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Lovelock’s theorem (1971)

Gab + Λgab = 8πTab

LHS is most general symmetric tensor that is

I a function of g , ∂g , ∂2g

I divergence-free

This assumes d = 4 dimensions. For d > 4, extra terms can
appear on LHS. These were determined by Lovelock.



Lovelock theories

Eab = 8πTab

E a
b ≡

∑
p≥0

kpδ
ac1...c2p

bd1...d2p
Rc1c2

d1d2 . . .Rc2p−1c2p
d2p−1d2p

Antisymmetry: p ≤ [(d − 1)/2]

k0 = Λ k1 = −1

4

Einstein equation is obtained if we demand linearity in ∂2g , i.e.,
quasilinearity. General Lovelock theories are not quasilinear.



Why should I care about Lovelock theories?

I There has been interest in classical GR in d > 4 dimensions.
Classically, Lovelock theories are as well-motivated as GR.

I Wave equation �φ = 0: can be (i) generalised to d
dimensions; (ii) made nonlinear �φ = F(φ, ∂φ, ∂2φ). There
has been considerable interest in understanding such
equations. Doing the same for Einstein equation gives
Lovelock theories uniquely.

I Interesting mathematical question: how do properties of such
theories differ from GR? Is GR special? Are Lovelock theories
pathological in some way?



Causality in Lovelock theories

Causality of a hyperbolic PDE is determined by its characteristic
surfaces.

In GR, a hypersurface is characteristic if, and only if, it is null so
causality is determined by the lightcone.

Characteristic hypersurfaces of Lovelock theories are generically
non-null (Aragone 1987, Choquet-Bruhat 1988) so gravity can
propagate faster or slower than light



Motivation

I How do characteristic hypersurfaces behave in Lovelock
theories?

I Are Lovelock theories hyperbolic? (Necessary for well-posed
initial value problem.)

I What happens when we evolve generic initial data in Lovelock
theories?

I Focus on vacuum solutions: Tab = 0



Characteristic surfaces

Consider hypersurface Σ and coordinates (x0, x i ) so that Σ is
x0 = 0

Metric components g0µ non-dynamical (e.g. lapse, shift)

Eq of motion gives constraints and evolution equation:

Aijkl∂2
0gkl + . . . = 0

Linear in ∂2
0g (but Aijkl depends on ∂i∂jg) (Aragone 1987)



Characteristic surfaces

Aijkl∂2
0gkl + . . . = 0

I Σ is noncharacteristic iff knowing the fields and their first
derivatives on Σ determines uniquely the second derivatives
on Σ

I Σ characteristic iff ∃rij 6= 0 such that Aijkl rkl = 0: ”graviton
polarization rij propagates along Σ”

I GR: Aijkl ∼ g00δk(iδj)l so Σ characteristic iff null (g00 = 0),
null hypersurfaces characteristic for all graviton polarizations

I Lovelock: Aijkl ∼ g00δk(iδj)l +Rijkl . Expect different graviton
polarizations to propagate along different characteristic
hypersurfaces: ”multirefringence”



Hyperbolicity

Pick some ”initial” hypersurface Σ (non-characteristic) and a
compact (d − 2)-dimensional surface S ⊂ Σ.

S 

N = d(d − 3)/2 independent graviton polarizations. Theory is
hyperbolic if there are N ”ingoing” and N ”outgoing”
characteristic hypersurfaces through S (allow for degeneracy).



Hyperbolicity

I GR is hyperbolic in any background.

I Lovelock: Aijkl ∼ g00δk(iδj)l +Rijkl . Hyperbolicity not
obvious when curvature comparable to scale set by coupling
constants. Hyperbolicity depends on background.

I Aijkl can be read off from equation of motion for linearized
perturbations. Linearized eqs hyperbolic iff nonlinear eqs
hyperbolic.



Example 1: Ricci flat type N spacetime

Type N: ∃ null `a such that `aCabcd = 0 (e.g. pp-wave).
Solves Lovelock eq. of motion with Λ = 0.
A hypersurface is characteristic iff it is null w.r.t. one of
N = d(d − 3)/2 ”effective metrics” of form

G(I )ab = gab − k2ω(I )`a`b I = 1, . . . ,N

where ωI is homogeneous (degree 1) function of curvature.

I ”Total multirefringence”

I Lovelock theories are hyperbolic in such backgrounds for
arbitrarily large curvature

I Null cones of G(I )ab form a nested set, tangent along `a,
causality determined by outermost cone



Example 2: Killing horizon

Gravitational signals can travel faster than light. Can they escape
from inside a black hole?

Izumi (2014): a Killing horizon is characteristic for all graviton
polarizations in Einstein-Gauss-Bonnet theory. We generalized this
to any Lovelock theory.

If we deform the metric inside a Killing horizon, the deformation
cannot escape the horizon.

Event horizon of a static BH must be a Killing horizon. True also
for stationary BHs in GR - what about Lovelock?

Non-stationary BHs?



Example 3: static black hole spacetimes

Lovelock theories admit static, spherically symmetric, solutions
(Boulware & Deser 1985, Wheeler 1986)

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2

Characteristic hypersurfaces determined by two-derivative terms in
eqs for linear perturbations.

Linear perturbations can be classified into scalar, vector or tensor
types, each satisfying a ”master equation” (Dotti & Gleiser 2004-5,

Takahashi & Soda 2009)



Example 3: static black hole spacetimes

Master equation for each type: Gµν
(I )∂µ∂νh + . . . (I = scalar, vector

or tensor) where Gµν
(I ) is smooth.

Invert Gµν
(I ) to define ”effective metrics”, which have form

G(I )µνdxµdxν = −f (r)dt2 + f (r)−1dr2 +
r2

cI (r)
dΩ2

for certain functions cI (r)

A surface is characteristic iff it is null w.r.t. one of these effective
metrics.

NB: effective metrics non-generic



Example 3: static black hole spacetimes

G(I )µνdxµdxν = −f (r)dt2 + f (r)−1dr2 +
r2

cI (r)
dΩ2

Null cone of G(I ) lies outside that of g iff cI > 1 (gravity travels
faster than light)

More serious issue: cI (r) can vanish at r = r∗ outside event
horizon for small black holes ⇒ violation of hyperbolicity

When this happens, ∃ exponentially growing linear perturbations.
Previously this was interpreted as an instability of the black hole.

It is much worse. The initial value problem is ill-posed. For a
generic initial perturbation there is no solution of the linearized
equations.



Discussion

Lovelock theories are not always hyperbolic: depends on
background.

Can one set up initial data so that theory is initially hyperbolic but
becomes non-hyperbolic after some time?

Yes: consider large black hole: hyperbolicity violated to future of
surface Σ of constant r inside black hole.

Is this generic? Generic linear perturbations cannot be evolved to
future of Σ. Suggests nonlinear instability may ensure preservation
of hyperbolicity (cf strong cosmic censorship). (Work in progress.)



Shock formation in Lovelock theories

”Speed of gravity” can vary in spacetime

Can we make a wavepacket so that back of wavepacket travels
faster than front?

cf compressible perfect fluid: speed of sound depends on pressure
⇒ wave steepening ⇒ shock!



Shock formation in 1d

Canonical example: Burgers’ equation

ut + uux = 0

Solve by method of characteristics: u constant along characteristics

If ux(x0) < 0 then characteristic through x = x0 will intersect its
neighbours ⇒ ux diverges: shock



Shock formation in 3d fluids

Compressible perfect fluid

Initial data: fluid at rest for r > R, non-trivial in r < R

Sideris (1985, non-relativistic): blow-up of solutions for small
initial data

Christodoulou (2007, relativistic): blow-up for small data occurs
because ”density” of outgoing characteristic hypersurfaces diverges



Propagation of curvature discontinuity

Consider a spacetime with a curvature discontinuity across a
hypersurface Σ, metric C 1 across Σ.

∂2g not uniquely determined on Σ ⇒ Σ is characteristic.

Characteristic surfaces are ruled by bicharacteristic curves (null
geodesics in GR)

Can show that amplitude of discontinuity is governed by a
transport equation: an ODE along these curves

e.g. in GR (Lichnerowicz 1960)

V a∇a[Rbcde ] +
1

2
∇aV

a[Rbcde ] = 0



Propagation of curvature discontinuity: Lovelock

A curvature discontinuity across surface S in the initial data will
resolve into curvature discontinuities propagating along the
characteristic surfaces through S

Assume initial data outside S is that of known ”background”
spacetime (e.g. asymptotically flat)

Solution outside ”outermost” characteristic surface will be the
background spacetime - the discontinuity ”invades” this spacetime

Background spacetime is known: we can determine the
characteristic surface



Transport equation

In coordinates adapted to characteristic surface: [∂2
0gij ] = Πrij

(Aijkl rkl = 0)

Transport equation nonlinear (Lovelock theories are ”genuinely
nonlinear”)

dΠ

ds
+ NΠ2 + MΠ = 0

s is parameter along bicharacteristic curve. N,M depend on
extrinsic and intrinsic curvature of Σ (can be determined from
background spacetime)

Main result:
N ∼ k2Kr3 + . . .



Shock formation

GR is ”exceptional”: linear transport equation. Solution blows up
only if hypersurface not smooth (caustic). Asymptotically flat:
Π(s) decays.

Lovelock: general solution (s is parameter along curve)

Π(s) =
Π(0)e−Φ(s)

1 + Π(0)
∫ s

0 N(s ′)e−Φ(s′)ds ′
Φ(s) =

∫ s

0
M(s ′)ds ′

Blows up when denominator vanishes: shock

If N 6= 0 then can arrange this by taking Π(0) large enough: shock
formation from ”large” initial data (with curvature comparable to
scale set by Lovelock couplings)



High frequency gravitational waves Choquet-Bruhat 1969

Two-time Ansatz:

gµν(x , η) = ḡµν(x) + ω−2hµν(x , η) +O(ω−3)

where η = ωφ(x). Expand eqs of motion in ω−1.

Surfaces of constant φ are characteristic surfaces of ”background”
spacetime ḡ .

Adapted coordinates: φ = x0 ⇒ hij = Ω(x , η)rij

Ω obeys transport equation: nonlinear ODE with same nonlinear
term as for curvature discontinuity

High frequency waves form shocks just as for curvature
discontinuity



Examples

Nonlinear term vanishes for simplest examples:

I Any characteristic surface in flat spacetime

I Spherically symmetric characteristic surface in static,
spherically symmetric, spacetime

I Killing horizon

Plane wave spacetime:

I shock formation for arbitrarily small initial amplitude

I focusing caused by caustic causes amplitude to grow, shock
forms before caustic

More interesting example: axisymmetric characteristic surface in
static, spherically symmetric, spacetime



Discussion



Smooth initial data

We’ve focused on curvature discontinuities and high frequency
waves since these are easy to analyse

Do shocks form from smooth initial data?

Analogy with other ”genuinely nonlinear” theories strongly
suggests that they will, for a generic class of initial data with
region where curvature is comparable to scale set by Lovelock
coupling constants (numerics?)

Mechanism of shock formation (divergence in density of
characteristic surfaces) seems to be the same as for perfect fluid



Weak cosmic censorship

Shocks are curvature singularities. Are these naked or hidden
inside ”black” holes?

”Naked”: connected to I+ by bicharacteristic curve

Reduce amplitude of initial outgoing disturbance: takes longer for
shock to form ⇒ requires bigger black hole, but initial energy
smaller...

Curvature discontinuity: choose asymptotically flat background
spacetime and outgoing characteristic hypersurface Σ that extends
to I+. Arrange for shock to form along Σ. Then this shock is
”visible” to I+.



Small initial data

We’ve argued that shocks form for certain ”large” initial data.
What about ”small” initial data, i.e., almost flat?

This is the question of nonlinear stability of Minkowski spacetime

Highly non-trivial in 4d GR (Christodoulou & Klainerman)

Expected to be much easier in d > 4 dimensions because linear
field decays faster

Analogy with nonlinear wave equation �φ = f (φ, ∂φ, ∂2φ)
suggests that Minkowski spacetime should be stable in Lovelock
theories

Currently under investigation (J. Keir). Establishing local
well-posedness is causing problems (cf Willison 2014).



Evolution of shocks

In fluid dynamics, shock formation is not the end of time evolution:
can extend as a weak solution by allowing fields to be
discontinuous. Rankine-Hugoniot junction conditions from
conservation of energy-momentum and particle number. Shocks
propagate along noncharacteristic hypersurfaces.

Analogous situation in Lovelock theories: once shock forms, allow
∂g to be discontinuous across hypersurface Σ. Weak solution:
extremize action ⇒ canonical momentum πij should be continuous
across Σ. Does such a surface describes a dynamical shock?


