Robustness of the conformal constraint equations in a scalar-field setting Seminar on Mathematical General Relativity, Université Pierre et Marie Curie

Bruno Premoselli Joint work with O. Druet

UCP

February 11 2015

Scalar-field theory in General Relativity

Let (\mathcal{M}^{n+1},h) , $n\geq 3$, be a Lorentzian manifold, $\Psi\in C^\infty(\mathcal{M}^{n+1})$ a scalar-field and $V\in C^\infty(\mathbb{R})$ a potential. Ψ accounts for the distribution of matter and/or energy in the universe.

We will say that $(\mathcal{M}^{n+1}, h, \Psi)$ is a space-time if it satisfies the following Einstein equations:

$$\begin{cases} Ric(h)_{ij} - \frac{1}{2}R(h)h_{ij} = \nabla_i \Psi \nabla_j \Psi - \left(\frac{1}{2}|\nabla \Psi|_h^2 + V(\Psi)\right)h_{ij}, \\ \Box_h \Psi = \frac{dV}{d\Psi}. \end{cases}$$
 (E)

In a space-time satisfying (E) the gravitational field h only depends on Ψ .

Relevant physical cases

- ullet Vacuum case with no cosmological constant: $\Psi \equiv 0, \ V \equiv 0.$
- Vacuum case with positive cosmological constant: $\Psi \equiv 0$, $V \equiv \Lambda > 0$.
- Klein-Gordon fields: $V(\Psi) = \frac{1}{2}m\Psi^2$, m > 0.

Scalar-field theory in General Relativity

Let (\mathcal{M}^{n+1},h) , $n\geq 3$, be a Lorentzian manifold, $\Psi\in C^\infty(\mathcal{M}^{n+1})$ a scalar-field and $V\in C^\infty(\mathbb{R})$ a potential. Ψ accounts for the distribution of matter and/or energy in the universe.

We will say that $(\mathcal{M}^{n+1}, h, \Psi)$ is a space-time if it satisfies the following Einstein equations:

$$\begin{cases} Ric(h)_{ij} - \frac{1}{2}R(h)h_{ij} = \nabla_i \Psi \nabla_j \Psi - \left(\frac{1}{2}|\nabla \Psi|_h^2 + V(\Psi)\right)h_{ij}, \\ \Box_h \Psi = \frac{dV}{d\Psi}. \end{cases}$$
 (E)

In a space-time satisfying (E) the gravitational field h only depends on Ψ .

Relevant physical cases:

- ullet Vacuum case with no cosmological constant: $\Psi\equiv 0,\ V\equiv 0.$
- Vacuum case with positive cosmological constant: $\Psi \equiv 0$, $V \equiv \Lambda > 0$.
- Klein-Gordon fields: $V(\Psi) = \frac{1}{2}m\Psi^2$, m > 0.

4 □ ト 4 □ ト 4 重 ト 4 重 ト 3 ■ 9 Q ○

The Evolution Problem

Assume that the space-time is *globally hyperbolic*: $\mathcal{M}^{n+1} = M^n \times \mathbb{R}$ with $(M^n, h_{|M^n})$ Riemannian. Ideal setting to express the Einstein equations as an evolution problem.

Initial data sets on M^n : Let $(M^n \times \mathbb{R}, h, \Psi)$. We let:

- $\tilde{g} = h_{|M^n}$ and $\tilde{\nabla}$ is the Levi-Civita connection for \tilde{g} in M^n ,
- \tilde{K} : second fundamental form of the embedding $M^n \subset M^n \times \mathbb{R}$,
- $\tilde{\psi} = \Psi_{|M^n}$ and $\tilde{\pi} = (N \cdot \Psi)_{|M^n}$. N is the future-directed unit normal to M^n .

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

 $(M^n \times \mathbb{R}, h, \Psi)$ solves (E) if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in M^n the contraint system:

$$\left\{ R(\tilde{\mathbf{g}}) + tr_{\tilde{\mathbf{g}}}\tilde{K}^{2} - \left| \left| \tilde{K} \right| \right|_{\tilde{\mathbf{g}}}^{2} = \tilde{\pi}^{2} + \left| \tilde{\nabla} \tilde{\psi} \right|_{\tilde{\mathbf{g}}}^{2} + 2V(\tilde{\psi}), \\ \tilde{\nabla}(\operatorname{tr}_{\tilde{\mathbf{g}}}\tilde{K}) - \operatorname{div}_{\tilde{\mathbf{g}}}K = -\tilde{\pi}\tilde{\nabla}\tilde{\psi}, \right\}$$
(C)

In particular: any solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of (C) evolves into a solution of the Einstein equations. A solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ is therefore called **an initial data set**.

System (C) has n(n+1)+2 unknowns $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$: it is highly underdetermined.

The Evolution Problem

Assume that the space-time is *globally hyperbolic*: $\mathcal{M}^{n+1} = \mathcal{M}^n \times \mathbb{R}$ with $(\mathcal{M}^n, h_{|\mathcal{M}^n})$ Riemannian. Ideal setting to express the Einstein equations as an evolution problem.

Initial data sets on M^n : Let $(M^n \times \mathbb{R}, h, \Psi)$. We let:

- $\tilde{g} = h_{|M^n}$ and $\tilde{\nabla}$ is the Levi-Civita connection for \tilde{g} in M^n ,
- \tilde{K} : second fundamental form of the embedding $M^n \subset M^n \times \mathbb{R}$,
- $\tilde{\psi} = \Psi_{|M^n}$ and $\tilde{\pi} = (N \cdot \Psi)_{|M^n}$. N is the future-directed unit normal to M^n .

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

 $(M^n \times \mathbb{R}, h, \Psi)$ solves (E) if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in M^n the contraint system:

$$\begin{cases} R(\tilde{\mathbf{g}}) + tr_{\tilde{\mathbf{g}}}\tilde{K}^2 - \left\| \tilde{K} \right\|_{\tilde{\mathbf{g}}}^2 = \tilde{\pi}^2 + |\tilde{\nabla}\tilde{\psi}|_{\tilde{\mathbf{g}}}^2 + 2V(\tilde{\psi}) ,\\ \tilde{\nabla}(\operatorname{tr}_{\tilde{\mathbf{g}}}\tilde{K}) - div_{\tilde{\mathbf{g}}}K = -\tilde{\pi}\tilde{\nabla}\tilde{\psi} , \end{cases}$$
(C)

In particular: any solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of (C) evolves into a solution of the Einstein equations. A solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ is therefore called **an initial data set**.

System (C) has n(n+1)+2 unknowns $(\tilde{g},\tilde{K},\tilde{\psi},\tilde{\pi})$: it is highly underdetermined.

The Evolution Problem

Assume that the space-time is *globally hyperbolic*: $\mathcal{M}^{n+1} = M^n \times \mathbb{R}$ with $(M^n, h_{|M^n})$ Riemannian. Ideal setting to express the Einstein equations as an evolution problem.

Initial data sets on M^n : Let $(M^n \times \mathbb{R}, h, \Psi)$. We let:

- $\tilde{g} = h_{|M^n}$ and $\tilde{\nabla}$ is the Levi-Civita connection for \tilde{g} in M^n ,
- \tilde{K} : second fundamental form of the embedding $M^n \subset M^n \times \mathbb{R}$,
- $\tilde{\psi} = \Psi_{|M^n}$ and $\tilde{\pi} = (N \cdot \Psi)_{|M^n}$. N is the future-directed unit normal to M^n .

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

 $(M^n \times \mathbb{R}, h, \Psi)$ solves (E) if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in M^n the contraint system:

$$\begin{cases}
R(\tilde{\mathbf{g}}) + tr_{\tilde{\mathbf{g}}}\tilde{K}^{2} - \left\| \tilde{K} \right\|_{\tilde{\mathbf{g}}}^{2} = \tilde{\pi}^{2} + |\tilde{\nabla}\tilde{\psi}|_{\tilde{\mathbf{g}}}^{2} + 2V(\tilde{\psi}), \\
\tilde{\nabla}(\operatorname{tr}_{\tilde{\mathbf{g}}}\tilde{K}) - \operatorname{div}_{\tilde{\mathbf{g}}}K = -\tilde{\pi}\tilde{\nabla}\tilde{\psi},
\end{cases} (C)$$

In particular: any solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of (C) evolves into a solution of the Einstein equations. A solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ is therefore called **an initial data set**.

System (C) has n(n+1)+2 unknowns $(\tilde{g},\tilde{K},\tilde{\psi},\tilde{\pi})$: it is highly underdetermined.

The constraints system (C) determines the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for which the Einstein equations admit a well-posed formulation.

It is highly underdetermined. To overcome this, we restrict to a specific class of solutions, written as a parametrization from fixed background physics data. The goal is to reduce the resolution of (C) to the determination of the parameters.

Let (M^n, g) be a fixed Riemannian manifold. The (arbitrarily fixed) physics data are:

- V a potential,
- ψ , π scalar-field data.
- \bullet τ the mean curvature,
- σ , (2,0)-symmetric tensor field with $\mathrm{tr}_{\mathbf{g}}\sigma=0$ and $\mathrm{div}_{\mathbf{g}}\sigma=0$ ("TT tensor").

We will look for the unknown initial data set $(\tilde{g}, K, \psi, \tilde{\pi})$ under the following form:

$$\left(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{\frac{4}{n-2}}g, \frac{\tau}{n}u^{\frac{4}{n-2}}g + u^{-2}\left(\sigma + \mathcal{L}_gW\right), \psi, u^{-\frac{2n}{n-2}}\pi\right) \tag{*}$$

$$\mathcal{L}_g W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n} div_g W \cdot g_{ij}$$

The constraints system (C) determines the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for which the Einstein equations admit a well-posed formulation.

It is highly underdetermined. To overcome this, we restrict to a specific class of solutions, written as a parametrization from fixed background physics data. The goal is to reduce the resolution of (C) to the determination of the parameters.

Let (M^n, g) be a fixed Riemannian manifold. The (arbitrarily fixed) physics data are:

- V a potential,
- ψ , π scalar-field data.
- \bullet au the mean curvature,
- σ , (2,0)-symmetric tensor field with $\operatorname{tr}_{g}\sigma=0$ and $\operatorname{div}_{g}\sigma=0$ ("TT tensor").

We will look for the unknown initial data set $(\tilde{g}, K, \psi, \tilde{\pi})$ under the following form:

$$\left(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{\frac{4}{n-2}}g, \frac{\tau}{n}u^{\frac{4}{n-2}}g + u^{-2}\left(\sigma + \mathcal{L}_g W\right), \psi, u^{-\frac{2n}{n-2}}\pi\right) \tag{*}$$

$$\mathcal{L}_{g}W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n}div_{g}W \cdot g_{ij}$$

The constraints system (C) determines the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for which the Einstein equations admit a well-posed formulation.

It is highly underdetermined. To overcome this, we restrict to a specific class of solutions, written as a parametrization from fixed background physics data. The goal is to reduce the resolution of (C) to the determination of the parameters.

Let (M^n, g) be a fixed Riemannian manifold. The (arbitrarily fixed) physics data are:

- V a potential,
- ψ, π scalar-field data,
- \bullet au the mean curvature,
- σ , (2,0)-symmetric tensor field with $\operatorname{tr}_{g}\sigma=0$ and $\operatorname{div}_{g}\sigma=0$ ("TT tensor").

We will look for the unknown initial data set $(\tilde{g}, K, \psi, \tilde{\pi})$ under the following form:

$$\left(\tilde{\mathbf{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{\frac{4}{n-2}} \mathbf{g}, \frac{\tau}{n} u^{\frac{4}{n-2}} \mathbf{g} + u^{-2} \left(\sigma + \mathcal{L}_{\mathbf{g}} W\right), \psi, u^{-\frac{2n}{n-2}} \pi\right) \tag{*}$$

$$\mathcal{L}_{g}W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n}div_{g}W \cdot g_{ij}$$

The constraints system (C) determines the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for which the Einstein equations admit a well-posed formulation.

It is highly underdetermined. To overcome this, we restrict to a specific class of solutions, written as a parametrization from fixed background physics data. The goal is to reduce the resolution of (C) to the determination of the parameters.

Let (M^n, g) be a fixed Riemannian manifold. The (arbitrarily fixed) physics data are:

- V a potential,
- ψ, π scalar-field data,
- \bullet au the mean curvature,
- σ , (2,0)-symmetric tensor field with $\mathrm{tr}_{\mathbf{g}}\sigma=0$ and $\mathrm{div}_{\mathbf{g}}\sigma=0$ ("TT tensor").

We will look for the unknown initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ under the following form:

$$\left(\tilde{\mathbf{g}}, \tilde{K}, \tilde{\psi}, \tilde{\pi}\right) = \left(u^{\frac{4}{n-2}} \mathbf{g}, \frac{\tau}{n} u^{\frac{4}{n-2}} \mathbf{g} + u^{-2} \left(\sigma + \mathcal{L}_{\mathbf{g}} W\right), \psi, u^{-\frac{2n}{n-2}} \pi\right) \tag{*}$$

$$\mathcal{L}_g W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n} div_g W \cdot g_{ij}.$$

Using the decomposition :

$$\tilde{K} = -\frac{\tau}{n} u^{\frac{4}{n-2}} g + u^{-2} (\sigma + \mathcal{L}_g W),$$

and since for any (2,0)-tensor U there holds:

$$\operatorname{div}_{u^{\frac{4}{n-2}}g}U_{i} = u^{-\frac{4}{n-2}}\operatorname{div}_{g}U_{i} - \frac{2}{n-2}\frac{\partial_{i}u}{u}\operatorname{tr}_{g}U + 2u^{-\frac{n+2}{n-2}}g^{jk}\partial_{k}uU_{ij}.$$

the vector constraint equation becomes:

$$\operatorname{div}_{\mathbf{g}}\left(\mathcal{L}_{\mathbf{g}}W\right) = \frac{n-1}{n} u^{\frac{2n}{n-2}} \nabla \tau + \pi \nabla \psi.$$

Independently, there holds

$$R(u^{\frac{4}{n-2}}g) = u^{-\frac{n+2}{n-2}} \left(8 \frac{4(n-1)}{n-2} \triangle_g u + R(g)u\right)$$

and, using the decomposition of \ddot{K}

$$|\tilde{K}|_g^2 = u^{-\frac{4}{n-2}} |\sigma + \mathcal{L}_g W|^2 + \frac{\tau^2}{n} u^{\frac{8}{n-2}}.$$

The scalar constraint equation therefore becomes:

$$\frac{4(n-1)}{n-2} \triangle_g u + \left(R(g) - |\nabla \psi|_g^2\right) u = \left(2V(\psi) - \frac{n-1}{n}\tau^2\right) u^{\frac{n+2}{n-2}} + \left(\pi^2 + |\sigma + \mathcal{L}_g W|^2\right) u^{-\frac{3n-2}{n-2}}$$

4日 > 4周 > 4 至 > 4 至 >

Using the decomposition:

$$\tilde{K} = -\frac{\tau}{n} u^{\frac{4}{n-2}} g + u^{-2} (\sigma + \mathcal{L}_g W),$$

and since for any (2,0)-tensor U there holds:

$$\operatorname{div}_{u^{\frac{4}{n-2}g}}U_i=u^{-\frac{4}{n-2}}\operatorname{div}_gU_i-\frac{2}{n-2}\frac{\partial_i u}{u}\operatorname{tr}_gU+2u^{-\frac{n+2}{n-2}}g^{jk}\partial_k uU_{ij}.$$

the vector constraint equation becomes:

$$\operatorname{div}_{\mathbf{g}}\left(\mathcal{L}_{\mathbf{g}}W\right) = \frac{n-1}{n} u^{\frac{2n}{n-2}} \nabla \tau + \pi \nabla \psi.$$

Independently, there holds:

$$R(u^{\frac{4}{n-2}}g) = u^{-\frac{n+2}{n-2}} \left(8\frac{4(n-1)}{n-2}\triangle_g u + R(g)u\right)$$

and, using the decomposition of \tilde{K} :

$$|\tilde{K}|_{g}^{2} = u^{-\frac{4}{n-2}} |\sigma + \mathcal{L}_{g} W|^{2} + \frac{\tau^{2}}{n} u^{\frac{8}{n-2}}.$$

The scalar constraint equation therefore becomes:

$$\frac{4(n-1)}{n-2} \triangle_g u + \left(R(g) - |\nabla \psi|_g^2\right) u = \left(2V(\psi) - \frac{n-1}{n}\tau^2\right) u^{\frac{n+2}{n-2}} + \left(\pi^2 + |\sigma + \mathcal{L}_g W|^2\right) u^{-\frac{3n-2}{n-2}}$$

4日 > 4周 > 4 至 > 4 至 >

The Conformal Constraint System:

In the end, $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ given by (*) solve (C) if and only if (u, W) solve the following:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi.
\end{cases} (CC)$$

The problem is now determined. System (CC) is called Conformal Constraints System (or also Einstein-Lichnerowicz system) of physics data $(\psi, \pi, \tau, \sigma)$. The scalar equation is called Einstein-Lichnerowicz equation, the 1-form (or vector) equation is called the Lamé equation. In (CC) we have let:

$$h(g,\psi) = R(g) - |\nabla \psi|_g^2$$
, $f(\tau,\psi,V) = 2V(\psi) - \frac{n-1}{n}\tau^2$

 $\triangle_{g} = -div_{g}(\nabla \cdot)$ is the Laplace-Beltrami (positive) laplacian,

$$\mathcal{L}_g W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n} \operatorname{div}_g W \cdot g_{ij},$$

and $\overrightarrow{\triangle}_g W = -div_g (\mathcal{L}_g W)$ is the (positive) Lamé operator.

By a solution (u, W) of (CC) we will always mean: u > 0.

The Conformal Constraint System:

In the end, $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ given by (*) solve (C) if and only if (u, W) solve the following:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi.
\end{cases} (CC)$$

The problem is now determined. System (CC) is called Conformal Constraints System (or also Einstein-Lichnerowicz system) of physics data $(\psi, \pi, \tau, \sigma)$. The scalar equation is called Einstein-Lichnerowicz equation, the 1-form (or vector) equation is called the Lamé equation. In (CC) we have let:

$$h(g,\psi) = R(g) - |\nabla \psi|_g^2$$
, $f(\tau,\psi,V) = 2V(\psi) - \frac{n-1}{n}\tau^2$

 $\triangle_{\mathbf{g}} = - \mathit{div}_{\mathbf{g}}(\nabla \cdot)$ is the Laplace-Beltrami (positive) laplacian,

$$\mathcal{L}_{g}W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n}div_{g}W \cdot g_{ij},$$

and $\overrightarrow{\triangle}_g W = -div_g (\mathcal{L}_g W)$ is the (positive) Lamé operator.

By a solution (u, W) of (CC) we will always mean: u > 0.

The Conformal Constraint System:

In the end, $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ given by (*) solve (C) if and only if (u, W) solve the following:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi.
\end{cases} (CC)$$

The problem is now determined. System (CC) is called Conformal Constraints System (or also Einstein-Lichnerowicz system) of physics data $(\psi, \pi, \tau, \sigma)$. The scalar equation is called Einstein-Lichnerowicz equation, the 1-form (or vector) equation is called the Lamé equation. In (CC) we have let:

$$h(g,\psi) = R(g) - |\nabla \psi|_g^2$$
, $f(\tau,\psi,V) = 2V(\psi) - \frac{n-1}{n}\tau^2$,

 $\triangle_{\mathbf{g}} = - extit{div}_{\mathbf{g}}(
abla \cdot)$ is the Laplace-Beltrami (positive) laplacian,

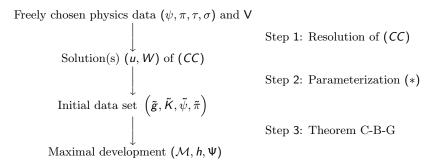
$$\mathcal{L}_{\mathbf{g}}W_{ij} = W_{i,j} + W_{j,i} - \frac{2}{n}div_{\mathbf{g}}W \cdot g_{ij},$$

and $\overrightarrow{\triangle}_g W = -div_g (\mathcal{L}_g W)$ is the (positive) Lamé operator.

By a solution (u, W) of (CC) we will always mean: u > 0.

Choquet-Bruhat-Geroch-Lichnerowicz formalism (CBGL):

The conformal method sums up in the following 3-steps construction in (M^n, g) :

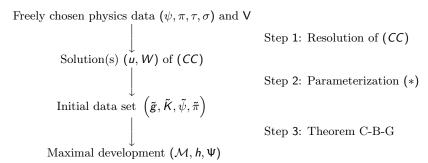


We question the relevance of the conformal method via the relevance of this construction

Question: Is the CBGL formalism robust with respect to the choice of the background physics data $(\psi, \pi, \tau, \sigma)$ and V of the conformal method?

Choquet-Bruhat-Geroch-Lichnerowicz formalism (CBGL):

The conformal method sums up in the following 3-steps construction in (M^n, g) :



We question the relevance of the conformal method via the relevance of this construction:

Question: Is the CBGL formalism robust with respect to the choice of the background physics data $(\psi, \pi, \tau, \sigma)$ and V of the conformal method?

We check the robustness step by step:

- Step 2: The initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ continuously depends on (u, W) via the parameterization (*).
- Step 3: the globally hyperbolic space-time development (\mathcal{M}, h, Ψ) continuously depends on the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$, at least in finite time. It is the Choquet-Bruhat-Geroch well-posedness result + Cauchy stability.
- We are left to investigate the continuous dependence of Step 1. The question of the robustness of the CBGL formalism reformulates as follows:

We check the robustness step by step:

- Step 2: The initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ continuously depends on (u, W) via the parameterization (*).
- Step 3: the globally hyperbolic space-time development (\mathcal{M},h,Ψ) continuously depends on the initial data set $(\tilde{g},\tilde{K},\tilde{\psi},\tilde{\pi})$, at least in finite time. It is the Choquet-Bruhat-Geroch well-posedness result + Cauchy stability.
- We are left to investigate the continuous dependence of Step 1. The question of the robustness of the CBGL formalism reformulates as follows:

We check the robustness step by step:

- Step 2: The initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ continuously depends on (u, W) via the parameterization (*).
- Step 3: the globally hyperbolic space-time development (\mathcal{M}, h, Ψ) continuously depends on the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$, at least in finite time. It is the Choquet-Bruhat-Geroch well-posedness result + Cauchy stability.
- We are left to investigate the continuous dependence of Step 1. The question of the robustness of the CBGL formalism reformulates as follows:

We check the robustness step by step:

- Step 2: The initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ continuously depends on (u, W) via the parameterization (*).
- Step 3: the globally hyperbolic space-time development (\mathcal{M}, h, Ψ) continuously depends on the initial data set $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$, at least in finite time. It is the Choquet-Bruhat-Geroch well-posedness result + Cauchy stability.
- We are left to investigate the continuous dependence of Step 1. The question of the robustness of the CBGL formalism reformulates as follows:

From now on: (M^n, g) is closed. Let $(\psi, \pi, \tau, \sigma)$ and V be given background physics data in (M^n, g) . We investigate the system of physics data $(\psi, \pi, \tau, \sigma)$ and V:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{g} u + h(g,\psi) u = f(\tau,\psi,V) u^{2^{*}-1} + \frac{\pi^{2} + |\mathcal{L}_{g} W + \sigma|_{g}^{2}}{u^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{g} W = -\frac{n-1}{n} u^{2^{*}} \nabla \tau - \pi \nabla \psi . \end{cases}$$
(CC)

We will always work in the focusing case:

focusing case:
$$f(\tau, \psi, V) > 0$$
 in M

(Remember: \triangle_g is positive).

The focusing case arises when treating general nontrivial non-gravitational data. For instance:

- Positive cosmological constant setting, where $V \equiv \Lambda > 0$
- Klein-Gordon scalar-field, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0.

From now on: (M^n, g) is closed. Let $(\psi, \pi, \tau, \sigma)$ and V be given background physics data in (M^n, g) . We investigate the system of physics data $(\psi, \pi, \tau, \sigma)$ and V:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{g} u + h(g,\psi) u = f(\tau,\psi,V) u^{2^{*}-1} + \frac{\pi^{2} + |\mathcal{L}_{g} W + \sigma|_{g}^{2}}{u^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{g} W = -\frac{n-1}{n} u^{2^{*}} \nabla \tau - \pi \nabla \psi . \end{cases}$$
(CC)

We will always work in the focusing case:

focusing case:
$$f(\tau, \psi, V) > 0$$
 in M

(Remember: \triangle_g is positive).

The focusing case arises when treating general nontrivial non-gravitational data. For instance:

- Positive cosmological constant setting, where $V \equiv \Lambda > 0$
- Klein-Gordon scalar-field, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0.

From now on: (M^n,g) is closed. Let (ψ,π,τ,σ) and V be given background physics data in (M^n,g) . We investigate the system of physics data (ψ,π,τ,σ) and V:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\mathcal{L}_{\mathbf{g}} W + \sigma|_{\mathbf{g}}^2}{u^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi.
\end{cases} (CC)$$

We will always work in the focusing case:

focusing case:
$$f(\tau, \psi, V) > 0$$
 in M

(Remember: \triangle_g is positive).

The focusing case arises when treating general nontrivial non-gravitational data. For instance:

- Positive cosmological constant setting, where $V \equiv \Lambda > 0$
- Klein-Gordon scalar-field, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0.

From now on: (M^n, g) is closed. Let $(\psi, \pi, \tau, \sigma)$ and V be given background physics data in (M^n, g) . We investigate the system of physics data $(\psi, \pi, \tau, \sigma)$ and V:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\mathcal{L}_{\mathbf{g}} W + \sigma|_{\mathbf{g}}^2}{u^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi.
\end{cases} (CC)$$

We will always work in the focusing case:

focusing case:
$$f(\tau, \psi, V) > 0$$
 in M

(Remember: \triangle_g is positive).

The focusing case arises when treating general nontrivial non-gravitational data. For instance:

- Positive cosmological constant setting, where $V \equiv \Lambda > 0$
- Klein-Gordon scalar-field, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0.

Theorem (P., Comm. Math. Phys., '13)

Let (M^n,g) closed be such that $\overrightarrow{\triangle}_g$ has no kernel. Let V and (ψ,π,τ,σ) be **focusing** physics data. There exists $\varepsilon(n,g)>0$ such that if $(\pi,\sigma)\not\equiv(0,0)$ and

$$\|\tau\|_{C^1} + \|\pi\|_{\infty} + \|\sigma\|_{\infty} \leq \varepsilon(n, g) ,$$

the system (CC) of physics data $(\psi, \pi, \tau, \sigma)$:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi. \end{cases}$$

has a solution (u, W), with u > 0.

Previously, in the focusing decoupled case: Hebey-Pacard-Pollack, Ngô-Xu, Ma-Wei

In the *defocusing* case: Isenberg, Isenberg-Moncrief, Allen-Clausen-Isenberg, Holst-Nagy-Tsogtgerel, Maxwell, Dahl-Humbert-Gicquaud.

Remark 1: the assumption $\operatorname{Ker} \overrightarrow{\triangle}_g = \{0\}$ is generic in g by Beig-Chrusciel-Schoen.

Theorem (P., Comm. Math. Phys., '13)

Let (M^n,g) closed be such that $\overrightarrow{\triangle}_g$ has no kernel. Let V and (ψ,π,τ,σ) be **focusing** physics data. There exists $\varepsilon(n,g)>0$ such that if $(\pi,\sigma)\not\equiv(0,0)$ and

$$\|\tau\|_{C^1} + \|\pi\|_{\infty} + \|\sigma\|_{\infty} \leq \varepsilon(n, g) ,$$

the system (CC) of physics data $(\psi, \pi, \tau, \sigma)$:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi. \end{cases}$$

has a solution (u, W), with u > 0.

Previously, in the focusing decoupled case: Hebey-Pacard-Pollack, Ngô-Xu, Ma-Wei.

In the *defocusing* case: Isenberg, Isenberg-Moncrief, Allen-Clausen-Isenberg, Holst-Nagy-Tsogtgerel, Maxwell, Dahl-Humbert-Gicquaud.

Remark 1: the assumption $\operatorname{Ker} \overline{\triangle}_g = \{0\}$ is generic in g by Beig-Chrusciel-Schoen.

Theorem (P., Comm. Math. Phys., '13)

Let (M^n,g) closed be such that $\overrightarrow{\triangle}_g$ has no kernel. Let V and (ψ,π,τ,σ) be **focusing** physics data. There exists $\varepsilon(n,g)>0$ such that if $(\pi,\sigma)\not\equiv(0,0)$ and

$$\|\tau\|_{C^1} + \|\pi\|_{\infty} + \|\sigma\|_{\infty} \leq \varepsilon(n, g) ,$$

the system (CC) of physics data $(\psi, \pi, \tau, \sigma)$:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi. \end{cases}$$

has a solution (u, W), with u > 0.

Previously, in the focusing decoupled case: Hebey-Pacard-Pollack, Ngô-Xu, Ma-Wei.

In the *defocusing* case: Isenberg, Isenberg-Moncrief, Allen-Clausen-Isenberg, Holst-Nagy-Tsogtgerel, Maxwell, Dahl-Humbert-Gicquaud.

Remark 1: the assumption $\operatorname{Ker} \overrightarrow{\triangle}_g = \{0\}$ is generic in g by Beig-Chrusciel-Schoen.

Theorem (P., Comm. Math. Phys., '13)

Let (M^n,g) closed be such that $\overrightarrow{\triangle}_g$ has no kernel. Let V and (ψ,π,τ,σ) be **focusing** physics data. There exists $\varepsilon(n,g)>0$ such that if $(\pi,\sigma)\not\equiv(0,0)$ and

$$\|\tau\|_{C^1} + \|\pi\|_{\infty} + \|\sigma\|_{\infty} \leq \varepsilon(n,g) ,$$

the system (CC) of physics data $(\psi, \pi, \tau, \sigma)$:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u + h(\mathbf{g}, \psi) u = f(\tau, \psi, V) u^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W|_{\mathbf{g}}^2}{u^{2^*+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W = -\frac{n-1}{n} u^{2^*} \nabla \tau - \pi \nabla \psi. \end{cases}$$

has a solution (u, W), with u > 0.

Previously, in the focusing decoupled case: Hebey-Pacard-Pollack, Ngô-Xu, Ma-Wei.

In the *defocusing* case: Isenberg, Isenberg-Moncrief, Allen-Clausen-Isenberg, Holst-Nagy-Tsogtgerel, Maxwell, Dahl-Humbert-Gicquaud.

Remark 1: the assumption $\operatorname{Ker} \overrightarrow{\triangle}_g = \{0\}$ is generic in g by Beig-Chrusciel-Schoen.

Let V be a potential and $\mathcal{D}=(\psi,\pi,\tau,\sigma)$ be given background physics data. Let $(V_{\alpha})_{\alpha}$ and $(\mathcal{D}_{\alpha})_{\alpha}$, $\mathcal{D}_{\alpha}=(\psi_{\alpha},\pi_{\alpha},\tau_{\alpha},\sigma_{\alpha})_{\alpha}$ sequences of potentials and background physics data converging to V and \mathcal{D} , in some suitable topology.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{g} u_{\alpha} + h(g, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{g} W_{\alpha}|_{g}^{2}}{u_{\alpha}^{2^{*}+1}}, \\
\overrightarrow{\triangle}_{g} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha}.
\end{cases} (CC_{\alpha})$$

The stability of the conformal constraint system (CC) wit respect to the choice of $(\psi, \pi, \tau, \sigma)$ and V reformulates as follows: does, up to a subsequence, $(u_{\alpha}, W_{\alpha})_{\alpha}$ converge in some **strong** topology to some solution (u_{∞}, W_{∞}) of the limiting system (CC):

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{g} u_{\infty} + h(g,\psi) u_{\infty} = f(\tau,\psi,V) u_{\infty}^{2^{*}-1} + \frac{\pi^{2} + |\sigma + \mathcal{L}_{g} W_{\infty}|_{g}^{2}}{u_{\infty}^{2^{*}+1}}, \\ \overrightarrow{\triangle}_{g} W_{\infty} = -\frac{n-1}{n} u_{\infty}^{2^{*}} \nabla \tau - \pi \nabla \psi ? \end{cases}$$
(CC)

Or can the sequence $(u_{\alpha}, W_{\alpha})_{\alpha}$ develop defects of compactness, that is blow-up in the $C^0(M)$ norm?

Let V be a potential and $\mathcal{D}=(\psi,\pi,\tau,\sigma)$ be given background physics data. Let $(V_{\alpha})_{\alpha}$ and $(\mathcal{D}_{\alpha})_{\alpha}$, $\mathcal{D}_{\alpha}=(\psi_{\alpha},\pi_{\alpha},\tau_{\alpha},\sigma_{\alpha})_{\alpha}$ sequences of potentials and background physics data converging to V and \mathcal{D} , in some suitable topology.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha}.
\end{cases} (CC_{\alpha})$$

The stability of the conformal constraint system (CC) wit respect to the choice of $(\psi, \pi, \tau, \sigma)$ and V reformulates as follows: does, up to a subsequence, $(u_{\alpha}, W_{\alpha})_{\alpha}$ converge in some strong topology to some solution (u_{∞}, W_{∞}) of the limiting system (CC):

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\infty} + h(\mathbf{g}, \psi) u_{\infty} = f(\tau, \psi, V) u_{\infty}^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W_{\infty}|_{\mathbf{g}}^2}{u_{\infty}^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\infty} = -\frac{n-1}{n} u_{\infty}^{2^*} \nabla \tau - \pi \nabla \psi ?
\end{cases} (CC)$$

Or can the sequence $(u_{\alpha}, W_{\alpha})_{\alpha}$ develop defects of compactness, that is blow-up in the $C^0(M)$ norm?

Let V be a potential and $\mathcal{D}=(\psi,\pi,\tau,\sigma)$ be given background physics data. Let $(V_{\alpha})_{\alpha}$ and $(\mathcal{D}_{\alpha})_{\alpha}$, $\mathcal{D}_{\alpha}=(\psi_{\alpha},\pi_{\alpha},\tau_{\alpha},\sigma_{\alpha})_{\alpha}$ sequences of potentials and background physics data converging to V and \mathcal{D} , in some suitable topology.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha}.
\end{cases} (CC_{\alpha})$$

The stability of the conformal constraint system (CC) wit respect to the choice of $(\psi, \pi, \tau, \sigma)$ and V reformulates as follows: does, up to a subsequence, $(u_{\alpha}, W_{\alpha})_{\alpha}$ converge in some **strong** topology to some solution (u_{∞}, W_{∞}) of the limiting system (CC):

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\infty} + h(\mathbf{g}, \psi) u_{\infty} = f(\tau, \psi, V) u_{\infty}^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W_{\infty}|_{\mathbf{g}}^2}{u_{\infty}^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\infty} = -\frac{n-1}{n} u_{\infty}^{2^*} \nabla \tau - \pi \nabla \psi ?
\end{cases} (CC)$$

Or can the sequence $(u_{\alpha}, W_{\alpha})_{\alpha}$ develop defects of compactness, that is blow-up in the $C^0(M)$ norm?

Let V be a potential and $\mathcal{D}=(\psi,\pi,\tau,\sigma)$ be given background physics data. Let $(V_{\alpha})_{\alpha}$ and $(\mathcal{D}_{\alpha})_{\alpha}$, $\mathcal{D}_{\alpha}=(\psi_{\alpha},\pi_{\alpha},\tau_{\alpha},\sigma_{\alpha})_{\alpha}$ sequences of potentials and background physics data converging to V and \mathcal{D} , in some suitable topology.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha}.
\end{cases} (CC_{\alpha})$$

The stability of the conformal constraint system (CC) wit respect to the choice of $(\psi, \pi, \tau, \sigma)$ and V reformulates as follows: does, up to a subsequence, $(u_{\alpha}, W_{\alpha})_{\alpha}$ converge in some strong topology to some solution (u_{∞}, W_{∞}) of the limiting system (CC):

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\infty} + h(\mathbf{g}, \psi) u_{\infty} = f(\tau, \psi, V) u_{\infty}^{2^*-1} + \frac{\pi^2 + |\sigma + \mathcal{L}_{\mathbf{g}} W_{\infty}|_{\mathbf{g}}^2}{u_{\infty}^{2^*+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\infty} = -\frac{n-1}{n} u_{\infty}^{2^*} \nabla \tau - \pi \nabla \psi ?
\end{cases} (CC)$$

Or can the sequence $(u_{\alpha}, W_{\alpha})_{\alpha}$ develop defects of compactness, that is blow-up in the $C^0(M)$ norm?

11 / 21

Structural peculiarities of system (CC):

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha} . \end{cases}$$

Problems arising in the blow-up analysis of (u_{α}, W_{α}) :

- Critical and negative nonlinearities u^{2^*-1} and u^{-2^*-1} .
- The coupling in the system makes the vector equations super-critical (it does not admit a well-posed variational formulation in $H^1(M)$).
- The coupling in the scalar equations via the $|\sigma_{\alpha} + \mathcal{L}_{g} W_{\alpha}|_{g}^{2} u_{\alpha}^{-2 * 1}$ term and the critical nonlinearity $u^{2^{*}-1}$ make the first equation super-critical too.
- The system has a kernel: it is invariant up to adding to W_{α} a vector field Z satisfying $\mathcal{L}_{\mathbf{g}}Z=0$. Such non-trivial vector fields may exist: if W_{α} converges, it may only be up to conformal Killing vector fields.

Structural peculiarities of system (CC):

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha} . \end{cases}$$

Problems arising in the blow-up analysis of (u_{α}, W_{α}) :

- Critical and negative nonlinearities u^{2^*-1} and u^{-2^*-1} .
- The coupling in the system makes the vector equations super-critical (it does not admit a well-posed variational formulation in H¹(M)).
- The coupling in the scalar equations via the $|\sigma_{\alpha} + \mathcal{L}_{g} W_{\alpha}|_{g}^{2} u_{\alpha}^{-2 * 1}$ term and the critical nonlinearity $u^{2^{*}-1}$ make the first equation super-critical too.
- The system has a kernel: it is invariant up to adding to W_{α} a vector field Z satisfying $\mathcal{L}_{\mathbf{g}}Z=0$. Such non-trivial vector fields may exist: if W_{α} converges, it may only be up to conformal Killing vector fields.

Structural peculiarities of system (CC):

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha} . \end{cases}$$

Problems arising in the blow-up analysis of (u_{α}, W_{α}) :

- Critical and negative nonlinearities u^{2^*-1} and u^{-2^*-1} .
- The coupling in the system makes the vector equations super-critical (it does not admit a well-posed variational formulation in $H^1(M)$).
- The coupling in the scalar equations via the $|\sigma_{\alpha} + \mathcal{L}_{g}W_{\alpha}|_{g}^{2}u_{\alpha}^{-2\neg *-1}$ term and the critical nonlinearity $u^{2^{*}-1}$ make the first equation super-critical too.
- The system has a kernel: it is invariant up to adding to W_{α} a vector field Z satisfying $\mathcal{L}_{\mathbf{g}}Z=0$. Such non-trivial vector fields may exist: if W_{α} converges, it may only be **up to conformal Killing vector fields**.

Structural peculiarities of system (CC):

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha} . \end{cases}$$

Problems arising in the blow-up analysis of (u_{α}, W_{α}) :

- Critical and negative nonlinearities u^{2^*-1} and u^{-2^*-1} .
- The coupling in the system makes the vector equations super-critical (it does not admit a well-posed variational formulation in $H^1(M)$).
- The coupling in the scalar equations via the $|\sigma_{\alpha} + \mathcal{L}_{g} W_{\alpha}|_{g}^{2} u_{\alpha}^{-2 * 1}$ term and the critical nonlinearity $u^{2^{*}-1}$ make the first equation super-critical too.
- The system has a kernel: it is invariant up to adding to W_{α} a vector field Z satisfying $\mathcal{L}_{\mathbf{g}}Z=0$. Such non-trivial vector fields may exist: if W_{α} converges, it may only be **up to conformal Killing vector fields**.

Structural peculiarities of system (CC):

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of:

$$\begin{cases} \frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha} . \end{cases}$$

Problems arising in the blow-up analysis of (u_{α}, W_{α}) :

- Critical and negative nonlinearities u^{2^*-1} and u^{-2^*-1} .
- The coupling in the system makes the vector equations super-critical (it does not admit a well-posed variational formulation in $H^1(M)$).
- The coupling in the scalar equations via the $|\sigma_{\alpha} + \mathcal{L}_{g} W_{\alpha}|_{g}^{2} u_{\alpha}^{-2 * 1}$ term and the critical nonlinearity $u^{2^{*}-1}$ make the first equation super-critical too.
- The system has a kernel: it is invariant up to adding to W_{α} a vector field Z satisfying $\mathcal{L}_{g}Z=0$. Such non-trivial vector fields may exist: if W_{α} converges, it may only be **up to conformal Killing vector fields**.

Stability does not always hold for system (CC)!

Proposition (P., '14)

Let (\mathbb{S}^3,h) be the standard sphere. There exist sequences $(\sigma_\alpha)_\alpha$ and $(Y_\alpha)_\alpha$, respectively of symmetric (2,0)-tensor fields and of vector fields, converging in $C^0(\mathbb{S}^3)$ respectively towards σ and Y, with $\sigma \not\equiv 0$, and there exists $(u_\alpha,W_\alpha)_\alpha$ with $u_\alpha>0$ a sequence of solutions of the following system:

$$\begin{cases} \triangle_h u_\alpha + \frac{3}{4} u_\alpha = \frac{3}{4} u_\alpha^5 + \frac{|\sigma_\alpha + \mathcal{L}_h W_\alpha|_h^2}{u_\alpha^7}, \\ \overrightarrow{\triangle}_h W_\alpha = -\frac{2}{3} u_\alpha^6 \nabla \tau + Y_\alpha, \end{cases}$$

where $\tau \not\equiv 0$ is a smooth function in \mathbb{S}^3 , such that $\max_{M} u_{\alpha} \to +\infty$ as $\alpha \to +\infty$.

Similar examples available in dimensions $n \ge 3$

This result contradicts the stability of the conformal constraint system. Note here: $\pi \equiv 0$.

Stability does not always hold for system (CC)!

Proposition (P., '14)

Let (\mathbb{S}^3,h) be the standard sphere. There exist sequences $(\sigma_\alpha)_\alpha$ and $(Y_\alpha)_\alpha$, respectively of symmetric (2,0)-tensor fields and of vector fields, converging in $C^0(\mathbb{S}^3)$ respectively towards σ and Y, with $\sigma \not\equiv 0$, and there exists $(u_\alpha,W_\alpha)_\alpha$ with $u_\alpha>0$ a sequence of solutions of the following system:

$$\begin{cases} \triangle_h u_\alpha + \frac{3}{4} u_\alpha = \frac{3}{4} u_\alpha^5 + \frac{|\sigma_\alpha + \mathcal{L}_h W_\alpha|_h^2}{u_\alpha^7}, \\ \overrightarrow{\triangle}_h W_\alpha = -\frac{2}{3} u_\alpha^6 \nabla \tau + Y_\alpha, \end{cases}$$

where $\tau \not\equiv 0$ is a smooth function in \mathbb{S}^3 , such that $\max_{M} u_{\alpha} \to +\infty$ as $\alpha \to +\infty$.

Similar examples available in dimensions $n \ge 3$.

This result contradicts the stability of the conformal constraint system. Note here: $\pi \equiv 0$.

Continuous dependence of the set of solutions of (CC) in the physics data

Theorem (Druet-P., Math. Ann. '14 - P., '14)

Let (M^n,g) be a closed locally conformally flat manifold. Let V a potential and $\mathcal{D}=(\psi,\pi,\tau,\sigma)$ be fixed background **focusing** physics data. Assume further that:

- $\pi \not\equiv 0 \text{ if } 3 \le n \le 5$,
- $\pi \not\equiv 0$ and ψ and τ have no common critical points in M^n if $n \geq 6$.

Let $(V_{\alpha})_{\alpha}$ and $(\mathcal{D}_{\alpha})_{\alpha}$, $\mathcal{D}_{\alpha} = (\psi_{\alpha}, \pi_{\alpha}, \tau_{\alpha}, \sigma_{\alpha})$, be sequences of potentials and of physics data satisfying:

$$\|V_{\alpha} - V\|_{C^{1}} + \|\psi_{\alpha} - \psi\|_{C^{1}} + \|\tau_{\alpha} - \tau\|_{C^{2}} + \|\pi_{\alpha} - \pi\|_{C^{0}} + \|\sigma_{\alpha} - \sigma\|_{C^{0}} \underset{\alpha \to +\infty}{\longrightarrow} 0.$$

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of (CC_{α}) :

$$\begin{cases}
\frac{4(n-1)}{n-2} \triangle_{\mathbf{g}} u_{\alpha} + h(\mathbf{g}, \psi_{\alpha}) u_{\alpha} = f(\tau_{\alpha}, \psi_{\alpha}, V_{\alpha}) u_{\alpha}^{2^{*}-1} + \frac{\pi_{\alpha}^{2} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}}^{2}}{u_{\alpha}^{2^{*}+1}}, \\
\overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = -\frac{n-1}{n} u_{\alpha}^{2^{*}} \nabla \tau_{\alpha} - \pi_{\alpha} \nabla \psi_{\alpha}.
\end{cases} (CC_{\alpha})$$

There exists (u_{∞}, W_{∞}) a solution of the limiting system (CC), with $u_{\infty} > 0$, such that, up to a subsequence and up to conformal Killing fields, $(u_{\alpha}, W_{\alpha}) \xrightarrow[\alpha \to \infty]{} (u_{\infty}, W_{\infty})$ in $C^{1,\theta}(M)$ for any $0 < \theta < 1$.

The Beig-Chruściel-Schoen result shows that the convergence generically holds for the W_{α} 's.

This is in particular a compactness result. For the physical dimension n=3 we have the following corollary:

Corollary (Druet - P., '14)

In dimension 3, the CBGL formalism is robust with respect to the choice of focusing physics data $(\psi, \pi, \tau, \sigma)$ and V, on a locally conformally flat manifold.

The Theorem covers the setting of a positive cosmological constant where $V \equiv \Lambda > 0$, and the one of Klein-Gordon fields, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0. The vacuum case is not covered here (it is a defocusing case).

For the conformal constraint system, matter creates stability!

Remark: Compactness results for critical elliptic equations are known. For instance for the Yamabe problem (Khuri-Marques-Schoen, Brendle-Marques, Li, Zhu, Druet, Zhang, Brendle, Marques). For the Einstein-Lichnerowicz equation, see Druet-Hebey and Hebey-Veronelli.

15 / 21

The Beig-Chruściel-Schoen result shows that the convergence generically holds for the W_{α} 's.

This is in particular a compactness result. For the physical dimension n=3 we have the following corollary:

Corollary (Druet - P., '14)

In dimension 3, the CBGL formalism is robust with respect to the choice of focusing physics data $(\psi, \pi, \tau, \sigma)$ and V, on a locally conformally flat manifold.

The Theorem covers the setting of a positive cosmological constant where $V \equiv \Lambda > 0$, and the one of Klein-Gordon fields, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0. The vacuum case is not covered here (it is a defocusing case).

For the conformal constraint system, matter creates stability!

Remark: Compactness results for critical elliptic equations are known. For instance for the Yamabe problem (Khuri-Marques-Schoen, Brendle-Marques, Li, Zhu, Druet, Zhang, Brendle, Marques). For the Einstein-Lichnerowicz equation, see Druet-Hebey and Hebey-Veronelli.

The Beig-Chruściel-Schoen result shows that the convergence generically holds for the W_{α} 's.

This is in particular a compactness result. For the physical dimension n=3 we have the following corollary:

Corollary (Druet - P., '14)

In dimension 3, the CBGL formalism is robust with respect to the choice of focusing physics data $(\psi, \pi, \tau, \sigma)$ and V, on a locally conformally flat manifold.

The Theorem covers the setting of a positive cosmological constant where $V \equiv \Lambda > 0$, and the one of Klein-Gordon fields, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0. The vacuum case is not covered here (it is a defocusing case).

For the conformal constraint system, matter creates stability!

Remark: Compactness results for critical elliptic equations are known. For instance for the Yamabe problem (Khuri-Marques-Schoen, Brendle-Marques, Li, Zhu, Druet, Zhang, Brendle, Marques). For the Einstein-Lichnerowicz equation, see Druet-Hebey and Hebey-Veronelli.

The Beig-Chruściel-Schoen result shows that the convergence generically holds for the W_{α} 's.

This is in particular a compactness result. For the physical dimension n=3 we have the following corollary:

Corollary (Druet - P., '14)

In dimension 3, the CBGL formalism is robust with respect to the choice of focusing physics data $(\psi, \pi, \tau, \sigma)$ and V, on a locally conformally flat manifold.

The Theorem covers the setting of a positive cosmological constant where $V \equiv \Lambda > 0$, and the one of Klein-Gordon fields, where $V(\psi) = \frac{1}{2}m\psi^2$, m > 0. The vacuum case is not covered here (it is a defocusing case).

For the conformal constraint system, matter creates stability!

Remark: Compactness results for critical elliptic equations are known. For instance for the Yamabe problem (Khuri-Marques-Schoen, Brendle-Marques, Li, Zhu, Druet, Zhang, Brendle, Marques). For the Einstein-Lichnerowicz equation, see Druet-Hebey and Hebey-Veronelli.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^{*}-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^{2}}{u_{\alpha}^{2^{*}+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^{*}} X_{\alpha} + Y_{\alpha} , \end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an ad hoc Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps

- ① We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ occurs.
- ② A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ in the regions where they blow-up.
- Ontradiction: using the a priori analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^{*}-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^{2}}{u_{\alpha}^{2^{*}+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^{*}} X_{\alpha} + Y_{\alpha} , \end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an $ad\ hoc$ Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps

- ① We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ occurs
- ② A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ in the regions where they blow-up.
- Contradiction: using the a priori analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

February 11 2015

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^*-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^2}{u_{\alpha}^{2^*+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^*} X_{\alpha} + Y_{\alpha} , \end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an $ad\ hoc$ Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps:

- ① We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ occurs
- ② A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_{g}W_{\alpha}|_{g}$ in the regions where they blow-up.
- Contradiction: using the a priori analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^{*}-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^{2}}{u_{\alpha}^{2^{*}+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^{*}} X_{\alpha} + Y_{\alpha} , \end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an *ad hoc* Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps:

- ① We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_{g}W_{\alpha}|_{g}$ occurs.
- ⓐ A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_{g}W_{\alpha}|_{g}$ in the regions where they blow-up.
- Ontradiction: using the a priori analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^{*}-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^{2}}{u_{\alpha}^{2^{*}+1}} ,\\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^{*}} X_{\alpha} + Y_{\alpha} ,\end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an ad hoc Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps:

- ① We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_{g}W_{\alpha}|_{g}$ occurs.
- **2** A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_g W_{\alpha}|_g$ in the regions where they blow-up.
- Ontradiction: using the a priori analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

February 11 2015

Let $(u_{\alpha}, W_{\alpha})_{\alpha}$ be a sequence of solutions of the following system:

$$\begin{cases} \triangle_{\mathbf{g}} u_{\alpha} + h_{\alpha} u_{\alpha} = f_{\alpha} u_{\alpha}^{2^*-1} + \frac{b_{\alpha} + |\sigma_{\alpha} + \mathcal{L}_{\mathbf{g}} W_{\alpha}|^2}{u_{\alpha}^{2^*+1}} , \\ \overrightarrow{\triangle}_{\mathbf{g}} W_{\alpha} = u_{\alpha}^{2^*} X_{\alpha} + Y_{\alpha} , \end{cases}$$

where $(h_{\alpha}, f_{\alpha}, b_{\alpha}, X_{\alpha}, Y_{\alpha}, \sigma_{\alpha}) \xrightarrow[\alpha \to +\infty]{} (h, f, b, X, Y, \sigma)$ in a suitable topology.

Easy case: If $\sup_M u_\alpha \leq M$ for all α . By standard elliptic theory on the vector equations + an *ad hoc* Harnack inequality on the scalar equations the sequence (u_α, W_α) converges (up to a subsequence and up to conformal Killing vector fields).

General case: Proof by contradiction. Assume that $\sup_M u_\alpha \to +\infty$: (u_α, W_α) therefore develops concentration points in M.

The proof goes through three uneven steps:

- **9** We locate the regions in M where loss of compactness for u_{α} and $|\mathcal{L}_{\mathbf{g}}W_{\alpha}|_{\mathbf{g}}$ occurs.
- ② A priori analysis: we obtain sharp asymptotic pointwise estimates on u_{α} and $|\mathcal{L}_{g}W_{\alpha}|_{\sigma}$ in the regions where they blow-up.
- Contradiction: using the *a priori* analysis of Step 2 we show that concentration points as in Step 1 can actually not appear, by showing that they are both isolated and non-isolated.

February 11 2015

Step 1: Construction of the concentration points

We locate the concentration points $x_{i,\alpha}$ by the property that we have a weak estimate on u_{α} and $\mathcal{L}_{\mathbf{g}} W_{\alpha}$ around them:

Proposition

There exists a sequence $(N_{\alpha})_{\alpha}$ of integers, $N_{\alpha} \geq 2$ (possibly going to $+\infty$), and sequences $(x_{1,\alpha}, \ldots, x_{N_{\alpha},\alpha})_{\alpha}$ of concentration points of M, that is satisfying for any α :

- $\nabla u_{\alpha}(x_{i,\alpha}) = 0$ for $1 \leq i \leq N_{\alpha}$,
- $d_{\mathbf{g}}(x_{i,\alpha},x_{j,\alpha})^{\frac{n-2}{2}}u_{\alpha}(x_{i,\alpha}) \geq 1$ for $i,j \in \{1,\ldots,N_{\alpha}\}, i \neq j$
- for x close to $x_{i,\alpha}$:

$$u_{\alpha}(x) \leq \frac{1}{d_{g}(x_{i,\alpha},x)^{\frac{n-2}{2}}} \quad \text{ and } \quad \left|\mathcal{L}_{g}W_{\alpha}\right|_{g} \leq \frac{1}{d_{g}(x_{j,\alpha},x)^{n}}.$$

We hope to exhaust in this way the regions of ${\it M}$ where loss of compactness is likely to occur.

Step 2: Sharp pointwise asymptotics around concentration points

Concentration point: around one of the points x_{α} identified in Step 1, we let $\rho_{\alpha} > 0$ be the radius on which the weak estimate holds:

$$u_{\alpha}^{2^{*}}(x) + \left|\mathcal{L}_{g}W_{\alpha}\right|_{g}(x) \leq \frac{C}{d_{g}(x_{\alpha}, x)^{n}} \text{ in } B_{x_{\alpha}}(8\rho_{\alpha})$$

Proposition

On a concentration point $(x_{\alpha})_{\alpha}$ there holds: $\rho_{\alpha} \to 0$ and the following estimates hold in $B_{x_{\alpha}}(\rho_{\alpha})$:

$$|\mathcal{L}_g W_\alpha|_g \sim \mu_\alpha^{n-1} \rho_\alpha^{-n} \left(\mu_\alpha^2 + d_g(x_\alpha, x)^2\right)^{-\frac{n-2}{2}}$$

$$J_\alpha \sim \mu_\alpha^{\frac{n-2}{2}} \left(\mu_\alpha^2 + \frac{f_\alpha(x_\alpha)}{n(n-2)} d_g(x_\alpha, x)^2\right)^{-\frac{n-2}{2}}.$$

Here, $\mu_{\alpha} = \left(\max_{B_{\mathbf{x}_{\alpha}}(\rho_{\alpha})} u_{\alpha}\right)^{-\frac{2}{n-2}}$ controls the size of the explosion at x_{α} . It is a characteristic radius of the problem $(\mu_{\alpha} << \rho_{\alpha})$.

Step 2: Sharp pointwise asymptotics around concentration points

Concentration point: around one of the points x_{α} identified in Step 1, we let $\rho_{\alpha} > 0$ be the radius on which the weak estimate holds:

$$u_{\alpha}^{2^*}(x) + |\mathcal{L}_g W_{\alpha}|_g(x) \leq \frac{C}{d_g(x_{\alpha}, x)^n} \text{ in } B_{x_{\alpha}}(8\rho_{\alpha})$$

Proposition

On a concentration point $(x_{\alpha})_{\alpha}$ there holds: $\rho_{\alpha} \to 0$ and the following estimates hold in $B_{x_{\alpha}}(\rho_{\alpha})$:

$$|\mathcal{L}_{\mathbf{g}} W_{\alpha}|_{\mathbf{g}} \sim \mu_{\alpha}^{n-1} \rho_{\alpha}^{-n} \left(\mu_{\alpha}^2 + d_{\mathbf{g}}(\mathbf{x}_{\alpha}, \mathbf{x})^2\right)^{-\frac{n-1}{2}}$$

$$u_{\alpha} \sim \mu_{\alpha}^{\frac{n-2}{2}} \left(\mu_{\alpha}^2 + \frac{f_{\alpha}(x_{\alpha})}{n(n-2)} d_{g}(x_{\alpha}, x)^2\right)^{-\frac{n-2}{2}}.$$

Here, $\mu_{\alpha} = \left(\max_{B_{\mathbf{x}_{\alpha}}(\rho_{\alpha})} u_{\alpha}\right)^{-\frac{2}{n-2}}$ controls the size of the explosion at x_{α} . It is a characteristic radius of the problem $(\mu_{\alpha} << \rho_{\alpha})$.

→ロト 4回ト 4 至ト 4 至ト 至 900円

The sharp pointwise estimates are obtained by iteratively and simultaneously improving the available estimates on u_{α} and on W_{α} via a ping-pong game.

- One needs precise enough initial estimates to start the analysis. And the weak estimates of Step 1 are not enough!
- The two equations blow-up at different rates. The scalings to bring explosion profiles to a finite size are non compatible: the unknowns u_{α} and W_{α} only interact in the intermediate region $\mu_{\alpha} << r \leq \rho_{\alpha} \Rightarrow$ No way to recover estimates on this region by scaling.
- Loss of regularizing effect of the equations: no a priori Harnack inequality, neither for u_{α} nor for W_{α} . In particular: estimates on u_{α} do not imply anymore estimates on ∇u_{α} !
- Because of the Kernel invariance, we use representation formulas for the Lamé operator $\overrightarrow{\triangle}_{\mathcal{E}}$ in $B_{\times_{\alpha}}(8\rho_{\alpha})$ with Neumann boundary-type conditions.
 - But with the coupling and the structure of the system: this adds a new local loss of compactness: since $\rho_{\alpha} \to 0$, the Green vector fields of $\overrightarrow{\triangle}_g$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ blow-up as $\alpha \to +\infty$ (except in the locally conformally flat case!)

The sharp pointwise estimates are obtained by iteratively and simultaneously improving the available estimates on u_{α} and on W_{α} via a ping-pong game.

- One needs precise enough initial estimates to start the analysisis. And the weak estimates of Step 1 are not enough!
- The two equations blow-up at different rates. The scalings to bring explosion profiles to a finite size are *non compatible*: the unknowns u_{α} and W_{α} only interact in the intermediate region $\mu_{\alpha} << r \leq \rho_{\alpha} \Rightarrow$ No way to recover estimates on this region by scaling.
- Loss of regularizing effect of the equations: no a priori Harnack inequality, neither for u_{α} nor for W_{α} . In particular: estimates on u_{α} do not imply anymore estimates on ∇u_{α} !
- Because of the Kernel invariance, we use representation formulas for the Lamé operator $\overrightarrow{\triangle}_g$ in $B_{x_\alpha}(8\rho_\alpha)$ with Neumann boundary-type conditions.
 - But with the coupling and the structure of the system: this adds a new local loss of compactness: since $\rho_{\alpha} \to 0$, the Green vector fields of $\overrightarrow{\triangle}_g$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ blow-up as $\alpha \to +\infty$ (except in the locally conformally flat case!)

The sharp pointwise estimates are obtained by iteratively and simultaneously improving the available estimates on u_{α} and on W_{α} via a ping-pong game.

- One needs precise enough initial estimates to start the analysisis. And the weak estimates of Step 1 are not enough!
- The two equations blow-up at different rates. The scalings to bring explosion profiles to a finite size are non compatible: the unknowns u_{α} and W_{α} only interact in the intermediate region $\mu_{\alpha} << r \leq \rho_{\alpha} \Rightarrow$ No way to recover estimates on this region by scaling.
- Loss of regularizing effect of the equations: no a priori Harnack inequality, neither for u_{α} nor for W_{α} . In particular: estimates on u_{α} do not imply anymore estimates on ∇u_{α} !
- Because of the Kernel invariance, we use representation formulas for the Lamé operator $\overrightarrow{\triangle}_g$ in $B_{x_\alpha}(8\rho_\alpha)$ with Neumann boundary-type conditions.
 - But with the coupling and the structure of the system: this adds a new local loss of compactness: since $\rho_{\alpha} \to 0$, the Green vector fields of $\overrightarrow{\triangle}_g$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ blow-up as $\alpha \to +\infty$ (except in the locally conformally flat case!)

The sharp pointwise estimates are obtained by iteratively and simultaneously improving the available estimates on u_{α} and on W_{α} via a ping-pong game.

- One needs precise enough initial estimates to start the analysisis. And the weak estimates of Step 1 are not enough!
- The two equations blow-up at different rates. The scalings to bring explosion profiles to a finite size are non compatible: the unknowns u_{α} and W_{α} only interact in the intermediate region $\mu_{\alpha} << r \leq \rho_{\alpha} \Rightarrow$ No way to recover estimates on this region by scaling.
- Loss of regularizing effect of the equations: no a priori Harnack inequality, neither for u_{α} nor for W_{α} . In particular: estimates on u_{α} do not imply anymore estimates on ∇u_{α} !
- Because of the Kernel invariance, we use representation formulas for the Lamé operator $\overrightarrow{\triangle}_g$ in $B_{x_\alpha}(8\rho_\alpha)$ with Neumann boundary-type conditions.
 - But with the coupling and the structure of the system: this adds a new local loss of compactness: since $\rho_{\alpha} \to 0$, the Green vector fields of $\overrightarrow{\triangle}_g$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ blow-up as $\alpha \to +\infty$ (except in the locally conformally flat case!)

The sharp pointwise estimates are obtained by iteratively and simultaneously improving the available estimates on u_{α} and on W_{α} via a ping-pong game.

- One needs precise enough initial estimates to start the analysisis. And the weak estimates of Step 1 are not enough!
- The two equations blow-up at different rates. The scalings to bring explosion profiles to a finite size are non compatible: the unknowns u_{α} and W_{α} only interact in the intermediate region $\mu_{\alpha} << r \leq \rho_{\alpha} \Rightarrow$ No way to recover estimates on this region by scaling.
- Loss of regularizing effect of the equations: no a priori Harnack inequality, neither for u_{α} nor for W_{α} . In particular: estimates on u_{α} do not imply anymore estimates on ∇u_{α} !
- Because of the Kernel invariance, we use representation formulas for the Lamé operator $\overrightarrow{\triangle}_{g}$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ with Neumann boundary-type conditions.
 - But with the coupling and the structure of the system: this adds a new local loss of compactness: since $\rho_{\alpha} \to 0$, the Green vector fields of $\overrightarrow{\Delta}_{g}$ in $B_{x_{\alpha}}(8\rho_{\alpha})$ blow-up as $\alpha \to +\infty$ (except in the locally conformally flat case!)

Step 3: Contradiction and conclusion

Step 2 gives: there are at least 2 concentration points. We define:

$$d_{\alpha} = \min_{i \neq j \leq N_{\alpha}} d_{\mathbf{g}} \left(x_{i,\alpha}, x_{j,\alpha} \right)$$

and order the $x_{i,\alpha}$ so as to have $d_{\alpha}=d_{\mathbf{g}}(x_{1,\alpha},x_{2,\alpha})$. We then show that there simultaneously holds:

$$d_{\alpha} \rightarrow 0$$
 and $d_{\alpha} \not\rightarrow 0$.

Proof

- $d_{\alpha} \to 0$: it is given by the sharp asymptotics around $x_{1,\alpha}$ obtained in Step 2.
- $d_{\alpha} \not \to 0$: we assume that the contrary holds and we look at u_{α} around $x_{1,\alpha}$ at a d_{α} scale:

$$\hat{u}_{\alpha} = d_{\alpha}^{\frac{n-2}{2}} u_{\alpha}(d_{\alpha}x).$$

Using Step 2 we show that \hat{u}_{α} is locally bounded. In particular: \hat{u}_{α} converges in $C^0_{loc}(\mathbb{R}^n)$ to some \hat{u}_{∞} satisfying:

$$\triangle_{\xi} \hat{u}_{\infty} = f_0(x_1) \hat{u}_{\infty}^{2^*-1} \quad \text{in } \mathbb{R}^3$$

Thus $\hat{u}_{\infty} = C \cdot \left(1 + \frac{f_0(x_1)}{n(n-2)}|x|^2\right)^{-(n-2)/2}$ (Caffarelli-Gidas-Spruck classification result). This is impossible since \hat{u}_{∞} has by definition at least two distinct critical points. \Box

Step 3: Contradiction and conclusion

Step 2 gives: there are at least 2 concentration points. We define:

$$d_{\alpha} = \min_{i \neq j \leq N_{\alpha}} d_{\mathbf{g}} \left(x_{i,\alpha}, x_{j,\alpha} \right)$$

and order the $x_{i,\alpha}$ so as to have $d_{\alpha}=d_{\mathbf{g}}(x_{1,\alpha},x_{2,\alpha})$. We then show that there simultaneously holds:

$$d_{\alpha} \rightarrow 0$$
 and $d_{\alpha} \not\rightarrow 0$.

Proof:

- $d_{\alpha} \to 0$: it is given by the sharp asymptotics around $x_{1,\alpha}$ obtained in Step 2.
- $d_{\alpha} \not \to 0$: we assume that the contrary holds and we look at u_{α} around $x_{1,\alpha}$ at a d_{α} scale:

$$\hat{u}_{\alpha} = d_{\alpha}^{\frac{n-2}{2}} u_{\alpha}(d_{\alpha}x).$$

Using Step 2 we show that \hat{u}_{α} is locally bounded. In particular: \hat{u}_{α} converges in $C^0_{loc}(\mathbb{R}^n)$ to some \hat{u}_{∞} satisfying:

$$\triangle_{\xi} \hat{u}_{\infty} = f_0(x_1) \hat{u}_{\infty}^{2^*-1} \quad \text{in } \mathbb{R}^3$$

Thus $\hat{u}_{\infty} = C \cdot \left(1 + \frac{f_0(x_1)}{n(n-2)}|x|^2\right)^{-(n-2)/2}$ (Caffarelli-Gidas-Spruck classification result). This is impossible since \hat{u}_{∞} has by definition at least two distinct critical points. \Box

Step 3: Contradiction and conclusion

Step 2 gives: there are at least 2 concentration points. We define:

$$d_{\alpha} = \min_{i \neq j \leq N_{\alpha}} d_{\mathbf{g}} \left(x_{i,\alpha}, x_{j,\alpha} \right)$$

and order the $x_{i,\alpha}$ so as to have $d_{\alpha}=d_{g}(x_{1,\alpha},x_{2,\alpha})$. We then show that there simultaneously holds:

$$d_{\alpha} \rightarrow 0$$
 and $d_{\alpha} \not\rightarrow 0$.

Proof:

- $d_{\alpha} \to 0$: it is given by the sharp asymptotics around $x_{1,\alpha}$ obtained in Step 2.
- $d_{\alpha} \not \to 0$: we assume that the contrary holds and we look at u_{α} around $x_{1,\alpha}$ at a d_{α} scale:

$$\hat{u}_{\alpha}=d_{\alpha}^{\frac{n-2}{2}}u_{\alpha}(d_{\alpha}x).$$

Using Step 2 we show that \hat{u}_{α} is locally bounded. In particular: \hat{u}_{α} converges in $C^0_{loc}(\mathbb{R}^n)$ to some \hat{u}_{∞} satisfying:

$$\triangle_\xi \hat{u}_\infty = f_0(x_1) \hat{u}_\infty^{2^*-1} \quad \text{ in } \mathbb{R}^3.$$

Thus $\hat{u}_{\infty} = C \cdot \left(1 + \frac{f_0(x_1)}{n(n-2)}|x|^2\right)^{-(n-2)/2}$ (Caffarelli-Gidas-Spruck classification result). This is impossible since \hat{u}_{∞} has by definition at least two distinct critical points. \Box

Thank you for your attention.