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General relativity

Phase space of GR
It is fair to say that 100 years after the invention of GR, its phase
space is still poorly understood. One knows e.g.

1 Some static/stationary solutions
2 Some dynamical solutions with high symmetry
3 The vicinity (in phase space) of such solutions
4 Restricted dynamical setups in which singularities can form

Stationary solutions
Stationary solutions usually describe black holes, or other types of
black objects, such as black branes, broadly meaning objects with
non-compact event horizons and BCs different from asymptotic
flatness.
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4d Schwarzschild (no rotation)

g = −
(
1− r0

r

)
dt2 +

(
1− r0

r

)−1
dr2 + r2 dσ2

S2 .

S2
∞

I +

I −

singularityBH = M \ J−(I +)

t = constant

H +

H −

B

Q: Are such solutions stable in exterior region? (This talk)
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Higher dimensional BH’s/branes etc.:

This talk:
The question of stability is of obvious physical relevance in d = 4.
Interesting also for higher dimensional spacetimes (e.g. d = 10) and
unconventional boundary conditions (e.g. “AdS”-type).

Motivations:

Unified theories often require higher dimensions
Holographic descriptions of strongly coupled CFTs require
AdS-type BCs
Interesting mathematical questions relating geometric analysis,
PDEs, numerics
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What is different?

Unusual boundary conditions
can lead to unexpected new
instabilities: Recent example:
“Turbulent instability of
AdS-spacetime” (aka “Gravity
in a box”) [Bizon & Rostoworski]
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What is different?

Higher dimensions lead to zoo
of unexpected new solutions
such as black rings, saturns, ...
[Emparan-Reall, Pomeranski-Senkov,

Elvang-Figueras,... (many people)]

Real black saturn as photographed by NASA

Example: d-dimensional Schwarzschild

g = −
[
1− ( r0r )d−3

]
dt2 +

[
1− ( r0r )d−3

]−1
dr2 + r2 dσ2

Sd−2 .
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Stability of black holes

Stability
It is natural to ask how the existence of higher dimensions affects
the stability properties of black objects.

In fact, there exist many different approaches to analyze the
(in)stability of a black hole or a black ‘brane’:

Different methods
“Direct approach” (analytical/numerical treatment of linearized
field equations)
“Thermodynamic stability” (entropic/thermodynamic
considerations)

These methods have a rather different flavor but they are related to
each other, as I will explain.
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Direct method, dynamical stability

Consider perturbations off a given black hole spacetime background
gab which is a vacuum solution. Write the perturbed metric as
gab(λ) = gab + λδgab + O(λ2), and impose the vacuum Einstein
equations. Then the (linear) perturbation has to satisfy

0 = ∇c∇cδgab + (other terms)

which is a “wave equation”.

Definition dynamical instability
A background is said to be dynamically unstable if there are
perturbations which do not settle down to a pure gauge
transformation, or to a perturbation towards another black hole.
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Dynamical stability

These issues are non-trivial already for Schwarzschild background:
Mode analysis/decoupling [Regge-Wheeler, Zerilli, Moncrief, Ishibashi-Kodama, ...]

Uniform decay (4d scalar case)
[Kay-Wald,Andersson-Blue,Dafermos-Rodnianski, ...]

In the 4d Kerr background, one has Teukolsky formalism [Teukolsky],
and mode-by-mode stability has been estabilshed [Whiting], but

No formalism of comparable power known for more general
Einstein-matter systems.
No similar formalism in higher d (e.g. Myers-Perry BH).
Decoupling/separation of variables has been achieved only in
highly special cases.
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Thermodynamical method

Stationary black holes/branes are known to have mathematical
properties that are analogous to the ordinary laws of
thermodynamics of laboratory-type systems:

Laws of BH mechanics
1 Thermodynamic equilibrium ↔ stationary BH.
2 Temperature ↔ surface gravity κ = constant over H .
3 Energy ↔ mass m = r0/2, entropy ↔ A = Area(B) = 4πr2

0 ,

δm =
κ

8π
δA−

∑
ΩI δJI

where ΩI is the angular velocity and JI the angular momentum
associated to I -th rotational symmetry of gab.

4 Entropy (area) never decreases in any physical process.
5 Thermodynamical (in)stability ⇒ dynamical instability???
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Thermodynamical (in)stability

Consider laboratory system in equilibrium characterized by state
parameters (energy, charge,...).

Suppose I can increase the entropy keeping conserved quantities
fixed. =⇒ Thermodynamical instability!

Same conserved energy E (λ) = E (0), but S(λ) > S(0)

Conserved energy E = E (0), entropy S = S(0) (equilibrium system)

Figure: A homogeneous equilibrium system (left), and an unstable
finite inhomogeneous perturbation.
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Thermodynamical (in)stability

In BH-context, state parameters are m, JI , . . . .

Definition thermodynamical (in)stability

A homogeneous system is a BH with non-compact spatial isometry.
A system is said to be dynamically unstable if there exists a
perturbation such that δ2A > 0 for m(λ) = JI (λ) = · · · = const. to
second order.

Note: By first law,

δ2A ≡ d2

dλ2 A(0)

does not depend on particular choice of second order perturbation
δ2gab! For homogeneous black object (e.g. brane) δ2A > 0⇔ −ve eigenvalue of Hessian of A.
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Canonical energy method

The canonical energy method [SH-Wald] provides a link between
dynamical and thermodynamical notions of stability. It also provides
a useful (in practice!) variational approach to stability problem.

Definition of canonical energy

E =

∫
Σ

(2nd order Einstein tensor)abn
aKb + (bndy terms)

=

∫
Σ
naja(δg ,LKδg)

Here ja is the conserved “symplectic current” of GR.

ja(δ1g , δ2g) = gabcdef (δ1gbc∇dδ2gef − δ2gbc∇dδ1gef )
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Canonical energy method

The usefulness of E rests on following properties:

Key properties
E satisfies a ‘balance equation’
E satisfies a ‘thermodynamic identity’
E is gauge-invariant
E vanishes for stationary perturbations/perturbations to other
stationary BH’s

All of these properties can ultimately be traced back to the
symplecitic structure of GR, diffeomorphism invariance, and the
geometric nature of the boundaries (scri/horizon). I now explain the
first two properties.
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Canonical energy: balance law

The balance law applies to the following situation:

SD−2
∞

I +

I −

singularity

Σ

B(t) C (t)
S (t)

BH = M \ J−(I +)

H +

H −

B

Balance formula
For axi-symmetric perturbations:

E (t2)− E (t1) =

∫
infinity

(δnews)2 +

∫
horizon

(δshear)2 > 0

A corollary is that E is monotonically decreasing towards future.
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Canonical energy: magic formula

The following formula connects the canonical energy to the second
variation of thermodynamic quantities:

“Magic” formula

E = δ2m − κ

8π
δ2A−

∑
ΩI δ2JI

The sign of E can thereby be related to the second order change in
entropy δ2A (assuming e.g. that m, JI remain unchanged to second
order). The sign of E can also be related to dynamical instabilities.
Thus:

Summary
Balance formula gives monotonicity of E

Magic formula gives link to thermodynamics
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Outline of argument:

(In-)stability argument (SH and Wald 2013)

1 Show that E < 0 for some linear perturbation. Do this either
by exploiting the relationship between E and thermodynamic
quantities (“magic formula”) or
by making an educated guess for initial data of unstable
“mode”. This typically involves advanced tools such as “initial
data engineering”, “blow-up constructions”, etc.

2 Note that E cannot increase towards future by “balance
formula”.

3 Note that, in order for the mode to settle down, you must
have E → 0, a contradiction

4 [Parbhu et al.] even show E < 0⇒ exponential growth.

The remainder of this talk illustrates this general strategy in some
examples.
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Overview of applications of method

Different example systems
1 Gubser-Mitra conjecture about instability of black branes [SH and

Wald].
2 Einstein-fluid system: Stability of stars (no BHs) [Friedman & Schutz

1972, Green et al. 2014]. Timescale of instability very long.
3 Instabilities of extremal higher dimensional BHs (Durkee-Reall

conjecture) [SH and Ishisbashi]

4 Super radiant instabilities (“black hole bombs”) [Green, SH, Ishisbashi

and Wald].
5 Ultra-spinning BHs, ...
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Perturbations of higher dimensional black
hole/brane spacetimes

Issue:
Perturbations of generic higher dimensional
BHs not tractable by ‘Teukolsky equation’.

But:
Explicit criteria for instabilities can be
identified via canonical energy method.
[SH-Ishibashi 14, Durkee-Reall 11]

Figure: Conformal diagram of extremal Myers-Perry (MP) black

hole. Near horizon region is shaded

H −

H +

H −

H +

H −

H +

I −

I +

I −

I +

I −

I +

B
Σ
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Extremal black holes

One may simplify the situation by zooming
in onto the horizon. Technically speaking,
we take near horizon limit, i.e. “blow up” of
shaded region.

Gain:
Limit has “algebraically special” properties
[Pravda et al., Milson et al., Durkee-Reall]. ⇒ algebraic
simplification of perturbed Einstein eqn.s

Conformal diagram of the NH limit of the extremal MP spacetime,

i.e. AdS2. This should be thought of as corresponding to the

shaded region in previous of the extreme MP black hole, to be

taken “infinitely thin”. The Cauchy surface Σ in that conformal

diagram corresponds to the surface Σ drawn here. The curvy

upward lines show the orbits of Ka.

ΣB
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Durkee-Reall conjecture [Durkee-Reall 2011]

Tool: Gaussian Null Coordinates:

g = 2du(dr + r2hdu + rfAdx
A) + qABdx

AdxB

The algebraically special properties of NH-geometries naturally lead
to the construction of a natural stability operator A :

Definition of A :

A = second order elliptic operator on horizon Sd−2 (“squashed
sphere”), depending on geometric data of NH.

Based partly on numerical evidence up to d < 15 [Dias et al. 2010],
Durkee-Reall conjectured:

Durkee-Reall conjecture:
If smallest eigenvalue λ of A is < −1/4 =⇒ BH unstable!
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Proof of Durkee-Reall conjecture [SH-Ishibashi 2014]

Near horizon metric: [Durkee-Reall,Hubeny et al.,...]

gNH = L2 dŝ2 + gIJ(dφI + k I Â)(dφJ + kJ Â) + dσ2
d−n−2 ,

is a fibration over AdS2. Has algebraically special character [Coley,

Milson, Pravda, Pradova, Reall, ...] with preferred null fields na, la. Generalized
Newman-Penrose formalism possible. Hertz potential ansatz for
metric perturbation

δgab = lalb(Ccedf l
enf Ucd)−2l(aþðcUb)c−2l(a(2τ c+[l , n]c)þUb)c+þ2Uab

Solves EOM iff [Kegeles-Cohen; Chrzanowski, Wald, M Godazgar, SH-Ishibashi]:

Decoupling equation:

(D̂2 − q2 −A )Uab = 0.

A the stability operator. Make separation of variables ansatz
Uab = φ(AdS2)Yab(angles) with separation constant λ.
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Proof of Durkee-Reall conjecture [SH-Ishibashi 2014]

Show that E < cst.(λ+ 1
4)(λ2 + 7

2) for suitable perturbation φ
on AdS2. Thus, if λ < −1

4 then E < 0 for some perturbation
on NH.
Modify initial data of NH-geometry perturbation to one on
extremal BH [“initial data engineering” Corvino-Schoen,Chrusciel-Delay]

Make sure that still E < 0 [Sobolev-space technology]

Argue from the monotonicity (E decreasing) that E 9 0!

Theorem:

If lowest eigenvalue of A in axi-symmetric subsector is λ < −1
4 ,

then there is a perturbation such that E 9 0, i.e. this perturbation
cannot settle down to pure gauge or perturbation to other
stationary BH. =⇒ BH unstable!

Generalizations to AdS-type BHs and near extremal BHs possible.
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Black hole bombs

Superradiance

If a wave of the form e iωt+imφ is incident upon a rotating object
with angular velocity Ω, then provided

ω < mΩ,

the scattered wave is amplified. [Zel’dovich,Penrose,Christodoulou,...].

Feeding back the scattered wave (e.g. by “mirror”), one expects
that one can render the system unstable. Particularly interesting for
rotating BHs [Press-Teukolsky 1972, Cardoso et al. 2008,...] → “black hole bomb”.
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Black hole bombs

Superradiance

If a wave of the form e iωt+imφ is incident upon a rotating object
with angular velocity Ω, then provided

ω < mΩ,

the scattered wave is amplified. [Zel’dovich,Penrose,Christodoulou,...].

Feeding back the scattered wave (e.g. by “mirror”), one expects
that one can render the system unstable. Particularly interesting for
rotating BHs [Press-Teukolsky 1972, Cardoso et al. 2008,...] → “black hole bomb”.

AdS BH-bombs = superradiant instability
AdS-boundary conditions provide a natural ‘mirror’ and hence
natural candidate for this type of instability [Hawking-Reall 99].
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Superradiance

Geometric optics explanation of super radiance in GR: If γ worldline
of material observer, T a Killing field which is time-like near infinity,
then locally measured energy by observer with momentum pa ∝ γ̇a:

E = −T apa < 0

possible in ergo region (where T a is space-like). =⇒ energy
extraction from BH possible. Ergo regions typically exist in a
neighborhood of rotating BHs. (For waves propagating on BH one
argues that one can arrange transmitted wave to have negative
energy, and reflected wave to have positive energy.)
A new situation can arise in asymptotically AdS-BHs, because
waves can be reflected off conformal infinity. Let

K a = T a +
∑

ΩIφaI

be the Killing field which is normal to the horizon. If the BH is
rotating sufficiently fast, then K a can be space like at the
conformal boundary. =⇒ E = −K apa < 0 possible.
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AdS superradiant instability

K
T = ∂

∂tKK

I

Ergosphere

H

BH

−K apa < 0 is possible in asymptotic region, conformal boundary is
reflecting, energy flux across horizon > 0 =⇒ spacetime unstable.
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Detailed analysis

Difficulties
Detailed/quantitative analysis of superradiant instabilities using
explicit mode solutions runs into many difficulties:

No Teukolsky-formalism in d > 4 −→ no decoupled
equations/separation of variables.
Explicit treatment of modes not possible in most interesting
cases. Numerical results: [Dias-Santos-Way 2015]

“Proof” of super radiant instability is possible using the canonical
energy method. Key point: balance formula is now

E (t2)− E (t1) =

∫
horizon

(δshear)2 > 0

for arbitrary (including non-axisymmetric) perturbation, because
here is no flux term at infinity in AdS-type spacetimes (“mirror”)!
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AdS superradiant instability

Argument [Green, SH, Ishibashi, Wald]

One constructs a perturbation of the form
δgab = Aab exp(iS/h), where Aab is a tensor field supported in
a tubular neighborhood around a worldline in asymptotic
region and where S is a phase function chosen such that
−K apa = K a∇aS < 0 around this worldline. h is a WKB
parameter.
The linearized Einstein equation is imposed in the WKB sense
(formal series expansion in h), giving transport/eikonal
equations on Aab, S . Solve order-by-order. [Choquet-Bruhat]

One verifies E ∼ −K apa + O(h) < 0 for this perturbation.
One modifies WKB initial data by order h to get solution to
linearized constraints [“initial data engineering” Corvino-Schoen,Chrusciel-Delay]

One makes sure that still E < 0 [Sobolev-space technology]

Argue from the balance formula (E decreasing) that E 9 0!
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Instabilities of ‘black strings’

Given a stationary asymptotically flat BH with metric ds2
d , then

corresponding “black string” dsd+1 = ds2
d + dz2 with z ∼= z + 2πL

(spacetime M × T 1) is automatically a solution to Einstein’s
equations in d + 1 dimensions. L is the length of the string. An
example is

Schwarzschild black string

g = −
[
1− ( r0r )d−3

]
dt2 +

[
1− ( r0r )d−3

]−1
dr2 + r2 dσ2

Sd−2 + dz2 .

To surprise of many researchers it was found by [Gregory-Laflamme] that
Schwarzschild black string is unstable for sufficiently large L/r0
(‘long, thin strings’). A full numerical simulation of this instability
has recently been carried out by [Lehner-Pretorius]. Simulation reveals an
interesting ‘self-similar’ structure:
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Black string instability

Simulation of black string instability [Lehner-Pretorius]:

(lehner.mpg)

The z-coordinate of the
string goes up, the
r -coordinate goes left.
Simulation zooms in
onto thin necks. No
singularities in finite
affine time
[Maeda-Horowitz,Marolf]

The instability of black string seems strikingly similar to the
Plateau-Rayleigh instability of a thin jet of water.




i7_Lm1_embed.mpg
Media File (video/mpeg)
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Black string instability

Simulation of black string instability [Lehner-Pretorius]:

(lehner.mpg)

The z-coordinate of the
string goes up, the
r -coordinate goes left.
Simulation zooms in
onto thin necks. No
singularities in finite
affine time
[Maeda-Horowitz,Marolf]

The instability of black string seems strikingly similar to the
Plateau-Rayleigh instability of a thin jet of water.




i7_Lm1_embed_zoom.mpg
Media File (video/mpeg)
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Gubser-Mitra conjecture

Gubser-Mitra conjectured that there is a simple criterion for when
a black string has an instability.

Suppose we have a family of stationary, asymptotically flat BH’s
parameterized by m, JI (and possibly further ‘charges’). Then
A = Area(m, J1, ..., JN). Now form the Hessian of the area of the
BH,

HessA =

(
∂2A
∂m2

∂2A
∂JI∂m

∂2A
∂m∂JK

∂2A
∂JI∂JK

)
.

Gubser-Mitra
If the hessian or BH has a positive eigenvalue, then the
corresponding black string ds2 + dz2 is dynamically unstable.
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Black string vs. Plateau-Rayleigh instability

r = r0 + δr with δr(t, z) ∼ eiωt+ikz

r0

λ
z

Dispersion relation ω2 = . . . (1− k2r2),

implying instability if kr0 < 1 (that is

λ > 2πr0), i.e. sufficiently long wavelength

perturbation compared to radius r0. (Plateau

experiment 1873: λ ≥ 6.2... r0)

Numerical studies [Gregory-Laflamme]:
Schwarzschild black string instability occurs for sufficiently long,
thin strings, i.e. L/r0 ≥ c∗. Generic feature of all black strings?
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Proof of Gubser-Mitra conjecture

1 Magic formula shows existence of a perturbation with E < 0.
2 Balance formula shows that E 9 0 since E decreasing.
3 Gauge-invariance of E shows that E 9 0 pure gauge mode or

perturbation towards other stationary black object. =⇒
Instability!

Details [SH-Wald 2012]
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Local Penrose inequality method

Penrose inequality (d = 4):

If A = area of outermost ‘horizon’ of
initial data set ⇒ A ≤ 16πm2.

[Penrose,Huisken-Ilmanen,Bray]

Heuristic argument:
1 Area A increases with time
2 Mass m decreases with time
3 Equality in Schwarzschild (r0 = 2m)
4 If solution settles down to Schwarzschild ⇒ ineq. must hold!

Linearized version of Penrose-inequality:

For axi-symmetric perturbations of Kerr: δ2A ≤ δ2Ā for any
perturbation such that δ2J = δ2J̄, δ2m = δ2m̄ (overbar =
background Kerr quantities)
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One can turn the logic around [Figueras-Murata-Reall] and propose that

Penrose inequality vs. instability:

If for axi-symmetric perturbations of stationary BH: δ2A > δ2Ā for
some perturbation such that δ2JI = δ2J̄I , δ

2m = δ2m̄ (overbar =
background quantities) ⇒ instability!

JI

Area A

m curve (m̄(λ), J̄I (λ))

family ḡab(λ), e.g. Kerr family

family gab(λ)

Ā(λ)

A(λ)

gab(0)

Graphical representation: Two families of metrics gab(λ) and ḡab(λ) project onto same curve in space of

conserved parameters.
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Local Penrose inequality method

The local Penrose inequality proposal was tested numerically in
[Murata et al. 2010] by:

1 Construct numerically initial data such that δ2A > δ2Ā
(constraints!)

2 Compare with time evolution (also numerical) to see if
instability really occurs.

3 Agreement found.

Proof of local Penrose inequality method:
Local Penrose inequality violation is directly related to E < 0 via
magic formula. ⇒ direct relationship with canonical energy method.
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Conclusions

In this talk, I have:
1 Explained that the laws of BH mechanics should be

supplemented by the statement that thermodynamic instability
implies dynamical instability.

2 Explained canonical energy method
3 Explained how this is related to thermodynamic instability
4 Explained how it can be used to understand instabilities in

several situations of interest, e.g. (near) extremal black holes,
black branes, super radiant instabilities in asymptotically AdS
BH spacetimes.
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