Global solutions of water waves equations in one dimension

Jean-Marc Delort

Université Paris-Nord

(joint work with Thomas Alazard)

1. Statement of the main result

Let $(t,x) \to (\eta,\psi)(t,x)$ be a function from $[T_0, T[\times \mathbb{R} \text{ to } \mathbb{R}^2 \text{ solving the Craig-Sulem-Zakharov system:}]$

(CSZ)
$$\begin{aligned} \partial_t \eta &= G(\eta) \psi \\ \partial_t \psi &= -\eta - \frac{1}{2} (\partial_x \psi)^2 + \frac{[G(\eta)\psi + \partial_x \psi \partial_x \eta]^2}{2(1 + (\partial_x \eta)^2)} \end{aligned}$$

where $G(\eta)$ is the Dirichlet-Neumann operator defined by $G(\eta)\psi = \sqrt{1 + (\partial_x \eta)^2} \partial_n \Phi|_{\nu=\eta(t,x)}$, where

$$(\partial_x^2 + \partial_y^2)\Phi = 0$$
 in $y < \eta(t, x)$, $\Phi|_{y=\eta(t,x)} = \psi$.

Known results: • Local existence in dimension 1 or 2 (Sijue Wu).

- Almost global existence with small data in dimension one: if $(\eta, \psi)|_{t=1} = \epsilon(\eta_0, \psi_0)$, the solution exists on an interval $[1, e^{c/\epsilon}]$ (Sijue Wu).
- Global existence in dimension 2 for $\epsilon \ll 1$ (Sijue Wu), global existence and scattering (Germain-Masmoudi-Shatah).

1. Statement of the main result

Let $(t,x) \to (\eta,\psi)(t,x)$ be a function from $[T_0, T[\times \mathbb{R} \text{ to } \mathbb{R}^2 \text{ solving the Craig-Sulem-Zakharov system:}]$

(CSZ)
$$\begin{aligned} \partial_t \eta &= G(\eta) \psi \\ \partial_t \psi &= -\eta - \frac{1}{2} (\partial_x \psi)^2 + \frac{[G(\eta)\psi + \partial_x \psi \partial_x \eta]^2}{2(1 + (\partial_x \eta)^2)} \end{aligned}$$

where $G(\eta)$ is the Dirichlet-Neumann operator defined by $G(\eta)\psi = \sqrt{1 + (\partial_x \eta)^2} \partial_n \Phi|_{y=\eta(t,x)}$, where

$$(\partial_x^2 + \partial_y^2)\Phi = 0$$
 in $y < \eta(t, x)$, $\Phi|_{y=\eta(t,x)} = \psi$.

Known results: • Local existence in dimension 1 or 2 (Sijue Wu).

- Almost global existence with small data in dimension one: if $(\eta, \psi)|_{t=1} = \epsilon(\eta_0, \psi_0)$, the solution exists on an interval $[1, e^{c/\epsilon}]$ (Sijue Wu).
- ullet Global existence in dimension 2 for $\epsilon\ll 1$ (Sijue Wu), global existence and scattering (Germain-Masmoudi-Shatah).

Theorem

In dimension one, take $s\gg s_1\gg 1$ integers. Let (η_0,ψ_0) be such that

$$(x\partial_x)^p\eta_0\in H^{s-p}, (x\partial_x)^p|D|^{1/2}\psi_0\in H^{s-p},\ p\leq s_1.$$

For $\epsilon \ll 1$, (CSZ) with data $(\eta, \psi)|_{t=1} = \epsilon(\eta_0, \psi_0)$ has a unique global smooth solution. Moreover, $u = |D|^{1/2} \psi + i \eta$ has the asymptotic expansion

$$u(t,x) = \frac{\epsilon}{\sqrt{t}} \alpha\left(\frac{x}{t}\right) \exp\left[\frac{it}{4|x/t|} + i\frac{\epsilon^2}{64} \frac{|\alpha(x/t)|^2}{|x/t|^5} \log t\right] + t^{-\frac{1}{2}-\kappa} \rho(t,x),$$

where $\kappa > 0$, $\alpha \in C_b^0(\mathbb{R})$, $\rho \in L^{\infty}$.

Reference: Ionescu-Pusateri obtained independently a similar result of global existence, with the following differences: Decay assumptions are weaker, and asymptotics are obtained for $\hat{u}(t,\xi)$ instead of u(t,x).

Theorem

In dimension one, take $s\gg s_1\gg 1$ integers. Let (η_0,ψ_0) be such that

$$(x\partial_x)^p\eta_0\in H^{s-p}, (x\partial_x)^p|D|^{1/2}\psi_0\in H^{s-p},\ p\leq s_1.$$

For $\epsilon \ll 1$, (CSZ) with data $(\eta, \psi)|_{t=1} = \epsilon(\eta_0, \psi_0)$ has a unique global smooth solution. Moreover, $u = |D|^{1/2} \psi + i \eta$ has the asymptotic expansion

$$u(t,x) = \frac{\epsilon}{\sqrt{t}} \alpha\left(\frac{x}{t}\right) \exp\left[\frac{it}{4|x/t|} + i\frac{\epsilon^2}{64} \frac{|\alpha(x/t)|^2}{|x/t|^5} \log t\right] + t^{-\frac{1}{2}-\kappa} \rho(t,x),$$

where $\kappa > 0$, $\alpha \in C_b^0(\mathbb{R})$, $\rho \in L^{\infty}$.

Reference: Ionescu-Pusateri obtained independently a similar result of global existence, with the following differences: Decay assumptions are weaker, and asymptotics are obtained for $\hat{u}(t,\xi)$ instead of u(t,x).

Theorem

In dimension one, take $s\gg s_1\gg 1$ integers. Let (η_0,ψ_0) be such that

$$(x\partial_x)^p\eta_0\in H^{\mathfrak s-p}, (x\partial_x)^p|D|^{1/2}\psi_0\in H^{\mathfrak s-p},\ p\leq s_1.$$

For $\epsilon \ll 1$, (CSZ) with data $(\eta, \psi)|_{t=1} = \epsilon(\eta_0, \psi_0)$ has a unique global smooth solution. Moreover, $u = |D|^{1/2} \psi + i \eta$ has the asymptotic expansion

$$u(t,x) = \frac{\epsilon}{\sqrt{t}} \alpha\left(\frac{x}{t}\right) \exp\left[\frac{it}{4|x/t|} + i\frac{\epsilon^2}{64} \frac{|\alpha(x/t)|^2}{|x/t|^5} \log t\right] + t^{-\frac{1}{2}-\kappa} \rho(t,x),$$

where $\kappa > 0$, $\alpha \in C_b^0(\mathbb{R})$, $\rho \in L^{\infty}$.

Reference: lonescu-Pusateri obtained independently a similar result of global existence, with the following differences: Decay assumptions are weaker, and asymptotics are obtained for $\hat{u}(t,\xi)$ instead of u(t,x).

4□ > 4圖 > 4 圖 > 4 圖 > □ ● 9 Q @

One uses the Klainerman vector field $Z = t\partial_t + 2x\partial_x$.

Model problem:
$$(D_t - P(D_x))u = \underbrace{N(u)}_{\text{cubic}}$$
, where $D_t = \frac{1}{i}\partial_t$, $P(\xi)$

real valued symbol (for instance $P(\xi) = |\xi|^{1/2}$).

Let Z be a vector field so that $[Z, D_t - P(D_x)] = 0$. One gets

$$(D_t - P(D_x))Z^k u = Z^k N(u) \sim u^2 Z^k u + \cdots$$

whence

$$\|Z^k u(t,\cdot)\|_{L^2} \leq \|Z^k u(1,\cdot)\|_{L^2} + \int_1^t C\|u(\tau,\cdot)\|_{L^\infty}^2 \|Z^k u(\tau,\cdot)\|_{L^2} d\tau.$$

Consider the following two conditions (with $0 < \delta_k, \tilde{\delta}_k' \ll 1$):

(A) For
$$t$$
 in some interval $[1, T[, \|u(t, \cdot)\|_{L^{\infty}} = O(\epsilon/\sqrt{t})]$ and for $k = 0, \dots, s/2, \|Z^k u(t, \cdot)\|_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_k})$

(B)
$$||Z^k u(t,\cdot)||_{L^2} = O(\epsilon t^{\delta_k}), \ k \le s.$$

One uses the Klainerman vector field $Z = t\partial_t + 2x\partial_x$.

Model problem:
$$(D_t - P(D_x))u = \underbrace{N(u)}_{\text{cubic}}$$
, where $D_t = \frac{1}{i}\partial_t$, $P(\xi)$

real valued symbol (for instance $P(\xi) = |\xi|^{1/2}$).

Let Z be a vector field so that $[Z, D_t - P(D_x)] = 0$. One gets

$$(D_t - P(D_x))Z^k u = Z^k N(u) \sim u^2 Z^k u + \cdots$$

whence

$$\|Z^k u(t,\cdot)\|_{L^2} \leq \|Z^k u(1,\cdot)\|_{L^2} + \int_1^t C\|u(\tau,\cdot)\|_{L^\infty}^2 \|Z^k u(\tau,\cdot)\|_{L^2} d\tau.$$

Consider the following two conditions (with 0 < $\delta_k, \tilde{\delta}_k' \ll$ 1):

(A) For
$$t$$
 in some interval $[1, T[, \|u(t, \cdot)\|_{L^{\infty}} = O(\epsilon/\sqrt{t})]$ and for $k = 0, \dots, s/2, \|Z^k u(t, \cdot)\|_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_k}),$

$$||Z^k u(t,\cdot)||_{L^2} = O(\epsilon t^{\delta_k}), \ k \le s.$$

One uses the Klainerman vector field $Z = t\partial_t + 2x\partial_x$.

Model problem:
$$(D_t - P(D_x))u = \underbrace{N(u)}_{\text{cubic}}$$
, where $D_t = \frac{1}{i}\partial_t$, $P(\xi)$

real valued symbol (for instance $P(\xi) = |\xi|^{1/2}$).

Let Z be a vector field so that $[Z, D_t - P(D_x)] = 0$. One gets

$$(D_t - P(D_x))Z^k u = Z^k N(u) \sim u^2 Z^k u + \cdots$$

whence

$$\|Z^k u(t,\cdot)\|_{L^2} \leq \|Z^k u(1,\cdot)\|_{L^2} + \int_1^t C\|u(\tau,\cdot)\|_{L^\infty}^2 \|Z^k u(\tau,\cdot)\|_{L^2} d\tau.$$

Consider the following two conditions (with 0 < $\delta_k, \tilde{\delta}'_k \ll$ 1):

For t in some interval
$$[1, T[, \|u(t, \cdot)\|_{L^{\infty}} = O(\epsilon/\sqrt{t})]$$

and for
$$k=0,\ldots,s/2,\|Z^ku(t,\cdot)\|_{L^\infty}=O(\epsilon t^{-\frac{1}{2}+\widetilde{\delta}_k'}),$$

(B)
$$||Z^k u(t,\cdot)||_{L^2} = O(\epsilon t^{\delta_k}), \ k \le s.$$

One uses the Klainerman vector field $Z = t\partial_t + 2x\partial_x$.

Model problem:
$$(D_t - P(D_x))u = \underbrace{N(u)}_{\text{cubic}}$$
, where $D_t = \frac{1}{i}\partial_t$, $P(\xi)$

real valued symbol (for instance $P(\xi) = |\xi|^{1/2}$).

Let Z be a vector field so that $[Z, D_t - P(D_x)] = 0$. One gets

$$(D_t - P(D_x))Z^k u = Z^k N(u) \sim u^2 Z^k u + \cdots$$

whence

$$\|Z^k u(t,\cdot)\|_{L^2} \leq \|Z^k u(1,\cdot)\|_{L^2} + C\epsilon^2 \int_1^t \|Z^k u(\tau,\cdot)\|_{L^2} \frac{d\tau}{\tau}.$$

Consider the following two conditions (with 0 < $\delta_k, \tilde{\delta}_k' \ll$ 1):

(A) For
$$t$$
 in some interval $[1, T[, \|u(t, \cdot)\|_{L^{\infty}} = O(\epsilon/\sqrt{t})]$ and for $k = 0, \dots, s/2, \|Z^k u(t, \cdot)\|_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_k}),$

(B)
$$||Z^k u(t,\cdot)||_{L^2} = O(\epsilon t^{\delta_k}), \ k \le s.$$

One uses the Klainerman vector field $Z = t\partial_t + 2x\partial_x$.

Model problem:
$$(D_t - P(D_x))u = \underbrace{N(u)}_{\text{cubic}}$$
, where $D_t = \frac{1}{i}\partial_t$, $P(\xi)$

real valued symbol (for instance $P(\xi) = |\xi|^{1/2}$).

Let Z be a vector field so that $[Z, D_t - P(D_x)] = 0$. One gets

$$(D_t - P(D_x))Z^k u = Z^k N(u) \sim u^2 Z^k u + \cdots$$

whence

$$||Z^k u(t,\cdot)||_{L^2} \leq C\epsilon t^{C\epsilon^2}.$$

Consider the following two conditions (with 0 < δ_k , $\tilde{\delta}_k' \ll$ 1):

For t in some interval
$$[1, T[, \|u(t, \cdot)\|_{L^{\infty}} = O(\epsilon/\sqrt{t})]$$

(A) and for
$$k = 0, ..., s/2, ||Z^k u(t, \cdot)||_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_k}),$$

(B)
$$||Z^k u(t,\cdot)||_{L^2} = O(\epsilon t^{\delta_k}), \ k \le s.$$

Apparent loss of derivatives

Consider a quadratic para-differential approximation of the (CSZ) system $\partial_t U = T_A U$, with

$$U = \begin{bmatrix} \eta \\ |D|^{1/2} \psi \end{bmatrix}, \ T_A = \ \mathrm{paradiff. \ operator \ with \ symbol} \ A = A(U,x,\xi),$$

where A is a 2×2 matrix of symbols

$$A(U,x,\xi) = \underbrace{A_0(U,x,\xi)}_{\text{anti-self-adjoint}} + \underbrace{A_1(U,x,\xi)}_{\text{self-adjoint}}.$$

Because of A_1 , the eigenvalues of A have non zero real part, so generate a loss of derivatives in energy inequalities.

Way to overcome this difficulty: Use the "good unknown" of Alinhac. For the quadratic approximation above, this means

introducing
$$\widetilde{U} = \begin{bmatrix} \eta \\ |D|^{1/2} \omega \end{bmatrix}$$
, with $\omega = \psi - T_{|D|\psi} \eta$. Then

 $\partial_t \widetilde{U} = T_{A_0} \widetilde{U}$. Since the eigenvalues of A_0 are purely imaginary, one gets Sobolev energy inequalities.

Apparent loss of derivatives

Consider a quadratic para-differential approximation of the (CSZ) system $\partial_t U = T_A U$, with

$$U = \begin{bmatrix} \eta \\ |D|^{1/2} \psi \end{bmatrix}, \ T_A = \text{ paradiff. operator with symbol } A = A(U, x, \xi),$$

where A is a 2×2 matrix of symbols

$$A(U,x,\xi) = \underbrace{A_0(U,x,\xi)}_{\text{anti-self-adjoint}} + \underbrace{A_1(U,x,\xi)}_{\text{self-adjoint}}.$$

Because of A_1 , the eigenvalues of A have non zero real part, so generate a loss of derivatives in energy inequalities.

Way to overcome this difficulty: Use the "good unknown" of Alinhac. For the quadratic approximation above, this means

introducing
$$\widetilde{U}=\begin{bmatrix} \eta \\ |D|^{1/2}\omega \end{bmatrix}$$
, with $\omega=\psi-T_{|D|\psi}\eta$. Then

 $\partial_t \widetilde{U} = T_{A_0} \widetilde{U}$. Since the eigenvalues of A_0 are purely imaginary, one gets Sobolev energy inequalities.

• Quadratic character of the non-linearity

Because the non-linearity is quadratic, the energy inequality reads

$$\|Z^k u(t,\cdot)\|_{L^2} \leq \|Z^k u(1,\cdot)\|_{L^2} + C \int_1^t \underbrace{\|u(\tau,\cdot)\|_{L^\infty}^2}_{O(\epsilon^2/\tau)} \|Z^k u(\tau,\cdot)\|_{L^2} d\tau,$$

which gives a $O(e^{\epsilon\sqrt{t}})$ estimate for the left hand side.

Way to overcome this difficulty: Use a Shatah normal form: Look for a new unknown $W = \widetilde{U} + B(\widetilde{U}, \widetilde{U})$, where B is a bounded quadratic map on H^s , chosen so that W solves an equation $\partial_t W = T_{A'}W + T_{A''}W$, where

- A'_0 is sublinear in W and $T_{A'_0}$ is antiself-adjoint on H^s
- A_0'' is quadratic and is an anti-self-adjoint matrix.

One gets in that way that the integral term in the energy inequality is cubic.

• Quadratic character of the non-linearity Because the non-linearity is quadratic, the energy inequality reads

$$\|Z^{k}u(t,\cdot)\|_{L^{2}} \leq \|Z^{k}u(1,\cdot)\|_{L^{2}} + C\int_{1}^{t} \underbrace{\|u(\tau,\cdot)\|_{L^{\infty}}}_{O(\epsilon/\sqrt{\tau})} \|Z^{k}u(\tau,\cdot)\|_{L^{2}} d\tau,$$

which gives a $O(e^{\epsilon\sqrt{t}})$ estimate for the left hand side.

Way to overcome this difficulty: Use a Shatah normal form: Look for a new unknown $W = \widetilde{U} + B(\widetilde{U}, \widetilde{U})$, where B is a bounded quadratic map on H^s , chosen so that W solves an equation $\partial_t W = T_{A_0'}W + T_{A_0'}W$, where

- A'_0 is sublinear in W and $T_{A'_0}$ is antiself-adjoint on H^s
- A_0'' is quadratic and is an anti-self-adjoint matrix.

One gets in that way that the integral term in the energy inequality is cubic.

• Quadratic character of the non-linearity
Because the non-linearity is quadratic, the energy inequality reads

$$\|Z^{k}u(t,\cdot)\|_{L^{2}} \leq \|Z^{k}u(1,\cdot)\|_{L^{2}} + C\int_{1}^{t} \underbrace{\|u(\tau,\cdot)\|_{L^{\infty}}}_{O(\epsilon/\sqrt{\tau})} \|Z^{k}u(\tau,\cdot)\|_{L^{2}} d\tau,$$

which gives a $O(e^{\epsilon\sqrt{t}})$ estimate for the left hand side.

Way to overcome this difficulty: Use a Shatah normal form: Look for a new unknown $W = \widetilde{U} + B(\widetilde{U}, \widetilde{U})$, where B is a bounded quadratic map on H^s , chosen so that W solves an equation $\partial_t W = T_{A_0'}W + T_{A_0''}W$, where

- A'_0 is sublinear in W and $T_{A'_0}$ is antiself-adjoint on H^s
- A_0'' is quadratic and is an anti-self-adjoint matrix.

One gets in that way that the integral term in the energy inequality is cubic.

3. Klainerman-Sobolev estimates

We want to prove that $(A) + (B) \Rightarrow (A)$ (with a better constant). We first show, with $u = |D|^{1/2} \psi + i\eta$,

•
$$||u(t,\cdot)||_{L^{\infty}} = O(\epsilon/\sqrt{t})$$

• $||Z^{k}u(t,\cdot)||_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_{k}}), k \leq s/2$
• $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$
• $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$
 $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$

Define v(t,x) by $u(t,x) = \frac{1}{\sqrt{t}}v(t,\frac{x}{t})$ and set $h = \frac{1}{t}$.

Notation: If a is a symbol, set

$$\operatorname{Op}_h(a)v = a(x, hD)v = \frac{1}{2\pi} \int e^{ix\xi} a(x, h\xi) \hat{v}(\xi) d\xi.$$

The (CSZ) system written on v is given by

$$(D_t - \operatorname{Op}_h(x\xi + |\xi|^{1/2}))v = \sqrt{h}Q_0(V) + h\left[C_0(V) - \frac{i}{2}v\right] + h^{1+\kappa}R(V),$$

where Q_0 (resp. C_0) is a nonlocal quadratic (resp. cubic) form in $V = (v, \bar{v})$, and R(V) a remainder.

3. Klainerman-Sobolev estimates

We want to prove that $(A) + (B) \Rightarrow (A)$ (with a better constant). We first show, with $u = |D|^{1/2} \psi + i\eta$,

•
$$||u(t,\cdot)||_{L^{\infty}} = O(\epsilon/\sqrt{t})$$

• $||Z^{k}u(t,\cdot)||_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_{k}}), k \leq s/2$
• $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$
 $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$
 $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k < s.$

Define v(t,x) by $u(t,x) = \frac{1}{\sqrt{t}}v(t,\frac{x}{t})$ and set $h = \frac{1}{t}$.

Notation: If a is a symbol, set

$$\operatorname{Op}_h(a)v = a(x, hD)v = \frac{1}{2\pi} \int e^{ix\xi} a(x, h\xi) \hat{v}(\xi) d\xi.$$

The (CSZ) system written on v is given by

$$(D_t - \operatorname{Op}_h(x\xi + |\xi|^{1/2}))v = \sqrt{h}Q_0(V) + h\left[C_0(V) - \frac{i}{2}v\right] + h^{1+\kappa}R(V),$$

where Q_0 (resp. C_0) is a nonlocal quadratic (resp. cubic) form in $V = (v, \bar{v})$, and R(V) a remainder.

3. Klainerman-Sobolev estimates

We want to prove that $(A) + (B) \Rightarrow (A)$ (with a better constant). We first show, with $u = |D|^{1/2} \psi + i\eta$,

•
$$||u(t,\cdot)||_{L^{\infty}} = O(\epsilon/\sqrt{t})$$

• $||Z^{k}u(t,\cdot)||_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \tilde{\delta}'_{k}}), k \leq s/2$
• $||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k \leq s.$

$$||Z^{k}u(t,\cdot)||_{L^{2}} = O(\epsilon t^{\delta_{k}}), k \leq s.$$

$$||Z^{k}u(t,\cdot)||_{L^{\infty}} = O(\epsilon t^{-\frac{1}{2} + \delta'_{k}})$$
for $k \leq s - 100$.

Define v(t,x) by $u(t,x) = \frac{1}{\sqrt{t}}v(t,\frac{x}{t})$ and set $h = \frac{1}{t}$.

Notation: If a is a symbol, set

$$\operatorname{Op}_h(a)v = a(x, hD)v = \frac{1}{2\pi} \int e^{ix\xi} a(x, h\xi) \hat{v}(\xi) d\xi.$$

The (CSZ) system written on v is given by

$$(D_t - \operatorname{Op}_h(x\xi + |\xi|^{1/2}))v = \sqrt{h}Q_0(V) + h\left[C_0(V) - \frac{i}{2}v\right] + h^{1+\kappa}R(V),$$

where Q_0 (resp. C_0) is a nonlocal quadratic (resp. cubic) form in $V = (v, \bar{v})$, and R(V) a remainder.

Express ∂_t from the Klainerman vector field $Z = t\partial_t + x\partial_x$. One gets:

$$\operatorname{Op}_h(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_0(V) + h\left[\frac{i}{2}v - iZv - C_0(V)\right] - h^{1+\kappa}R(V).$$

Set
$$\Lambda = \{(x,\xi); \xi \neq 0, 2x\xi + |\xi|^{1/2} = 0\} = \{(x,\xi); \xi = d\omega(x)\}$$
 with $\omega(x) = 1/(4|x|)$.

Proposition: Let γ_{Λ} be a smooth cut-off close to Λ , equal to one on a neighborhood of Λ , $\gamma_{\Lambda}^{c}=1-\gamma_{\Lambda}$,

 $v_{\Lambda} = \operatorname{Op}_{h}(\gamma_{\Lambda})v, v_{\Lambda^{c}} = \operatorname{Op}_{h}(\gamma_{\Lambda}^{c})v.$ Then for $k \leq s - 100$,

- (i) $||Z^k v_{\Lambda^c}||_{L^2} = O(\epsilon h^{\frac{1}{2} \delta'_k}).$
- $(ii) \|(hD_{x}-d\omega)Z^{k}v_{\Lambda}\|_{L^{2}}=O(\epsilon h^{1-\delta'_{k}}).$
- $(iii) ||Z^k v||_{L^{\infty}} = O(\epsilon h^{-\delta'_k})$

Proof. (i) Use that on the support of γ_{Λ}^c , $2x\xi + |\xi|^{1/2}$ is elliptic. Then $\|Z^k v_{\Lambda^c}\|_{L^2} = O(\epsilon h^{\frac{1}{2} - \delta_k'})$.

Express ∂_t from the Klainerman vector field $Z = t\partial_t + x\partial_x$. One gets:

$$\operatorname{Op}_h(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_0(V) + h\left[\frac{i}{2}v - iZv - C_0(V)\right] - h^{1+\kappa}R(V).$$

Set
$$\Lambda = \{(x,\xi); \xi \neq 0, 2x\xi + |\xi|^{1/2} = 0\} = \{(x,\xi); \xi = d\omega(x)\}$$
 with $\omega(x) = 1/(4|x|)$.

Proposition: Let γ_{Λ} be a smooth cut-off close to Λ , equal to one on a neighborhood of Λ , $\gamma_{\Lambda}^{c} = 1 - \gamma_{\Lambda}$,

$$v_{\Lambda} = \operatorname{Op}_{h}(\gamma_{\Lambda})v$$
, $v_{\Lambda^{c}} = \operatorname{Op}_{h}(\gamma_{\Lambda}^{c})v$. Then for $k \leq s - 100$,

(i)
$$||Z^k v_{\Lambda^c}||_{L^2} = O(\epsilon h^{\frac{1}{2} - \delta'_k}).$$

$$(ii) \|(hD_{\times} - d\omega)Z^{k}v_{\Lambda}\|_{L^{2}} = O(\epsilon h^{1-\delta'_{k}}).$$

(iii)
$$||Z^k v||_{L^{\infty}} = O(\epsilon h^{-\delta'_k}).$$

Proof. (i) Use that on the support of γ_{Λ}^c , $2x\xi + |\xi|^{1/2}$ is elliptic. Then $\|Z^k v_{\Lambda^c}\|_{L^2} = O(\epsilon h^{\frac{1}{2} - \delta_k'})$.

Express ∂_t from the Klainerman vector field $Z = t\partial_t + x\partial_x$. One gets:

$$\operatorname{Op}_{h}(2x\xi+|\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

Set
$$\Lambda = \{(x,\xi); \xi \neq 0, 2x\xi + |\xi|^{1/2} = 0\} = \{(x,\xi); \xi = d\omega(x)\}$$
 with $\omega(x) = 1/(4|x|)$.

Proposition: Let γ_{Λ} be a smooth cut-off close to Λ , equal to one on a neighborhood of Λ , $\gamma_{\Lambda}^{c} = 1 - \gamma_{\Lambda}$,

$$v_{\Lambda} = \operatorname{Op}_{h}(\gamma_{\Lambda})v$$
, $v_{\Lambda^{c}} = \operatorname{Op}_{h}(\gamma_{\Lambda}^{c})v$. Then for $k \leq s - 100$,

(i)
$$||Z^k v_{\Lambda^c}||_{L^2} = O(\epsilon h^{\frac{1}{2} - \delta'_k}).$$

$$(ii) \|(hD_{\times} - d\omega)Z^k v_{\Lambda}\|_{L^2} = O(\epsilon h^{1-\delta'_k}).$$

$$(iii) ||Z^k v||_{L^{\infty}} = O(\epsilon h^{-\delta'_k}).$$

Proof. (i) Use that on the support of γ_{Λ}^c , $2x\xi + |\xi|^{1/2}$ is elliptic. Then $\|Z^k v_{\Lambda^c}\|_{L^2} = O(\epsilon h^{\frac{1}{2} - \delta_k'})$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$. By localization, $Op_h(\gamma_{\Lambda})Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$.

By localization, $Op_h(\gamma_{\Lambda})Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$. By localization, $\operatorname{Op}_h(\gamma_{\Lambda})Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$. By localization, $\operatorname{Op}_h(\gamma_{\Lambda}) Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

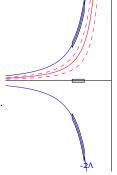
Since by (i),
$$v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$$
, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$. By localization, $\operatorname{Op}_h(\gamma_{\Lambda}) Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.

$$\operatorname{Op}_{h}(2x\xi + |\xi|^{1/2})v = -\sqrt{h}Q_{0}(V) + h\left[\frac{i}{2}v - iZv - C_{0}(V)\right] - h^{1+\kappa}R(V).$$

One may write $2x\xi + |\xi|^{1/2} = e(x,\xi)(\xi - d\omega(x))$, whence

$$\operatorname{Op}_h(\xi - d\omega)\operatorname{Op}_h(\gamma_{\Lambda})v = -\sqrt{h}\operatorname{Op}_h(\gamma_{\Lambda})\operatorname{Op}_h(\tilde{e})Q_0(V) + h(\cdots).$$

Since by (i), $v = v_{\Lambda} + O_{L^2}(h^{\frac{1}{2}-0})$, $Q_0(v, \bar{v}) = Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) + O_{L^2}(h^{\frac{1}{2}-0})$. By localization, $O_{\mathbf{p}_h}(\gamma_{\Lambda})Q_0(v_{\Lambda}, \bar{v}_{\Lambda}) \sim 0$.



(iii) Let us prove that $\|Z^kv\|_{L^\infty}=O(\epsilon h^{-\delta'_k})$. One may reduce oneself to the case when v is microlocally supported in $h|\xi|\sim 1$. Then since by (i), $\|Z^kv_{\Lambda^c}\|_{L^2}=O(\epsilon h^{\frac{1}{2}-\delta'_k})$, by Sobolev injection, $\|Z^kv_{\Lambda^c}\|_{L^\infty}=O(\epsilon h^{-\delta'_k})$. On the other hand

$$\begin{split} \|Z^k v_{\Lambda}\|_{L^{\infty}} &= \|e^{-i\omega/h} Z^k v_{\Lambda}\|_{L^{\infty}} \\ &\leq \|e^{-i\omega/h} Z^k v_{\Lambda}\|_{L^2}^{1/2} \|D(e^{-i\omega/h} Z^k v_{\Lambda})\|_{L^2}^{1/2} \\ &\leq \|Z^k v_{\Lambda}\|_{L^2}^{1/2} \underbrace{\left\|\left(D - \frac{d\omega}{h}\right) Z^k v_{\Lambda}\right\|_{L^2}^{1/2}}_{=O(\sqrt{\epsilon}h^{-\delta'_k/2}) \text{ by (ii)}} = O(\epsilon h^{-\delta'_k}), \end{split}$$

for k < s - 100.

4. Optimal L^{∞} estimates

Proposition: One has an expression

$$v = v_{\Lambda} + \sqrt{h(v_{2\Lambda} + v_{-2\Lambda})} + h(v_{3\Lambda} + v_{-\Lambda} + v_{-3\Lambda}) + h^{1+\kappa}g,$$

where $v_{\ell\Lambda}$ is microlocally supported close to $\ell\Lambda$ and is a semi-classical lagrangian distribution on $\ell\Lambda$ in the following sense

- $\|Z^k v_{\ell\Lambda}\|_{L^{\infty}} = O(\epsilon h^{-\delta'_k})$ and
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{1-\delta'_k})$ for $\ell = -2, 1, 2, 1$
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{\frac{1}{2}-\delta'_k})$ for $\ell = -3, -1, 3$,

where e_{ℓ} is a smooth symbol vanishing on $\ell\Lambda$. Moreover, $v_{\ell\Lambda}$ may be expressed as a polynomial in v_{Λ} , \bar{v}_{Λ} .

The fact that $v_{\ell\Lambda}$ are semi-classical Lagrangian distributions means that these functions have some oscillatory behavior along the phase $\ell\Lambda$. If, for instance, $w(x) = \alpha(x) \exp(i\omega(x)/h)$, then

$$\operatorname{Op}_h(\xi - d\omega)w = (hD_x - d\omega)w = O(h).$$

Idea of proof of the proposition: Argue as for the L^2 estimates, but using the a priori L^{∞} bounds obtained above.

4. Optimal L^{∞} estimates

Proposition: One has an expression

$$v = v_{\Lambda} + \sqrt{h(v_{2\Lambda} + v_{-2\Lambda})} + h(v_{3\Lambda} + v_{-\Lambda} + v_{-3\Lambda}) + h^{1+\kappa}g,$$

where $v_{\ell\Lambda}$ is microlocally supported close to $\ell\Lambda$ and is a semi-classical lagrangian distribution on $\ell\Lambda$ in the following sense

- $\|Z^k v_{\ell\Lambda}\|_{L^{\infty}} = O(\epsilon h^{-\delta'_k})$ and
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{1-\delta'_k})$ for $\ell = -2, 1, 2,$
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{\frac{1}{2} \delta'_k})$ for $\ell = -3, -1, 3$,

where e_{ℓ} is a smooth symbol vanishing on $\ell\Lambda$. Moreover, $v_{\ell\Lambda}$ may be expressed as a polynomial in v_{Λ} , \bar{v}_{Λ} .

The fact that $v_{\ell\Lambda}$ are semi-classical Lagrangian distributions means that these functions have some oscillatory behavior along the phase $\ell\Lambda$. If, for instance, $w(x) = \alpha(x) \exp(i\omega(x)/h)$, then

$$\operatorname{Op}_h(\xi - d\omega)w = (hD_{\mathsf{x}} - d\omega)w = O(h).$$

Idea of proof of the proposition: Argue as for the L^2 estimates, but using the a priori L^{∞} bounds obtained above. \square

4. Optimal L^{∞} estimates

Proposition: One has an expression

$$v = v_{\Lambda} + \sqrt{h(v_{2\Lambda} + v_{-2\Lambda})} + h(v_{3\Lambda} + v_{-\Lambda} + v_{-3\Lambda}) + h^{1+\kappa}g,$$

where $v_{\ell\Lambda}$ is microlocally supported close to $\ell\Lambda$ and is a semi-classical lagrangian distribution on $\ell\Lambda$ in the following sense

- $\|Z^k v_{\ell\Lambda}\|_{L^{\infty}} = O(\epsilon h^{-\delta'_k})$ and
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{1-\delta'_k})$ for $\ell = -2, 1, 2,$
- $\|\operatorname{Op}_h(e_\ell)Z^k v_{\ell\Lambda}\|_{L^\infty} = O(\epsilon h^{\frac{1}{2}-\delta'_k})$ for $\ell = -3, -1, 3$,

where e_{ℓ} is a smooth symbol vanishing on $\ell\Lambda$. Moreover, $v_{\ell\Lambda}$ may be expressed as a polynomial in v_{Λ} , \bar{v}_{Λ} .

The fact that $v_{\ell\Lambda}$ are semi-classical Lagrangian distributions means that these functions have some oscillatory behavior along the phase $\ell\Lambda$. If, for instance, $w(x) = \alpha(x) \exp(i\omega(x)/h)$, then

$$\operatorname{Op}_h(\xi - d\omega)w = (hD_{\mathsf{x}} - d\omega)w = O(h).$$

Idea of proof of the proposition: Argue as for the L^2 estimates, but using the a priori L^{∞} bounds obtained above, \square

Corollary: The solution ν of (CSZ) satisfies an ODE

$$\begin{split} D_t v = & \frac{1}{2} (1 - \chi)(xh^{-\beta}) |d\omega|^{1/2} v \\ & - i \sqrt{h} (1 - \chi)(xh^{-\beta}) |d\omega|^{3/2} [\Phi_2(x) v^2 + \Phi_{-2}(x) \bar{v}^2] \\ & + h (1 - \chi)(xh^{-\beta}) |d\omega|^{5/2} [\Phi_3(x) v^3 + \Phi_1(x) |v|^2 v \\ & + \Phi_{-1}(x) |v|^2 \bar{v} + \Phi_{-3}(x) \bar{v}^3] \\ & + h^{1+\kappa} g \end{split}$$

where Φ_{ℓ} are real valued functions on \mathbb{R}^* , $\chi \in C_0^{\infty}(\mathbb{R})$, $\chi \equiv 0$ close to zero.

Corollary \Rightarrow Uniform bound for v and asymptotics: Applying a normal form method to the ODE, one reduces to

$$D_t f = \frac{1}{2} (1 - \chi) (x h^{-\beta}) |d\omega|^{1/2} \left[1 + \frac{|d\omega|^2}{t} |f|^2 \right] f + O\left(\frac{1}{t^{1+\kappa}}\right).$$

Corollary: The solution ν of (CSZ) satisfies an ODE

$$\begin{split} D_t v = & \frac{1}{2} (1 - \chi)(xh^{-\beta}) |d\omega|^{1/2} v \\ & - i \sqrt{h} (1 - \chi)(xh^{-\beta}) |d\omega|^{3/2} [\Phi_2(x) v^2 + \Phi_{-2}(x) \bar{v}^2] \\ & + h (1 - \chi)(xh^{-\beta}) |d\omega|^{5/2} [\Phi_3(x) v^3 + \Phi_1(x) |v|^2 v \\ & + \Phi_{-1}(x) |v|^2 \bar{v} + \Phi_{-3}(x) \bar{v}^3] \\ & + h^{1+\kappa} g \end{split}$$

where Φ_{ℓ} are real valued functions on \mathbb{R}^* , $\chi \in C_0^{\infty}(\mathbb{R})$, $\chi \equiv 0$ close to zero.

Corollary \Rightarrow Uniform bound for v and asymptotics: Applying a normal form method to the ODE, one reduces to

$$D_t f = \frac{1}{2} (1 - \chi) (x h^{-\beta}) |d\omega|^{1/2} \left[1 + \frac{|d\omega|^2}{t} |f|^2 \right] f + O\left(\frac{1}{t^{1+\kappa}}\right).$$

Proof. If $b(\xi)$ is a symbol, there is e with $e|_{\ell\Lambda}=0$ such that

$$b(\xi) = b|_{\ell\Lambda} + e(x,\xi) = b(\ell d\omega) + e(x,\xi).$$

Then
$$\operatorname{Op}_h(b)v_{\ell\Lambda} = b(\ell d\omega(x))v_{\ell\Lambda} + \underbrace{\operatorname{Op}_h(e)v_{\ell\Lambda}}_{=O(h^{1-\delta_0'}) \text{ by the prop.}}$$
.

The quadratic form $Q_0(v, \bar{v})$ of the equation is made of terms of the form $\operatorname{Op}_h(b_0)[(\operatorname{Op}_h(b_1)v)(\operatorname{Op}_h(b_2)v)],...$ Then

$$\operatorname{Op}_h(b_0)[(\operatorname{Op}_h(b_1)v_{\Lambda})(\operatorname{Op}_h(b_2)v_{\Lambda})] = b_0(2d\omega)b_1(d\omega)b_2(d\omega)v_{\Lambda}^2 + O(h^{1-\delta_0'}).$$

Applying the same idea to the other non-local terms in

$$(D_t - \operatorname{Op}_h(x\xi + |\xi|^{1/2}))v = \sqrt{h}Q_0(V) + h\Big[C_0(V) - \frac{i}{2}v\Big] + h^{1+\kappa}R(V),$$

one gets the wanted ODE.