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We consider the domain of outer communications of the Kerr
spacetime IC(M, a), 0 < a < M, in standard Boyer-Lindquist
coordinates,
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where

A =r?—2Mr+ 2%
q? = r? + a*(cos 0)?;
Y2 = (r? + a%)q% + 2Mra®(sin 0)>.
Let T := d/dt denote the stationary Killing vector-field of the
spacetime, Z := d/d¢ the axial Killing vector-field.
]



Let
¥2(sin 0)?
q2
— i|2aM(3 cos @ — (cos6)®) +

A+iB:=

2a3M(sin 6)* cos 6
q? ’

denote the Ernst potential associated to the Killing vector-field Z,
where A=g(Z,2),

D,(A+iB)=2°(D,Zs + i €,3,5 D'Z°).
It is known that (A, B) verify the H2-valued Wave Map Equation

ACA = D*AD,A — D"BD,,B,
ACB = 2D*AD,,B,
or AD(A + iB) = D,(A+ iB)D*(A + iB),

where [ = [y denotes the wave operator with respect to the
metric.
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Motivation : In the case of axially symmetric solutions of the
Einstein vacuum equations, there is a link between the WM
Equation and the Einstein vacuum equations. More precisely,
assume g is a Lorentzian metric satisfying the Einstein vacuum
equations

Ricg =0

in an open domain O, and V is a Killing vector-field for g in O.



Then we consider the induced metric
hag = X8ap — Va V3, where X =g(V, V),

on a hypersurface I1 passing through the point p and transversal to
V. The metric h is nondegenerate (Lorentzian) as long as X > 0 in
1. The Einstein vacuum equations together with stationarity

Lyg = 0 are equivalent to the system of equations

hRic,, = (VaXVpX +V,YV,Y),

L
2X2
"OX +iY) = %habaa(x +iY)3p(X +iY),

in 1, where Y is the Ernst potential associated to Y,

DY =€,5,5 VD'V,



This procedure is reversible : the metric g can be reconstructed if
one is given h and X + /Y (up to gauge invariance). Therefore, the
dynamical variable in the full Einstein vacuum equations in the
axially symmetric case is the complex-valued solution (X + iY’) of
the WM Equation.

Stability of the solution A + iB associated to the axially symmetric
vector-field Z is " consistent” with the full nonlinear stability of the
Kerr family of solutions, in the case of axially-symmetric
perturbations.
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Main nonlinear stability question : global stability of the Kerr
family with small angular momentum, in the case of small axially
symmetric perturbations (one can further simplify to the polarized
case, no angular momentum, a =0, B =0).
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where UJ = [g,, . denotes the wave operator with respect to the
fixed Kerr metric gM,a, is a partial linearization of the axially
symmetric Einstein vacuum equations. Other linearizations have
been studied : the wave equation, Maxwell equations, linearization
of the null structure equations, in Schwazschild spaces and in Kerr
spaces.
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We are looking for solutions (A, B') of the WM equation, of the
form (A, B") = (A, B) + (¢Ap,cAv)), where ¢ and 1) are
real-valued Z-invariant functions. Simple calculations show that
the functions (¢, 1) have to satisfy a system of the form

DB DBDB DBDA
U¢p +2——Dyy -2 ¢+ 2 Y=c¢

D#B D“AD A—I—D“BD B

Dw—zTDm— o i3

where /\/;f and N{Z are nonlinearities that can be calculated
explicitly.



The nonlinearities are

_ A’DF¢D,¢ — A2DH1pD ) — 2AYDHAD

€
N A2(1 + £¢)
D*BD,,B#* — D*AD, Ay
A%(1+e¢)
¢ 1z _ iz iz
T A1+ 20) [2AD*BD,) — 2D*BD,, B¢ + 2D*BD,, A,
and
N — 2A’D*¢D,3) 4 (D*AD,A + D*BD,,B)¢1) + 2AyDHAD ¢
¥ A2(1 + e0)
% _oape n "
1 20) [2AD*BD,¢ + (D*AD,A + D*BD,,B)y].

These nonlinearities are well-defined only if ¢ vanishes on the axis.
They are semilinear and have standard null structure.



In the Schwarzschild case a = 0, B = 0, the linearized system is

Lo =0,
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In the Schwarzschild case a = 0, B = 0, the linearized system is

Lo =0,

4 SM
Dw—(m‘ﬁ)wzo-

To study the system in the general case we need, at least :
e a "good’ notion of energy;
e good function spaces.



Theorem (l.—Klainerman) : Assume (¢, ) is a Z-invariant G},
solution of the system of linear equations

DB DBDB D#BD, A

O¢ +2——D,2p — 2 o+2 Y E o =0,
D B D“ADLA—i— D“BD,B
D¢— ,u¢_ ! A2 ! Tb:O,

in an open set O C K(M, a). Assume, in addition that 1) vanishes
on the axis. Then the solution W = (¢, 1)) admits a quadratic
energy-momentum tensor @, such that

(a) Q(X,Y) > 0 for any future-oriented timelike vector-fields

X,Y;

( ) D“Q;u/ = JI/;

(c)T"J, =0;

(d)Q(Z, X) = 0 for any vector-field X that satisfies g(Z, X) = 0.



Let

E,:=D,¢+vA 'D,B,
F,:=D,— ¢A'D,B,
M, = ¢D,B ; quMA7

1 1
Q,uz/ L= (E,uEV - Eg,quaEa> + (F,uFu - Eg,uleaFOé>
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Then
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New system of coordinates : we fix first a smooth function

X : R — [0, 1] supported in the interval (—oo,5M/2] and equal to
1 in the interval (—oo,9M /4], and define g1, g2 : (rp,0) — R
such that

We define the functions

uy =t + gi(r), ¢+ = ¢+ g2(r).

The metric is smooth in this system of coordinates beyond the
horizon
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Function space : (¢, %) € HY(X¢) is ¢,1 € H and /(sinf) € L2.



Let

L:= x>am(r) (ar + B _rQMat)’

For any t € R and (¢, 1) € HY(X¢) we define the outgoing energy
density (e(¢), e(¢)),
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We work in the axially symmetric case, therefore the relevant
trapped null geodesics are still confined to a codimension 1 set.
Assuming that a < M, it is easy to see that the equation

r*—3Mr? + 2*r + Ma®> = 0
has a unique solution r* € (g, c0). Moreover,
r* € [3M — a%/M,3M].
]



Main Theorem (l.—Klainerman) : Assume that M € (0, ),
a€[0,eM] and ¢ € [y — EM, 1], where € € (0, 1] is a sufficiently
small constant. Assume that T > 0, and

(¢,9) € CK([0, T] : HY=K(XZ$)), k €[0,1], is a solution of the
system

D D BD B D# BD A
O¢ +2——Dyy — o+ 2 Y =Ny,
D B D“ADLA D“BD B
D¢_2 ,u(b : /_4'_2 L 1/}:-/\/-’1/)7

satisfying Z(¢,v) = 0. Then, for any a € (0,2) and any
t1 <t €0, T],

a

Bt )+ [ s [e(o) + ()] du
C ie 2 4 e(1h)?
gca/Z [e(6)? + e(v)?] dpue

4+ Ca / NG NG (@) o]



where C, is a large constant that may depend on «, and

« k)2 2 2 2 . 9
RSB e {te sl S
po M

[ty,t2]
+ 2 (LOF + (W] + 56 +47)
+ Aj; [(0:¢)% + (0r0)?]

r3 P



e The method of simultaneous estimates of
Marzuola—Metcalfe-Tataru—Tohaneanu ;

e The r-weighted estimates along null hypersurfaces of
Dafermos—Rodnianski ;

e The main point is to get simultaneous pointwise decay; the
outgoing energies decay at rate almost t~(?=2);

e We use energy estimates. The main new issue is the presence of
the J-term in the identity D*Q,, = J,.



Corollary. Assume that N; = 8 and

(¢,9) € CK([0, T] : HM1=K(£2)), k € [0, N4], is a solution of the
wave-map system with Ny = Ny, = 0. Then, for any t € [0, T] and
<2

L o007 + elw) e 55 (1 /)

Z / . M2 [e(Tp)? + e(T*4)?] dps.
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For simplicity, we consider only the equation for v in the
Schwarzschild case a =0, B = 0, A = r?(sin§)?. The equation is
4 8M
o g~ oo
v r’(sinf)2  r3 v=0
Let
—yD,A
Fo =Dy, M, := ¢¥Dy, ,
A
1
Quv == FuFy + MM, — EgW(FaF" + Mo,M®).

For suitable triplets (X, w, m’) we define

P, = Pu[X, w, m] = QuX"+ gz/)Fu

P2 v? , X'D,AD,A ,
_TDMW+Tm#— ) Tw .
Notice the correction —%%@bz, which is needed to partially

compensate for the source term J.



Then we have the divergence identity

4
2DHP, = I,
j=1

where
LY = 11X, w, m'] = Qu T + w(F F® + MuM®),
L? = L[X,w,m] == ym"" D1,
= BX, w, m] = 293D, — Ow),

X"D,AD,A

[* = [*[X,w, m'] :== —2D* A




The divergence identity gives

where t1,t> € [0, T], ¢ € (co,2M], and the integration is with
respect to the natural measures induced by the metric g. To prove
the main theorem we need to choose a suitable multiplier triplet
(X, w, m’) in a such a way that all the terms in the identity above
are nonnegative.



o P
We use four multipliers (Xj), w(j), mU)) :
e a multiplier in the trapped region around r = r*;

e a multiplier in the region near the horizon r = rp, using also the
redshift vector-field of Dafermos—Rodnianski ;

e a new multiplier close to the trapped region r € [r*,4M], to deal
with the extra term in the divergence identity;

e a new multiplier at oo, with a vector-field of the form
f(?, + (f + g)@t,

where g is very large for small values of r (to make the surface
integrals positive) but small at co to preserve the character of
outgoing energies.



This gives a good Morawetz estimate. In principle, one could use
this to study the global regularity for the full semilinear problem

D B D# BD B D#BD,A

06 +2——Dy) —2 ¢+ 2=t = eNG,
D“B D“AD A+ D*BD,B -
Dw - M(b £ A2 £ w = €Nw.

Work in progress of John Stogin.
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Main nonlinear stability question : global stability of the Kerr
family with small angular momentum, in the case of small axially
symmetric perturbations.

e Several simplifications are possible :

(1) consider only the polarized case, (no angular momentum,
a=0 B=0);

(2) construct the solution on quadratic time ce=2.

e Several linearizations have been studied and are well understood.



e The rigidity (uniqueness) problem for stationary solutions is well
understood (Carter—Robinson, Hawking, Chrusciel-Costa,
Alexakis-l.-Klainerman).

e Theorem (Alexakis-1.-Klainerman) : Assume (g, T) is a regular
stationary solution of the Einstein-vacuum equations, which is
"close” (smallness of the Mars—Simon tensor S = S((g, T)) to a
Kerr solution. Then (g, T) coincides with that Kerr solution.

e Asymptotic uniqueness question : Assume (g, T) is a regular
asymptotically-stationary solution of the Einstein-vaccum
equations, in the sense that £L1g — 0 as t — oo at a suitable rate.
If (g, T) is "close” to a Kerr solution, then it converges to a Kerr
solution.



