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I Joint work with Po-Ning Chen and Shing-Tung Yau.

I The connection of “Rigidity of mass (when is mass equal to zero)”
and “Uniqueness of isometric embedding”.

I A variational approach to the problem of mass in GR.

I An invariant mass theorem and a new mass loss formula.
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I Consider (M, g , k) a spacelike hypersurface in a vacuum spacetime
(Ric = 0) with induced metric g and second fundamental form k .

I (M, g , k) is asymptotically flat if outside a compact subset, there
exists an asymptotically flat coordinate system (x1, x2, x3) on each
end, such that

g = δ + O2(r−q) and k = O1(r−q−1), with q >
1

2
.

I ADM mass (energy) of an end of (M, g , k) is defined to be:

E = lim
r→∞

1

16π

∫
Sr

(gij ,j − gjj ,i )ν
i ,

where Sr is a coordinate sphere of coordinate radius r on the end
and ν i is the unit outward normal of Sr .

I Schoen-Yau’s PMT (Witten, Parker-Taubes, Bartnik, Chrusciel,
Eichmair-Lee-Huang-Schoen): E ≥ 0 and E = 0 if and only if
(M, g , k) is a spacelike hypersurface in R3,1.
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I The model space is a totally geodesic hypersurface in the
Schwarzschild spacetime. The Lorentz metric on the spacetime is

−(1− 2m

r
)dt2 +

1

1− 2m
r

dr2 + r2(dθ2 + sin2 θdφ2),m > 0.

I On the t = 0 slice, g = 1
1− 2m

r

dr2 + r2(dθ2 + sin2 θdφ2), k = 0

(totally geodesic), and E = m.

I The expression of the ADM mass depends on the choice of the
coordinate system, but Bartinik proved that it is a geometric
invariant.
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I However, the asymptotic condition q > 1/2 is important as there
exist
(1) a spacelike hypersurface in R3,1 with g = δ + O(r−1/2) and
non-zero ADM mass.

I (2) a spacelike hypersurface in Sch3,1 with flat induced metric and
thus zero ADM mass, the second fundamental form k = O(r−3/2).
This is the graph of t = f (r), with f (r) = O(r1/2).

I PMT is sharp! But does the notion of mass make sense on a
spacelike hypersurface that does not satisfy the asymptotic
conditions?
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I Fundamental difficulties of mass in GR:

I No “mass density” in GR.
In Newtonian gravity, the equation is ∆φ = 4πρ where ρ is the
mass density, and the total mass enclosed in a region Ω ⊂ R3 is
simply

∫
Ω ρ. Such a formula does not hold in GR. We can turn the

Newtonian mass into a boundary integral 1
4π

∫
∂Ω

∂φ
∂ν though.

I No reference system in GR.
Only on the asymptotically flat region where gravity is weak can
we find an asymptotically flat coordinate system. This also makes
the definition of other physical quantities such as angular
momentum and center of mass very difficult.

I The expression of the ADM mass is a boundary integral at infinity.
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I A description of mass or energy on a bounded region is extremely
useful for many purposes.

I Once such a description is available, one can take the limit to
infinity on spacelike hypersurface to allow more general
asymptotics.

I In 1982, Penrose proposed a list of major unsolved problems in
general relativity, and the first was “find a suitable definition of
quasilocal mass (energy)”.

I Given a spacelike bounded region Ω3 in spacetime, find the
enclosed mass in terms of the boundary data on ∂Ω = Σ2.

I After reviewing several previous definitions of quasilocal mass, I
shall discuss a new proposal which anchors the question of
reference system at the same time.

I There are different approaches (Bartnik, Penrose, Dougan-Mason,
Ludvigsen-Vickers, etc.) to the quasilocal mass problem. I shall
restrict my review to two of the most well-known definitions of
quasi-local mass.
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I Given a closed embedded 2-surface Σ in a spacetime. Both
definitions depend on σ, the induced metric on Σ, and H the mean
curvature vector field on Σ.

I The Hawking-Geroch mass is defined by

m =

√
|Σ|
16π

(1− 1

16π

∫
Σ
|H|2)

I There is a time symmetric version in which |H| is replace by the
mean curvature of Σ in a time-symmetric slice.

I Time symmetric case: The Hawking mass has the amazing
monotone property (Eardley, Geroch, Jang-Wald) along the inverse
mean curvature flow, which was instrumental in Huisken-Ilmanen’s
proof of Riemannian Penrose conjecture for a single black hole.
The positivity of Hawking mass for stable CMC surfaces was
proved by Christodoulou-Yau.
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I Another important quasi-local mass construction was initiated by
Brown-York, and the isometric embedding problem enters the
consideration through the Hamilton-Jacobi theory.

I The Brown-York-Liu-Yau mass is defined to be

M =
1

8π
(

∫
Σ
H0 −

∫
Σ
|H|)

where H0 is the mean curvature of the isometric embedding of σ
into R3.

I (Nirenberg-Pogorelov) Any Riemannian metric of positive Gauss
curvature on S2 can be uniquely isometrically embedded into R3 up
to Euclidean motions. H0 is uniquely determined by σ in this case.

I The isometric embedding into R3 plays the role of a reference
system and 1

8π

∫
Σ H0 is the reference Hamiltonian.

I The BYLY mass has the desirable positivity property for a mass
which is proved by Shi-Tam (time-symmetric) and Liu-Yau.
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I However, a very important criterion (rigidity property) for a valid
definition of quasilocal mass is that for a surface in R3,1, the
quasilocal mass should be zero, as there is no gravitation and no
matter field.

I We can compute the HG (m) and BYLY (M) mass for a surface Σ
in the Minkowski spacetime R3,1.

I If Σ ⊂ R3 ⊂ R3,1, then M = 0 (by the uniqueness of isometric
embedding) but m < 0 except for a standard round sphere.

I If Σ is in a light cone in R3,1, then m = 0 but M > 0 except for a
standard round sphere.
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I This suggests that in the Hamilto-Jacobi approach one needs to
consider isometric embeddings of σ into the Minkowski spacetime,
i.e. X : S2 → R3,1 such that 〈dX , dX 〉 = σ.

I Such an embedding can be obtained in the following way. Take
any smooth function τ on S2 and isometrically embed
σ + dτ ⊗ dτ as a surface Σ̂ in R3 (Nirenberg-Pogorelov). Take the
graph of τ over Σ̂ and denote the embedding of the graph by X .
The induced metric on X (Σ) is exactly σ.

I τ = −〈X , ∂t〉. We can replace ∂t by any future timelike unit
Killing field T0 in R3,1.

I Among all such isometric embeddings, is there a “best match” of
the physical surface Σ with physical data (σ,H)?
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I Nash’s theorem guarantees the existence of isometric embedding
but the issue of uniqueness is not well-understood except for
convex surfaces in R3.

I We assume H is spacelike and extract from it a function |H| and a
connection one-form αH .

I The quasilocal mass we proposed is defined in terms of the data
(σ, |H|, αH) and is obtained through a variational approach to
single out an optimal isometric embedding among the space of
pairs (X ,T0).

I Definition: the quasilocal energy E (Σ,X ,T0) with respect to a
pair (X ,T0) is defined to be:

(∗) 1

8π

∫
Σ̂
Ĥ− 1

8π

∫
Σ

[
√
|H|2(1 + |∇τ |2) + (∆τ)2 +θ∆τ −αH(∇τ)]

where sinh θ = −∆τ

|H|
√

1+|∇τ |2
and τ = −〈X ,T0〉.

I Such an expression comes from the Hamilton-Jacobi analysis of
gravitational action (Brown-York, Hawking-Horowitz) and vanishes
for a surface in the Minkowski spacetime (projections through any
T0).

12



I The general expression depends on a gauge choice. Our expression
(∗) is defined with respect to a canonical gauge that matches the
area element variations along the surfaces Σ and X (Σ).

I The choice of this canonical gauge was at first justified by the
positivity of the quasi-local energy (W.-Yau). It was in fact closely
related to the following gravitational conservation law which later
played a critical role in several other applications.∫

∂B
π(T0, u) =

∫
B
Ric(T0, v),

where π is the conjugate momentum of the timelike hypersurface
B and v is the outward unit normal of B

I To find a “best match” of the physical data (σ, |H|, αH), we
minimize E (Σ,X ,T0) over the pairs (X ,T0).

I By Lorentz invariance, it suffices to consider variations with respect
to τ = −〈X ,T0〉.
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I The Euler-Lagrange equation is:

− (Ĥσ̂ab − σ̂ac σ̂bd ĥcd)
∇b∇aτ√
1 + |∇τ |2

+ divσ(
∇τ√

1 + |∇τ |2
cosh θ|H| − ∇θ − αH) = 0,

(0.1)

sinh θ = −∆τ

|H|
√

1+|∇τ |2
.

I This is again an identity that is satisfies by any surface in R3,1 with
respect to the projection along any T0.

I In order to better understand the energy and the equation, we
rewrite them in terms of data on X (Σ).

I Let H0 be the mean curvature vector of X (Σ) and again we
extract |H0| and αH0 .
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I Consider a function ρ and a 1-form ja on Σ:

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√
|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

.

ja = ρ∇aτ −∇a[sinh−1(
ρ∆τ

|H0||H|
)]− (αH0)a + (αH)a.

I It can be checked that the quasi-local energy becomes

E (Σ, τ) =
1

8π

∫
Σ

(ρ+ ja∇aτ).

I The E-L equation becomes ∇aja = 0.

I The quasi-local mass is defined to be

1

8π

∫
Σ
ρ,

and ρ is called the quasi-local mass density.
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I The optimal isometric embedding system of (σ, |H|, αH) seeks for
(X ,T0) with τ = −〈X ,T0〉 such that the following system is
satisfied:

(∗∗)

{
〈dX , dX 〉 = σ

∇aja = 0

I This is a system of four unknowns and four equations. We do not
know how to solve this system in general, but we do have the
following theorems.
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I Theorem (Chen-W.-Yau) Let (σ, |H|, αH) be the data of a spacelike
surface Σ in the Minkowski spacetime. Suppose the projection of
Σ onto the orthogonal complement of T0 is convex. Then the
kernel of the linearized optimal isometric embedding system (∗∗)
consists precisely of Lorentz motions. Moreover, the second
variation of the quasilocal energy E (Σ, τ) is non-negative definite.

I Comparing with Cohn-Vossen’s local rigidity theorem of isometric
embedding of convex surfaces in R3, the theorem implies that
surfaces with prescribed (σ, |H|, αH) are locally rigid in R3,1.
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I Proof: In the special case when the reference isometric embedding
lies in a totally geodesic R3 ⊂ R3,1, the theorem was proved by
Miao-Tam-Xie by a different method. Suppose Ω is a compact
domain in R3 with mean convex boundary ∂Ω, then for any
smooth function η on ∂Ω∫

∂Ω
[
(∆η)2

H
− h(∇η,∇η)] ≥ 0

and equality holds if and only if η is the restriction of a Cartesian
coordinate function on R3.

I To prove the general case, we need to go back to the positivity
proof of the quasilocal energy and trace when equality holds.
The ingredients of the proof consist of: (1) Schoen-Yau-Jang
equation, (2) Bartnik’s quasi-spherical construction, (3) Shi-Tam’s
monotonicity formula, and (4) Witten’s spinor proof of PMT.

18



I Theorem (Chen-W.-Yau) Let (σ, |H|, αH) be the data of a
spacelike surface Σ in a general spacetime. Suppose that τ0 is a
critical point of the quasi-local energy E (Σ, τ) and that the
corresponding quasilocal mass density ρ (with respect to τ0) is
positive, then τ0 is a local minimum for E (Σ, τ).

I The special case when τ0 = 0 follows from Miao-Tam-Xie’s work
and the general case relies on the following comparison theorem.

I Theorem (Chen-W.-Yau) Under the assumption of the above
theorem, for any time function τ such that σ + dτ ⊗ dτ has
positive Gaussian curvature, we have

E (Σ, τ) ≥ E (Σ, τ0) + E (Στ0 , τ). (0.2)

Moreover, equality holds if and only if τ − τ0 is a constant.
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I The above theorems allow us to solve the optimal isometric
embedding system for configurations that limit to surfaces in the
Minkowski spacetime. This is in particular sufficient for
calculations at infinity of an asymptotically flat initial data set.

I Suppose the ADM mass of (M, g , k) is positive, then there is a
unique, locally energy-minimizing, optimal isometric embedding of
Sr whose image approaches a large round sphere in R3.

I In each step, it suffices to solve linear elliptic equations on
standard S2 of the following form:

∆(∆ + 2)f = g .

∆(∆ + 2) is the positive definite second variation operator in this
case.

I The limit of the quasilocal mass on Sr is defined to be the total
mass of the asymptotically flat hypersurface.
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I Theorem (Chen-W.-Yau, in progress): Every strictly spacelike
hypersurface in the Schwarzschild spacetime has the same new
total mass m.

I This invariant mass theorem holds in more general spacetime (cf.
Chrusciel).

I “Strictly spacelike” means outside a compact subset the
hypersurface is defined by t = f (x1, x2, x3) such that
lim supr→∞

f
r < 1.

I The calculation is robust in the sense that we can use an arbitrary
family of convex surface foliation.

I A key ingredient in the proof is a local conservation law of the
momentum tensor of a timelike hypersurface.

I We apply this to both the physical spacetime and the reference
spacetime (R3,1), and evaluate the difference which determines the
total mass.

I The optimal embedding helps cancel any possible wild asymptotic
of the physical hypersurface.
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I In special relativity, the conserved quantities come from symmetry,
or Killing fields in R3,1. The reference system from optimal
isometric embedding provides the symmetry for conserved
quantities.

I For an optimal isometric embedding (X ,T0) with X : Σ→ R3,1,
the quasi-local conserved quantity corresponding to a Killing field
in R3,1 is defined to be:

(−1)

8π

∫
Σ

(〈K ,T0〉ρ+ (K>)aja),

where K> is the component of K that is tangential to X (Σ).

I K = x i∂j − x j∂i , i < j defines an angular momentum with respect
to ∂t .
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I Given an asymptotically flat initial data set (M, g , k) (with positive
ADM mass), consider the coordinate sphere Sr .

I Evaluate with respect to the unique solution of the optimal
isometric embedding system and take the limit as r →∞ of the
quasi-local conserved quantities on Sr , we obtain (E ,Pi , Ji ,Ci )
where (E ,Pi ) is the same as the ADM energy -momentum.
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I Asymptotically hyperbolic case

I The limiting case of strictly spacelike correspond to to an
asymptotically hyperbolic or null hypersurface. In this case, the
energy (mass) can radiate away along the null directions. Our
analysis applies to the dynamics of a family of asymptotically
hyperbolic hypersurfaces (M, g , k) and captures this radiation
phenomenon along the Einstein equation.

I Definition of mass by X. Wang, Chrusciel-Herzlich, Nagy-Sakovich,
X. Zhang, etc.

I The model case is an umbilical slice in Sch3,1 (k = g).

I In previous definitions, k is sometimes assumed to be g .

I It is nevertheless important to take into account of k for dynamical
considerations. In fact, there exists an asymptotically umbilical
slice in Sch3,1 that is isometric to H3. There is no way to read off
the mass from the induced metric.
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I Suppose gH3 = 1
r2+1

dr2 + r2σ̃abdu
adub is the hyperbolic 3-metric.

I (M, g , k) is said to be an asymptotically hyperbolic initial data set
if outside a compact subset K , M is diffeomorphic to a finite union
of ends ∪iH3\Bi . Under the diffeomorphism, we have

g = grrdr
2 + 2gradrdu

a + gabdu
adub and k = g + p,where

grr =
1

r2
− 1

r4
+

g
(−5)
rr

r5
+ l .o.t. gra =

g
(−3)
ra

r3
+ l .o.t.

gab =r2σ̃ab + g
(0)
ab +

g
(−1)
ab

r
+ l .o.t.

prr =
p

(−4)
rr

r4
+ l .o.t. pra =

p
(−3)
ra

r3
+ l .o.t.,

pab =p
(0)
ab +

p
(−1)
ab

r
+ l .o.t.
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I We solve the optimal isometric equation equation on each
coordinate sphere and evaluate the limit of quasilocal conserved
quantities.

I Define the mass aspect function m to be

m =
3

2
trS2g

(−1)
ab + trS2p

(−1)
ab + g

(−5)
rr . (0.3)

The energy-momentum is

E =
1

8π

∫
S2

mdS2

P i =
1

8π

∫
S2

X̃ imdS2, i = 1, 2, 3

where X̃ i , i = 1, 2, 3 are the three standard coordinate functions on
S2.

I (E ,P i ) is non-spacelike by the positivity of quasi-local mass. Set

M =
√
E 2 −

∑3
i=1(P i )2, then along the vacuum Einstein equation

with (M, g(t), k(t)), we derive

∂tM(t) = − 1

8π

∫
S2

|p(0)
ab + g

(0)
ab |

2dS2.

I This is an analogue of the Bondi mass loss formula which was
derived for null hypersurfaces by Bondi.
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Thank you!
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