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We are interested in the question of the global stability of a
stationary axially-symmetric solution of the wave map equation in
Kerr spaces of small angular momentum.

We consider the domain of outer communications of the Kerr
spacetime K(M, a), 0 ≤ a < M, in standard Boyer–Lindquist
coordinates,

g = gM,a = −q2∆

Σ2
(dt)2 +

Σ2(sin θ)2

q2

(
dφ− 2aMr

Σ2
dt
)2

+
q2

∆
(dr)2 + q2(dθ)2,

where 
∆ = r2 − 2Mr + a2;

q2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)q2 + 2Mra2(sin θ)2.

Let T := d/dt denote the stationary Killing vector-field of the
spacetime, Z := d/dφ the axial Killing vector-field.
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Let

A + iB : =
Σ2(sin θ)2

q2

− i
[
2aM(3 cos θ − (cos θ)3) +

2a3M(sin θ)4 cos θ

q2

]
,

denote the Ernst potential associated to the Killing vector-field Z,
where A = g(Z,Z),

Dµ(A + iB) = Zβ(DµZβ + i ∈µβγδ DγZδ).

It is known that (A,B) verify the H2-valued Wave Map Equation

A�A = DµADµA−DµBDµB,

A�B = 2DµADµB,

or A�(A + iB) = Dµ(A + iB)Dµ(A + iB),

where � = �g denotes the wave operator with respect to the
metric.



Question (Global stability of the WM Equation) : The
stationary solution Φ = (A,B) : K(M, a)→ R2 of the WM
Equation is future asymptotically stable in the domain of outer
communication of K(M, a), for all smooth, axially symmetric
perturbations.

Global regularity in Euclidean spaces : Klainerman–Machedon,
Tataru, Tao, Shatah–Struwe, Klainerman–Rodnianski,
Sterbenz–Tataru, Krieger–Schlag, Tao.

Motivation : In the case of axially symmetric solutions of the
Einstein vacuum equations, there is a link between the WM
Equation and the Einstein vacuum equations. More precisely,
assume g is a Lorentzian metric satisfying the Einstein vacuum
equations

Ricg = 0

in an open domain O, and V is a Killing vector-field for g in O.
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Then we consider the induced metric

hαβ = Xgαβ − VαVβ, where X = g(V ,V ),

on a hypersurface Π passing through the point p and transversal to
V . The metric h is nondegenerate (Lorentzian) as long as X > 0 in
Π. The Einstein vacuum equations together with stationarity
LY g = 0 are equivalent to the system of equations

hRicab =
1

2X 2
(∇aX∇bX +∇aY∇bY ),

h�(X + iY ) =
1

X
hab∂a(X + iY )∂b(X + iY ),

in Π, where Y is the Ernst potential associated to Y ,

DµY =∈µβγδ V βDγV δ.



This procedure is reversible : the metric g can be reconstructed if
one is given h and X + iY (up to gauge invariance). Therefore, the
dynamical variable in the full Einstein vacuum equations in the
axially symmetric case is the complex-valued solution (X + iY ) of
the WM Equation.

Stability of the solution A + iB associated to the axially symmetric
vector-field Z is ”consistent” with the full nonlinear stability of the
Kerr family of solutions, in the case of axially-symmetric
perturbations.

Main nonlinear stability question : global stability of the Kerr
family with small angular momentum, in the case of small axially
symmetric perturbations (one can further simplify to the polarized
case, no angular momentum, a = 0, B = 0).
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The H2-valued WM Equation

A�A = DµADµA−DµBDµB,

A�B = 2DµADµB,

where � = �gM,a
denotes the wave operator with respect to the

fixed Kerr metric gM,a, is a partial linearization of the axially
symmetric Einstein vacuum equations. Other linearizations have
been studied : the wave equation, Maxwell equations, linearization
of the null structure equations, in Schwazschild spaces and in Kerr
spaces.

Kay–Wald, Blue–Soffer, Blue–Sterbenz,
Finster–Kamran–Smoller–Yau, Dafermos–Rodnianski,
Marzuola–Metcalfe–Tataru–Tohaneanu, Tataru–Tohaneanu,
Andersson–Blue, Luk, Sterbenz–Tataru,
Dafermos–Rodnianski–Shlapentokh-Rothman,
Dafermos–Holzegel–Rodnianski.
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We are looking for solutions (A′,B ′) of the WM equation, of the
form (A′,B ′) = (A,B) + (εAφ, εAψ), where φ and ψ are
real-valued Z-invariant functions. Simple calculations show that
the functions (φ, ψ) have to satisfy a system of the form

�φ+ 2
DµB

A
Dµψ − 2

DµBDµB

A2
φ+ 2

DµBDµA

A2
ψ = εN ε

φ ,

�ψ − 2
DµB

A
Dµφ−

DµADµA + DµBDµB

A2
ψ = εN ε

ψ,

where N ε
φ and N ε

ψ are nonlinearities that can be calculated
explicitly.



The nonlinearities are

N ε
φ =

A2DµφDµφ− A2DµψDµψ − 2AψDµADµψ

A2(1 + εφ)

+
DµBDµBφ

2 −DµADµAψ
2

A2(1 + εφ)

+
φ

A2(1 + εφ)
[2ADµBDµψ − 2DµBDµBφ+ 2DµBDµAψ],

and

N ε
ψ =

2A2DµφDµψ + (DµADµA + DµBDµB)φψ + 2AψDµADµφ

A2(1 + εφ)

− φ

A2(1 + εφ)
[2ADµBDµφ+ (DµADµA + DµBDµB)ψ].

These nonlinearities are well-defined only if ψ vanishes on the axis.
They are semilinear and have standard null structure.



In the Schwarzschild case a = 0, B = 0, the linearized system is

�φ = 0,

�ψ −
( 4

r2(sin θ)2
− 8M

r3

)
ψ = 0.

To study the system in the general case we need, at least :
• a ”good” notion of energy ;
• good function spaces.
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Theorem (I.–Klainerman) : Assume (φ, ψ) is a Z-invariant C 1
loc

solution of the system of linear equations

�φ+ 2
DµB

A
Dµψ − 2

DµBDµB

A2
φ+ 2

DµBDµA

A2
ψ = 0,

�ψ − 2
DµB

A
Dµφ−

DµADµA + DµBDµB

A2
ψ = 0,

in an open set O ⊆ K(M, a). Assume, in addition that ψ vanishes
on the axis. Then the solution Ψ = (φ, ψ) admits a quadratic
energy-momentum tensor Qµν such that
(a) Q(X ,Y ) > 0 for any future-oriented timelike vector-fields
X ,Y ;
(b) DµQµν = Jν ;
(c)TνJν = 0 ;
(d)Q(Z,X ) = 0 for any vector-field X that satisfies g(Z,X ) = 0.



Let

Eµ : = Dµφ+ ψA−1DµB,

Fµ : = Dµψ − φA−1DµB,

Mµ : =
φDµB − ψDµA

A
,

Qµν : =
(
EµEν −

1

2
gµνEαEα

)
+
(
FµFν −

1

2
gµνFαFα

)
+
(
MµMν −

1

2
gµνMαMα

)
.

Then

DµQµν =: Jν =
2DνBMµEµ − 2DνAMµFµ

A
.



New system of coordinates : we fix first a smooth function
χ : R→ [0, 1] supported in the interval (−∞, 5M/2] and equal to
1 in the interval (−∞, 9M/4], and define g1, g2 : (rh,∞)→ R
such that

g ′1(r) = χ(r)
2Mr

∆
, g ′2(r) = χ(r)

a

∆
.

We define the functions

u+ := t + g1(r), φ+ := φ+ g2(r).

The metric is smooth in this system of coordinates beyond the
horizon

Function space : (φ, ψ) ∈ H1(Σc
t ) is φ, ψ ∈ H1 and ψ/(sin θ) ∈ L2.
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Let
L := χ≥4M(r)

(
∂r +

r

r − 2M
∂t

)
,

For any t ∈ R and (φ, ψ) ∈ H1(Σc
t ) we define the outgoing energy

density (e(φ), e(ψ)),

e(φ)2 :=
(∂θφ)2

r2
+ (Lφ)2 +

M2
[
(∂rφ)2 + (∂tφ)2

]
r2

+
φ2

r2
,

e(ψ)2 :=
(∂θψ)2 + ψ2(sin θ)−2

r2
+ (Lψ)2

+
M2
[
(∂rψ)2 + (∂tψ)2

]
r2

+
ψ2

r2
.

We work in the axially symmetric case, therefore the relevant
trapped null geodesics are still confined to a codimension 1 set.
Assuming that a� M, it is easy to see that the equation

r3 − 3Mr2 + a2r + Ma2 = 0

has a unique solution r∗ ∈ (c0,∞). Moreover,
r∗ ∈ [3M − a2/M, 3M].
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Main Theorem (I.–Klainerman) : Assume that M ∈ (0,∞),
a ∈ [0, εM] and c0 ∈ [rh − εM, rh], where ε ∈ (0, 1] is a sufficiently
small constant. Assume that T ≥ 0, and
(φ, ψ) ∈ C k([0,T ] : H1−k(Σc0

t )), k ∈ [0, 1], is a solution of the
system

�φ+ 2
DµB

A
Dµψ − 2

DµBDµB

A2
φ+ 2

DµBDµA

A2
ψ = Nφ,

�ψ − 2
DµB

A
Dµφ−

DµADµA + DµBDµB

A2
ψ = Nψ,

satisfying Z(φ, ψ) = 0. Then, for any α ∈ (0, 2) and any
t1 ≤ t2 ∈ [0,T ],

Bc0
α (t1, t2) +

∫
Σ

c0
t2

rα

Mα

[
e(φ)2 + e(ψ)2

]
dµt

≤ Cα

∫
Σ

c0
t1

rα

Mα

[
e(φ)2 + e(ψ)2

]
dµt

+ Cα

∫
Dc0

[t1,t2]

[
|Nφ|+ |Nψ|

]
· rα

Mα

[
e(φ)2 + e(ψ)2

]1/2
dµ,



where Cα is a large constant that may depend on α, and

Bc0
α (t1, t2) : =

∫
Dc0

[t1,t2]

rα

Mα

{(r − r∗)2

r3

|∂θφ|2 + |∂θψ|2 + ψ2(sin θ)−2

r2

+
1

r

[
(Lφ)2 + (Lψ)2

]
+

1

r3

(
φ2 + ψ2

)
+

M2

r3

[
(∂rφ)2 + (∂rψ)2

]
+

M2(r − r∗)2

r5

[
(∂tφ)2 + (∂tψ)2

]}
dµ.



• The method of simultaneous estimates of
Marzuola–Metcalfe–Tataru–Tohaneanu ;

• The r -weighted estimates along null hypersurfaces of
Dafermos–Rodnianski ;

• The main point is to get simultaneous pointwise decay ; the
outgoing energies decay at rate almost t−(2−α) ;

• We use energy estimates. The main new issue is the presence of
the J-term in the identity DµQµν = Jν .



Corollary. Assume that N1 = 8 and
(φ, ψ) ∈ C k([0,T ] : HN1−k(Σc0

t )), k ∈ [0,N1], is a solution of the
wave-map system with Nφ = Nψ = 0. Then, for any t ∈ [0,T ] and
β < 2, ∫

Σ
c0
t

[
e(φ)2 + e(ψ)2

]
dµt .β (1 + t/M)−β

4∑
k=0

M2k

∫
Σ

c0
0

r2

M2

[
e(Tkφ)2 + e(Tkψ)2

]
dµt .



For simplicity, we consider only the equation for ψ in the
Schwarzschild case a = 0, B = 0, A = r2(sin θ)2. The equation is

�ψ −
( 4

r2(sin θ)2
− 8M

r3

)
ψ = 0.

Let

Fµ := Dµψ, Mµ :=
−ψDµA

A
,

Qµν := FµFν + MµMν −
1

2
gµν(FαFα + MαMα).

For suitable triplets (X ,w ,m′) we define

P̃µ = P̃µ[X ,w ,m′] := QµνX
ν +

w

2
ψFµ

− ψ2

4
Dµw +

ψ2

4
m′µ −

X νDνA

A

DµA

A
ψ2.

Notice the correction −XνDνA
A

DµA
A ψ2, which is needed to partially

compensate for the source term J.



Then we have the divergence identity

2DµP̃µ =
4∑

j=1

Lj ,

where

L1 = L1[X ,w ,m′] := Qµν
(X )πµν + w(FαFα + MαMα),

L2 = L2[X ,w ,m′] := ψm′
µ
Dµψ,

L3 = L3[X ,w ,m′] :=
1

2
ψ2(Dµm′µ −�w),

L4 = L4[X ,w ,m′] := −2Dµ
[X νDνA

A

DµA

A

]
ψ2.



The divergence identity gives∫
Σc

t1

P̃µn
µ
0 dµt1 =

∫
Σc

t2

P̃µn
µ
0 dµt2 +

∫
N c

[t1,t2]

P̃µk
µ
0 dµc

+

∫
Dc

[t1,t2]

DµP̃µ dµ,

where t1, t2 ∈ [0,T ], c ∈ (c0, 2M], and the integration is with
respect to the natural measures induced by the metric g. To prove
the main theorem we need to choose a suitable multiplier triplet
(X ,w ,m′) in a such a way that all the terms in the identity above
are nonnegative.



We use four multipliers (X(j),w(j),m
′
(j)) :

• a multiplier in the trapped region around r = r∗ ;

• a multiplier in the region near the horizon r = rh, using also the
redshift vector-field of Dafermos–Rodnianski ;

• a new multiplier close to the trapped region r ∈ [r∗, 4M], to deal
with the extra term in the divergence identity ;

• a new multiplier at ∞, with a vector-field of the form

f ∂r + (f + g)∂t ,

where g is very large for small values of r (to make the surface
integrals positive) but small at ∞ to preserve the character of
outgoing energies.



This gives a good Morawetz estimate. In principle, one could use
this to study the global regularity for the full semilinear problem

�φ+ 2
DµB

A
Dµψ − 2

DµBDµB

A2
φ+ 2

DµBDµA

A2
ψ = εN ε

φ ,

�ψ − 2
DµB

A
Dµφ−

DµADµA + DµBDµB

A2
ψ = εN ε

ψ.

Work in progress of John Stogin.

Main nonlinear stability question : global stability of the Kerr
family with small angular momentum, in the case of small axially
symmetric perturbations.

• Several simplifications are possible :
(1) consider only the polarized case, (no angular momentum,
a = 0, B = 0) ;
(2) construct the solution on quadratic time cε−2.

• Several linearizations have been studied and are well understood.
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• The rigidity (uniqueness) problem for stationary solutions is well
understood (Carter–Robinson, Hawking, Chrusciel–Costa,
Alexakis-I.-Klainerman).

• Theorem (Alexakis-I.-Klainerman) : Assume (g,T) is a regular
stationary solution of the Einstein-vacuum equations, which is
”close” (smallness of the Mars–Simon tensor S = S((g,T)) to a
Kerr solution. Then (g,T) coincides with that Kerr solution.

• Asymptotic uniqueness question : Assume (g,T) is a regular
asymptotically-stationary solution of the Einstein-vaccum
equations, in the sense that LTg→ 0 as t →∞ at a suitable rate.
If (g,T) is ”close” to a Kerr solution, then it converges to a Kerr
solution.


