Conformal scattering

Recent advances in general relativity
[HP, Paris, trimester on mathematical relativity, 100 years of GR
Jean-Philippe Nicolas, Brest, France.

Introduction

1. The purpose of conformal scattering is to use conformal methods to construct scat-
tering theories, not to re-interpret existing scattering theories in conformal terms.

2. This talk focuses on asymptotically flat situations with null conformal infinity ; the
techniques involved in this situation are quite different from the asymptotically De
Sitter or anti De Sitter cases

3. General principle. View the evolution of the field on the spacetime as an old-
fashioned scattering experiment : incoming plane wave, hits an obstacle, propagates
out as a superposition of plane waves. The scattering data (analogue to the incoming
and outgoing plane waves) are the radiation fields (restrictions of the conformally
rescaled solution on past and future null infinities). Complete scattering : past (resp.
future) scattering data characterize the field uniquely. Like a Cauchy problem but
set on a null hypersurface at infinity : a Goursat problem at infinity. Scattering
operator goes from past scattering data to future scattering data.

4. History of conformal scattering.

e 1965 Penrose Zero rest-mass fields including gravitation : asymptotic be-
haviour. Description of his conformal approach to infinity and its application
to the study of the asymptotic behaviour of conformally invariant equations.
The notion of conformal scattering is explicitely introduced and cited as one
major motivation for the conformal approach.

e 1967 Lax-Phillips Scattering theory. This is a spectral analytic approach to
scattering theory by an obstacle. A plane wave decomposition is used in order
to describe the evolution away from the obstacle as a simple translation rep-
resenter of the solution. This translation representer is then reinterpreted as
a radiation field, i.e. a trace of the conformally rescaled field at null infinity.
Lax and Phillips also obtain an integral representation of the solution of the
free wave equation in terms of its translation representer. This is in fact Whit-
taker’s formula from 1907, put in its rightful context as an integral formula
for the resolution of the initial value problem for the wave equation from null
infinity.



e 1970’s Friedlander’s study of radiation fields. 1980 link with the Lax-Phillips
theory, first conformal scattering construction, conformal wave equation on a
static spacetime. In a way it is surprising that Friedlander chose to work on a
static spacetime. The structure of conformal scattering only relies on having a
smooth conformal boundary and is therefore insensitive to time dependence. I
think there’s two reasons for his choice : 1. he wanted to be able to construct
null infinity rigorously and for a static spacetime with sufficiently fast fall-off
of the metric, this is easy ; he wanted to extend the Lax-Phillips theory in its
analytic richness, particularly to recover the translation representer, and this
is tied in with at least stationarity of the underlying spacetime.

e Late 1980’s-early 1990’s : series of papers by Baez and collaborators, static
frameworks, non linear equations.

e 2002, 2010 : Mason-Nicolas, Joudioux. These are constructions on generically
non stationnary spacetimes, allowing for the presence of energy.

e 2013 : Nicolas. Wave equation on the Schwarzschild metric.

2 Spectral approach to scattering theory

e Spectral analytic scattering theory in general relativity started in the early 1980’s
with Dimock, Kay, then Bachelot and his students. The first studies were in spher-
ically symmetric situations (Schwarzschild metric) and the spherical symmetry was
crucially used in order to simplify the problem to a 1 + 1 dimensional one and ap-
ply trace class perturbation methods. Then, under the impulse of Christian Gérard,
people started using commutator methods and Mourre theory. This led to scattering
theories on the Kerr metric (Héfner, Héfner-Nicolas).

These theories were crucial in the rigorous analytic study of the Hawking effect by
Bachelot, then Melnyk and Héfner.

All these scattering theories had a common structure, a common formulation (whether
in the construction or as a final re-formulation) in terms of wave operators.

e Scattering theory in terms of wave operators (Reed-Simon volume 3 for instance).
H and H, two self-adjoint operators on two Hilbert spaces H and H,.

H full dynamics, associated equation : O,¥ = iHWV ,
H, simplified dynamics, associated equation : 0;® = iHy® .

Complete scattering between the two :

YW, € H, NPT € Hy; im e Wy — Fet M dE|, =0,

J : Ho — H identifying operator (could be a natural identification, or also involve
some cut-off).

Wave operators. W+ : <I>0i — Uy, Wt U — @%. They are isometries, inverse
of one another.



Meaning. Each solution of the full equation asymptotically approaches a solution
to the simplified one and the data for the simplified evolution characterize the full
solution completely.

Scattering data. The scattering data are the data for the simplified equation in
the future and the past, i.e. ®F. They are the remote past of future data for the
field.

e Example : wave equation on an asymptotically flat static spacetime (M = R X
¥, g=dit? —h).
Otu— Apu =0

At least two natural choices for the comparison dynamics.

1. Wave equation on flat spacetime : H, = H'(R?) x L*(R?) ;

2. Damped transport along radial null geodesics in Minkowski spacetime : data
for Hy live on R x S? which is the space of outgoing (incoming) radial null
geodesics, Ho = H'(R; L*(S?)) and J will be a cut-off on the positive values
of r.

The two choices are not equivalent, yet, provided the metric decays fast enough at infinity,
we have a complete scattering for both choices.

3 The principles of conformal scattering

Explained on the conformal wave equation on 3 types of globally hyperbolic asymptotically
flat spacetimes.

3.1 Explained on a conformally compact spacetime.

Spacetime (R%, g) admitting a smooth conformal compactification (i° and i* smooth).
The compactified spacetime is

M= Mu s u{iF}u{i®}

F* ~ R x S? are smooth null hypersurfaces, past and future lightcones of i*. Rescaled
metric § = Q?¢ smooth and non degenerate on M.
u € D'(R*) solution to Ogu + gScalyu = 0 < 4 := Q' solution of Oya + ¢Scalyt = 0.
Work entirely for the rescaled equation, on a picture. ¥ ~ R? Cauchy hypersurface,
0¥ = i%. Smooth data on X, the solution @ extends as a smooth function up to the
boundary. The scattering data will be the restrictions of 4 to . and .#~. They are the
data for a Goursat (characteristic Cauchy) problem on future and past null infinities.
Method of construction of the scattering theory.

Step 1. Define trace operator TF that to smooth data on ¥ associate CID(jf = U|y+ €

Co(I%).



Step 2. Prove uniform energy equivalence between data on ¥ and scattering data. This
is done by chosing a timelike (causal) vector field 7 on M and using it to define an
energy current 7°7T;* via the standard stress-energy tensor for the wave equation.
Only approximate conservation but compact domain, energy equivalence is easy,
simply the divergence theorem (Stokes theorem) on the closed hypersurface XU .7+
(resp. XU .#7) for J* plus some a priori estimates.

e If 7 is only causal (timelike in M though) and tangent to .#, then norm on
F* is a weighted H'(R; L?(5?)).

e If 7 timelike on M, then the norm on .# is a full homogeneous H' norm.

The norms on .# in the two cases are not equivalent, but also on ¥ (7 tangent to
I).

This implies. T+ extend as bounded linear operators, one-to-one and closed range.

Step 3. T* are surjective. Need to solve the Goursat problem for a dense subspace of the
finite energy space on .#+. Results on spatially compact spacetimes can be used
here, modulo an extension on M and § to a cylinder for example. See Hérmander
1990, JFA for instance.

Conclusion. T* are isomorphisms. Analogue to W* (inverse wave operators).

3.2 On an asymptotically simple spacetime containing energy

Explain the geometrical framework. Corvino-Schoen / Chrusciel-Delay spacetimes.
We have a singular i to deal with. This is done using essentially the finite propagation
speed. In the versions developed sofar, an exact symmetry is assumed near i® in order
to obtain easily energy estimates that are uniform in the size of the support. In the
resolution of the Goursat problem, again the propagation speed will play an important
role for obtaining that the solution has finite energy. Explain the trick for i° on a
picture.

3.3 On a black hole spacetime

Now 4" is singular and finite propagation speed cannot help us.

Here are the required ingredients. Explain on a picture of the compactified spacetime
with spacelike foliation, and asymptotically hyperbolic foliation. Closed hypersurface
using initial data surface, hyperboloid in the distant future (time 7" >> 1), bits of the
horizon and null infinity. Corresponding spacelike slice at time 7.

e Uniform energy estimates both ways between initial slice and surfaces above. Can
be obtained as follows : uniform energy equivalence between any spacelike slice ;
energy equivalence between r and Sp which can be easy to obtain if we have
timelike Killing vectors outside a compact part of the exterior (e.g. very slow Kerr).
In this part, no loss of derivative is allowed!
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Some way of proving that the energy flux across the cap tends to zero and 7" — +00.
Typically decay properties such as Price’s law give the result, but they are too
strong, in particular, they require a precise knowledge of the trapping, i.e. the local
geometry, whereas scattering should not be sensitive to this. Here we can allow
any loss of derivatives.

That’s it! The rest goes as in the asymptotically simple case.

Where is the comparison dynamics?

No comparison dynamics in conformal scattering.

However. Scattering data are functions on .#. Chosing a congruence of outgoing
null geodesics in a neighbourhood of .# allows to define a comparison dynamics :

— the flow of the congruence with parameter defined by a spacelike foliation of
the physical spacetime.

— the free wave equation on Minkowski spacetime, using the congruence of null
geodesics to glue the radial null geodesics of Minkowski spacetime.

Choice of comparison dynamics allows to re-interpret a conformal scattering con-
struction as a scattering theory defined in terms of wave operators without need
for a stationary background. Draw a picture with geodesics, cut-off, foliation,
etc...

The question then naturally arises of the equivalence between a conformal scattering
theory and a scattering theory defined in terms of wave operators. Not true in
general of course : some spectral scattering theories cannot be re-interpreted as
conformal scattering (massive cases for instance). But when .# is available and
the equation considered is conformally invariant, the question is valid. Partially
addressed in Mason-Nicolas 2002 and Nicolas 2013.

The energy norm of the data has some freedom (it is really the choice of energy
current vector, i.e. the choice of observer measuring the energy). It has some im-
portance when trying to extract wave operators from a conformal scattering theory.
The norm on .# should be compatible with the comparison dynamics chosen. Pre-
cisely : flow of null geodesics is natural for an observer tangent to .# (weak norm),
free wave equation natural for an observer transverse to .#.
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