,n}$.
- $\partial\Omega$ is the graph of a 1-Lipschitz convex function $\Phi: \mathbb{R}^n \to \mathbb{R}$.
- The Minkowski metric induce a pseudo-distance $d_{\partial\Omega}$ on $\partial\Omega$

Definition

If Ω is non empty and if Λ contains at least two elements, then Ω is called a flat regular domain.

- Ω is a convex domain of $\mathbb{R}^{1,n}$.
- $\partial\Omega$ is the graph of a 1-Lipschitz convex function $\Phi: \mathbb{R}^n \to \mathbb{R}$.
- The Minkowski metric induce a pseudo-distance $d_{\partial\Omega}$ on $\partial\Omega$

Definition

The initial singularity associated to Ω is the cleaning of $(\partial \Omega, d_{\partial \Omega})$

Theorem (Mess 1990 2 + 1 dimesion, Barbot 2003 $n+1\geq 4)$

Let M be a maximal globally hyperbolic Cauchy compact (MGHC) flat space-time of dimension n+1. Then, reverting the time if necessary, M is the quotient of a flat regular domain Ω by a discrete subgroup $\Gamma \subset SO(1,n) \ltimes \mathbb{R}^{1,n}$ acting freely and properly discontinuously.

Theorem (Mess $1990\ 2+1$ dimesion, Barbot $2003\ n+1\geq 4)$

Let M be a maximal globally hyperbolic Cauchy compact (MGHC) flat space-time of dimension n+1. Then, reverting the time if necessary, M is the quotient of a flat regular domain Ω by a discrete subgroup $\Gamma \subset SO(1,n) \ltimes \mathbb{R}^{1,n}$ acting freely and properly discontinuously.

Theorem (Mess 1990)

Let S be a surface of genus ≥ 2 . There is an one to one correspondence between the space of measured geodesic laminations on S and the space of flat maximal globally hyperbolic 2+1 space-times admitting a Cauchy hypersurface homeomorphic to S.

Table of contents

3 asymptotic behavior

• The restriction of Q to every $\tilde{S}_t^T \longrightarrow (\tilde{S}_t^T, g_t)$ Riemannian hypersurface.

- The restriction of Q to every $\tilde{S}_t^T \longrightarrow (\tilde{S}_t^T, g_t)$ Riemannian hypersurface.
- (\tilde{S}_t^T, g_t) Riemannian hypersurfaces \longrightarrow one-parameter family (\tilde{S}_t^T, d_t) of metric spaces .

- The restriction of Q to every $\tilde{S}_t^T \longrightarrow (\tilde{S}_t^T, g_t)$ Riemannian hypersurface.
- (\tilde{S}_t^T, g_t) Riemannian hypersurfaces \longrightarrow one-parameter family (\tilde{S}_t^T, d_t) of metric spaces .
- Γ acts by isometries on (\tilde{S}_t^T, d_t) .

- The restriction of Q to every $\tilde{S}_t^T \longrightarrow (\tilde{S}_t^T, g_t)$ Riemannian hypersurface.
- (\tilde{S}_t^T, g_t) Riemannian hypersurfaces \longrightarrow one-parameter family (\tilde{S}_t^T, d_t) of metric spaces .
- Γ acts by isometries on (\tilde{S}_t^T, d_t) .

The asymptotic behavior of $(\Gamma, \tilde{S}_t^T, d_t)$ when $t \to \infty$?

The asymptotic behavior of $(\Gamma, \tilde{S}_t^T, d_t)$ when $t \to \infty$? when $t \to 0$?

The asymptotic behavior of $(\Gamma, \tilde{S}_t^T, d_t)$ when $t \to \infty$? when $t \to 0$? For which topology?

The asymptotic behavior of $(\Gamma, \tilde{S}_t^T, d_t)$ when $t \to \infty$? when $t \to 0$? For which topology? For which time?

The asymptotic behavior of $(\Gamma, \tilde{S}_t^T, d_t)$ when $t \to \infty$? when $t \to 0$? For which topology? For which time?

A Cauchy time function $T: \Omega \to \mathbb{R}$ is quasi-concave if the level sets $S_t = T^{-1}(t)$ are convex, i.e. if the future of S_t is convex.

A Cauchy time function $T: \Omega \to \mathbb{R}$ is quasi-concave if the level sets $S_t = T^{-1}(t)$ are convex, i.e. if the future of S_t is convex.

• If S is C^2 then it is equivalent to the semi-positivity of the second fondamental form.

A Cauchy time function $T: \Omega \to \mathbb{R}$ is quasi-concave if the level sets $S_t = T^{-1}(t)$ are convex, i.e. if the future of S_t is convex.

- If S is C^2 then it is equivalent to the semi-positivity of the second fondamental form.
- It is also equivalent to the **Hubble law**, i.e. the metrics on the level sets increase along the gradient lines.

A Cauchy time function $T: \Omega \to \mathbb{R}$ is quasi-concave if the level sets $S_t = T^{-1}(t)$ are convex, i.e. if the future of S_t is convex.

- If S is C^2 then it is equivalent to the semi-positivity of the second fondamental form.
- It is also equivalent to the **Hubble law**, i.e. the metrics on the level sets increase along the gradient lines.

When $t \rightarrow 0$?

When $t \rightarrow 0$?

Theorem (Bonsante 2005)

Let T be the cosmological time of Ω . Then $(\Gamma, \tilde{S}_t^T, d_t)$ converge on the Gromov equivariant topology to the cleaning of $(\Gamma, \partial\Omega, d_{\partial\Omega})$. Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma}(\gamma)$

When $t \rightarrow 0$?

Theorem (Bonsante 2005)

Let T be the cosmological time of Ω . Then $(\Gamma, \tilde{S}_t^T, d_t)$ converge on the Gromov equivariant topology to the cleaning of $(\Gamma, \partial\Omega, d_{\partial\Omega})$. Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma}(\gamma)$

Theorem (Bonsante and Benedetti 2006)

Let M be a MGHC future complete 2+1 space-time and consider the associated measured geodesic lamination (S,λ) . Then the cleaning of $(\partial\Omega,d_{\partial\Omega})$, equipped with the isometric action of $\pi_1(S)$, is equivariantly isometric to the real tree dual to the lamination λ .

Question (Benedetti and Guadagnini 2001)

$$lim_{t \to 0} I_t(\gamma) = I_{\Sigma(\gamma)}$$

Question (Benedetti and Guadagnini 2001)

$$lim_{t \to 0} l_t(\gamma) = l_{\Sigma(\gamma)}$$

Theorem (Andersson 2003)

If the measured geodesic lamination λ associated to Ω is locally finite. Then the CMC levels converge in the Hausdorff Gromov equivariant topology to the real tree dual to λ . Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma}(\gamma)$.

Question (Benedetti and Guadagnini 2001)

$$lim_{t \to 0} l_t(\gamma) = l_{\Sigma(\gamma)}$$

Theorem (Andersson 2003)

If the measured geodesic lamination λ associated to Ω is locally finite. Then the CMC levels converge in the Hausdorff Gromov equivariant topology to the real tree dual to λ . Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma}(\gamma)$.

Theorem (B 2011)

Let M be a flat maximal globally hyperbolic Cauchy compact 2+1 space-time and let λ be the associated measured lamination. Consider $T: \tilde{M} \to R$ quasi-concave Cauchy time function Γ invariant. Then the action of Γ on level sets of T converge on the Gromov equivariant topology to the real tree dual to λ . Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma(\gamma)}$.

- Positive answer to the question of Benedetti and Guadagnini 2001
- Application to the k time

Theorem (B 2011)

Let M be a flat maximal globally hyperbolic Cauchy compact 2+1 space-time and let λ be the associated measured lamination. Consider $T: \tilde{M} \to R$ quasi-concave Cauchy time function Γ invariant. Then the action of Γ on level sets of T converge on the Gromov equivariant topology to the real tree dual to λ . Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma(\gamma)}$.

- Positive answer to the question of Benedetti and Guadagnini 2001
- Application to the k time
- The same results for de Sitter and anti de Sitter cases.

Theorem (B 2012)

Let M be a flat maximal globally hyperbolic Cauchy compact n+1 space-time. Consider $T: \tilde{M} \to R$ quasi-concave Cauchy time function Γ invariant. Then the action of Γ on level sets of T converge in the Gromov equivariant topology a CAT(0) space. The limit is the same for all quasi-concave time functions. Moreover $\lim_{t\to 0} l_t(\gamma) = l_{\Sigma(\gamma)}$.

When $t \to +\infty$

Theorem (Bonsante 2005)

Let T be the cosmologic time. Then $(\Gamma, X, t^{-1}d_t)$ converge in the Gromov equivariant topology to $(\Gamma, \mathbb{H}^n, d_{\mathbb{H}^n})$ when t goes to ∞ .

When $t \to +\infty$

Theorem (Bonsante 2005)

Let T be the cosmologic time. Then $(\Gamma, X, t^{-1}d_t)$ converge in the Gromov equivariant topology to $(\Gamma, \mathbb{H}^n, d_{\mathbb{H}^n})$ when t goes to ∞ . Moreover $\lim_{t\to\infty} t^{-1}l_t(\rho(\gamma)) = \lim_{t\to\infty} (\gamma)$.

When $t \to +\infty$

Theorem (Bonsante 2005)

Let T be the cosmologic time. Then $(\Gamma, X, t^{-1}d_t)$ converge in the Gromov equivariant topology to $(\Gamma, \mathbb{H}^n, d_{\mathbb{H}^n})$ when t goes to ∞ . Moreover $\lim_{t\to\infty} t^{-1}l_t(\rho(\gamma)) = l_{\mathbb{H}^n}(\gamma)$.

Theorem (B 2012)

There is a constant K depending only on the space-time M such that: for every quasi-concave Γ -invariant Cauchy time function $T:\Omega\to]0,+\infty[$, the renormalized level sets $(\Gamma,\tilde{S}_t^T,\frac{1}{\sup_{\tilde{S}_t^T}\tau}d_t)$ converge on the Gromov equivariant topology to a K-bilipschitz space of $(\mathbb{H}^n,d_{\mathbb{H}^n})$.