Solutions of the Constraint Equations with Conformal Killing Fields

David Maxwell

University of Alaska Fairbanks

IHP, Paris October 27, 2015

Overview

I Describe an unorthodox perspective on the conformal method that aids in visualizing the issues. [M '14a]

Overview

- I Describe an unorthodox perspective on the conformal method that aids in visualizing the issues. [M '14a]
- Il Describe two seemingly unrelated difficulties with the conformal method:
 - Nonexistence/nonuniqueness phenomena for (certain) non-CMC conformal data.
 - Obstructions caused by conformal Killing fields for near-CMC solutions.

Overview

- I Describe an unorthodox perspective on the conformal method that aids in visualizing the issues. [M '14a]
- Il Describe two seemingly unrelated difficulties with the conformal method:
 - Nonexistence/nonuniqueness phenomena for (certain) non-CMC conformal data.
 - Obstructions caused by conformal Killing fields for near-CMC solutions
- III Description of a variation of the conformal method [M '14c] that addresses at least one facet of 1 and nearly completely, if not fully, addresses 2. [HMM '15]

Part I

The Conformal Method

Einstein Constraint Equations

Initial data for the Cauchy problem:

- Riemannian manifold (M^3, g_{ab})
- Second fundamental form K_{ab} (i.e. a symmetric (0,2)-tensor)

$$R - |K|^2 + \operatorname{tr} K^2 = 2\rho + 2\Lambda$$
 [Hamiltonian constraint]
- $\operatorname{div}(K - \operatorname{tr} K g) = j$ [momentum constraint]

The energy density ρ and momentum density j_a are functions of g_{ab} and the matter fields. The cosmological constant Λ is a constant.

Structure of set of solutions of the constraints

Regarding the set of pairs (g_{ab}, K_{ab}) solving the constraints:

Fischer, Marsen, Moncrief 1980

The vacuum solutions of the constraints on a compact manifold are, when given a suitable topology, a Banach manifold away from the solutions of the constraints that generate spacetimes with Killing fields.

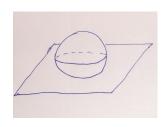
Structure of set of solutions of the constraints

Regarding the set of pairs (g_{ab}, K_{ab}) solving the constraints:

Fischer, Marsen, Moncrief 1980

The vacuum solutions of the constraints on a compact manifold are, when given a suitable topology, a Banach manifold away from the solutions of the constraints that generate spacetimes with Killing fields.

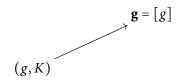
Helpful Parable



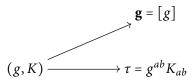
$$S^2 \subseteq \mathbb{R}^3$$

Functions x and y on \mathbb{R}^3 yield (tentative) coordinates on S^2

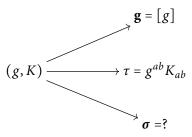
Coordinate Functions of the Conformal Method



Coordinate Functions of the Conformal Method



Coordinate Functions of the Conformal Method



A symmetric tensor σ_{ab} is **transverse traceless** with respect to g_{ab} if

- 1. $g^{ab}\sigma_{ab} = 0$ (traceless)
- 2. $\nabla^a \sigma_{ab} = 0$ (transverse)

A symmetric tensor σ_{ab} is **transverse traceless** with respect to g_{ab} if

- 1. $g^{ab}\sigma_{ab} = 0$ (traceless)
- 2. $\nabla^a \sigma_{ab} = 0$ (transverse)

If $\phi > 0$ is a conformal factor:

$$\sigma_{ab}$$
 is TT w.r.t g_{ab} \iff $\phi^{-2}\sigma_{ab}$ is TT w.r.t $\phi^4 g_{ab}$

A symmetric tensor σ_{ab} is **transverse traceless** with respect to g_{ab} if

- 1. $g^{ab}\sigma_{ab} = 0$ (traceless)
- 2. $\nabla^a \sigma_{ab} = 0$ (transverse)

Definition

Let \mathbf{g} be a conformal class. A **conformal momentum** at \mathbf{g} is an equivalence class of pairs (g_{ab}, σ_{ab}) where $g_{ab} \in \mathbf{g}$, σ_{ab} is transverse traceless with respect to g_{ab} , and where

$$\left(\phi^4 g_{ab},\phi^{-2}\sigma_{ab}\right) \sim \left(g_{ab},\sigma_{ab}\right)$$

for any conformal factor ϕ .

A symmetric tensor σ_{ab} is **transverse traceless** with respect to g_{ab} if

- 1. $g^{ab}\sigma_{ab} = 0$ (traceless)
- 2. $\nabla^a \sigma_{ab} = 0$ (transverse)

Definition

Let \mathbf{g} be a conformal class. A **conformal momentum** at \mathbf{g} is an equivalence class of pairs (g_{ab}, σ_{ab}) where $g_{ab} \in \mathbf{g}$, σ_{ab} is transverse traceless with respect to g_{ab} , and where

$$(\phi^4 g_{ab}, \phi^{-2} \sigma_{ab}) \sim (g_{ab}, \sigma_{ab})$$

for any conformal factor ϕ .

A conformal momentum σ is a cotangent vector to conformal classes (modulo diffeomorphisms).

Measurement of Conformal Momentum

Although (g,K) determines unambiguously a conformal class and a mean curvature, it does not determine unambiguously a conformal momentum. We must make a gauge choice, which we can represent by the choice of a volume form α .

Measurement of Conformal Momentum

Although (g,K) determines unambiguously a conformal class and a mean curvature, it does not determine unambiguously a conformal momentum. We must make a gauge choice, which we can represent by the choice of a volume form α .

Once this choice has been made, we obtain a map

$$(g,K) \xrightarrow{\alpha} \sigma.$$

Measurement of Conformal Momentum

Although (g,K) determines unambiguously a conformal class and a mean curvature, it does not determine unambiguously a conformal momentum. We must make a gauge choice, which we can represent by the choice of a volume form α .

Once this choice has been made, we obtain a map

$$(g,K) \xrightarrow{\alpha} \sigma.$$

For each gauge choice α we obtain a candidate chart Φ_{α}

$$(g,K) \xrightarrow{\Phi_{\alpha}} (\mathbf{g},\boldsymbol{\sigma},\tau).$$

The volume form α is related to the lapse N used when evolving the data. In effect, we will not prescribe the lapse in advance, but will determine it from α and the current (spatial) metric according to

$$N=\frac{\omega_g}{\alpha}$$

where ω_g is the volume form of g.

The volume form α is related to the lapse N used when evolving the data. In effect, we will not prescribe the lapse in advance, but will determine it from α and the current (spatial) metric according to

$$N=\frac{\omega_g}{\alpha}$$

where ω_g is the volume form of g.

This is a so-called densitized lapse. If $g_{ab} \mapsto \phi^4 g_{ab}$ then $N \mapsto \phi^6 N$.

The volume form α is related to the lapse N used when evolving the data. In effect, we will not prescribe the lapse in advance, but will determine it from α and the current (spatial) metric according to

$$N = \frac{\omega_g}{\alpha}$$

where ω_g is the volume form of g.

This is a so-called densitized lapse. If $g_{ab} \mapsto \phi^4 g_{ab}$ then $N \mapsto \phi^6 N$.

Evolving with a fixed α and zero shift results in evolving with a time coordinate that satisfies the wave equation.

The volume form α is related to the lapse N used when evolving the data. In effect, we will not prescribe the lapse in advance, but will determine it from α and the current (spatial) metric according to

$$N = \frac{\omega_g}{\alpha}$$

where ω_g is the volume form of g.

This is a so-called densitized lapse. If $g_{ab} \mapsto \phi^4 g_{ab}$ then $N \mapsto \phi^6 N$.

Evolving with a fixed α and zero shift results in evolving with a time coordinate that satisfies the wave equation.

Modifying the ADM Lagrangian to use α instead of N, one can compute that σ is the momentum of (g,K) conjugate to the conformal class.

Fix a volume gauge α . Let $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$ be desired conformal coordinates. Find all solutions (g, K) of the vacuum constraint equations with

$$\Phi_{\alpha}(g,K) = (\mathbf{g},\boldsymbol{\sigma},\tau).$$

Ideally there will be one and only one.

Fix a volume gauge α . Let $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$ be desired conformal coordinates. Find all solutions (g, K) of the vacuum constraint equations with

$$\Phi_{\alpha}(g,K) = (\mathbf{g},\boldsymbol{\sigma},\tau).$$

Ideally there will be one and only one.

• This is essentially true if $\tau \equiv \tau_0$, a constant. There are some well-understood caveats depending on $Y_{\mathbf{g}}$ and the special values $\tau_0 = 0$ and $\sigma = 0$. [Isenberg]

Fix a volume gauge α . Let $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$ be desired conformal coordinates. Find all solutions (g, K) of the vacuum constraint equations with

$$\Phi_{\alpha}(g,K) = (\mathbf{g},\boldsymbol{\sigma},\tau).$$

Ideally there will be one and only one.

- This is essentially true if $\tau \equiv \tau_0$, a constant. There are some well-understood caveats depending on $Y_{\mathbf{g}}$ and the special values $\tau_0 = 0$ and $\sigma = 0$. [Isenberg]
- Same results if τ is near constant, has no zeros, and if $\mathbf g$ has no conformal Killing fields. [Isenberg, Moncrief, Clausen, Allen, O'Murchadha, M]

Fix a volume gauge α . Let $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$ be desired conformal coordinates. Find all solutions (g, K) of the vacuum constraint equations with

$$\Phi_{\alpha}(g,K) = (\mathbf{g},\boldsymbol{\sigma},\tau).$$

Ideally there will be one and only one.

- This is essentially true if $\tau \equiv \tau_0$, a constant. There are some well-understood caveats depending on $Y_{\mathbf{g}}$ and the special values $\tau_0 = 0$ and $\sigma = 0$. [Isenberg]
- Same results if τ is near constant, has no zeros, **and** if **g** has no conformal Killing fields. [Isenberg, Moncrief, Clausen, Allen, O'Murchadha, M]
- If $Y_{\bf g} > 0$, τ is arbitrary, and if $\sigma \neq {\bf 0}$ is sufficiently small there is at least one solution. [Holst-Nagy-Tsogtergel, M]

Let α be the volume gauge. Pick conformal coordinates $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$.

Let α be the volume gauge. Pick conformal coordinates $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$.

Select any $h_{ab} \in \mathbf{g}$, and let $N = \omega_g/\alpha$.

Let α be the volume gauge. Pick conformal coordinates $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$.

Select any $h_{ab} \in \mathbf{g}$, and let $N = \omega_g/\alpha$.

Let σ_{ab} be the unique TT tensor with $(h_{ab}, \sigma_{ab}) \in \sigma$.

Let α be the volume gauge. Pick conformal coordinates $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$.

Select any $h_{ab} \in \mathbf{g}$, and let $N = \omega_g/\alpha$.

Let σ_{ab} be the unique TT tensor with $(h_{ab}, \sigma_{ab}) \in \boldsymbol{\sigma}$.

Find ϕ and W^a solving

$$-\Delta \phi + R\phi - \left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} + \frac{2}{3} \tau^2 \phi^5 = 2\Lambda \phi^5 + 2\rho(\phi)$$
$$\mathcal{D}^* \left[\frac{1}{N} \mathcal{D} W \right] + \frac{2}{3} \phi^6 \ d\tau = j(\phi).$$

where

$$(\mathcal{D}W)_{ab} = \frac{1}{2} \left[\nabla_a W_b + \nabla_b W_a \right] - \frac{1}{3} \nabla^c W_c \ h_{ab}$$

and

$$\mathcal{D}^* = -\operatorname{div}$$
.

Find ϕ and W^a solving

$$-\Delta \phi + R\phi - \left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} + \frac{2}{3} \tau^2 \phi^5 = 2\Lambda \phi^5 + 2\rho(\phi)$$
$$\mathcal{D}^* \left[\frac{1}{N} \mathcal{D} W \right] + \frac{2}{3} \phi^6 \ d\tau = j(\phi).$$

If a solution is found,

$$g = \phi^4 h$$

$$K_{ab} = \phi^{-2} \left[\sigma_{ab} + \frac{1}{N} (\mathcal{D}W)_{ab} \right] + \frac{\tau}{3} g_{ab}.$$

satisfies the constraints and

$$\Phi_{\alpha}(g,K)=(\mathbf{g},\boldsymbol{\sigma},\tau).$$

All such solutions can be found this way.

Part II

Difficulties With The Conformal Method

Issue # 1: Conformal Killing Fields

Suppose (g_{ab}, K_{ab}) solves the vacuum momentum constraint:

$$\nabla^a (K_{ab} - \tau g_{ab}) = 0.$$

Let Q^a be a conformal Killing field.

$$0 = \int \nabla^{a} (K_{ab} - \tau g_{ab}) Q^{b} \omega_{g}$$

$$= -\int (K_{ab} - \tau g_{ab}) \nabla^{a} Q^{b} \omega_{g}$$

$$= -\int (K_{ab} - \tau g_{ab}) \frac{1}{3} \nabla_{c} Q^{c} g^{ab} \omega_{g}$$

$$= \int \frac{2}{3} \tau \nabla_{c} Q^{c} \omega_{g}.$$

Hence

$$\int Q(\tau) \, \omega_g = 0.$$

Conformal Killing Field Compatability

The compatability condition

$$\int Q(\tau) \, \omega_g = 0$$

reads

$$\int \phi^6 Q(\tau) \ \omega_h = 0$$

with respect to h_{ab} . Is the conformal method always clever enough to pick a ϕ satisfying this condition?

Conformal Killing Field Compatability

The compatability condition

$$\int Q(\tau) \, \omega_g = 0$$

reads

$$\int \phi^6 Q(\tau) \ \omega_h = 0$$

with respect to h_{ab} . Is the conformal method always clever enough to pick a ϕ satisfying this condition?

Potential obstruction appears during construction:

$$\mathcal{D}^* \left[\frac{1}{N} \mathcal{D} W_{k+1} \right] + \phi_k^6 \ d\tau = 0.$$

Conformal Killing Field Compatability (II)

The condition

$$\int Q(\tau) \, \omega_g = 0$$

is highly reminiscent of the Bourguignon-Ezin condition

$$\int Q(R) \, \omega_g = 0$$

for the prescribed scalar curvature problem.

Conformal Killing Field Compatability (II)

The condition

$$\int Q(\tau) \, \omega_g = 0$$

is highly reminiscent of the Bourguignon-Ezin condition

$$\int Q(R) \, \omega_g = 0$$

for the prescribed scalar curvature problem.

Theorem (Host, M, Mazzeo '15)

There exist Yamabe positive CMC conformal data $(\mathbf{g}, \boldsymbol{\sigma}, \tau_0)$ with $\tau_0 \neq 0$ and a perturbation $\dot{\tau}$ such that there exists a solution of the vacuum constraint equations with conformal coordinates

$$(\mathbf{g}, \boldsymbol{\sigma}, \tau_0 + \epsilon \dot{\tau})$$

if and only if $\epsilon = 0$.

Issue #2: Nonexistence/Nonuniqueness

$$-\Delta \phi + R\phi - \left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} + \frac{2}{3} \tau^2 \phi^5 = 0$$
$$\mathcal{D}^* \left[\frac{1}{N} \mathcal{D} W \right] + \frac{2}{3} \phi^6 d\tau = 0.$$

Problematic term in the system is the ϕ^5 term; this is the critical exponent coming from the continuous but non-compact embedding of H^1 into L^6 .

Issue #2: Nonexistence/Nonuniqueness

$$-\Delta\phi + R\phi - \left|\sigma + \frac{1}{N}\mathcal{D}W\right|^2\phi^{-7} + \frac{2}{3}\tau^2\phi^5 = 0$$
$$\mathcal{D}^*\left[\frac{1}{N}\mathcal{D}W\right] + \frac{2}{3}\phi^6 d\tau = 0.$$

Problematic term in the system is the ϕ^5 term; this is the critical exponent coming from the continuous but non-compact embedding of H^1 into L^6 .

The term $\tau^2 \phi^5$ has a good sign. But $\mathcal{D}W \sim \phi^6$, so

$$\left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} \sim \phi^{12} \phi^{-7} = \phi^5.$$

This yields a term that is effectively ϕ^5 , but with the unfavorable sign.

Issue #2: Nonexistence/Nonuniqueness

$$-\Delta \phi + R\phi - \left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} + \frac{2}{3} \tau^2 \phi^5 = 0$$
$$\mathcal{D}^* \left[\frac{1}{N} \mathcal{D} W \right] + \frac{2}{3} \phi^6 d\tau = 0.$$

Problematic term in the system is the ϕ^5 term; this is the critical exponent coming from the continuous but non-compact embedding of H^1 into L^6 .

The term $\tau^2 \phi^5$ has a good sign. But $\mathcal{D}W \sim \phi^6$, so

$$\left| \sigma + \frac{1}{N} \mathcal{D} W \right|^2 \phi^{-7} \sim \phi^{12} \phi^{-7} = \phi^5.$$

This yields a term that is effectively ϕ^5 , but with the unfavorable sign.

But τ is involved everywhere in this battle. Maybe we get lucky?

Enforcing a bad sign...

What if we introduce a bad sign via $\Lambda > 0$? Key term is

$$\left(\frac{2}{3}\tau^2 - 2\Lambda\right)\phi^5.$$

Theorem (Premoselli '14)

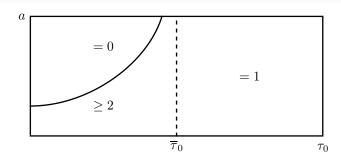
Consider CMC conformal coordinates $(\mathbf{g}, a\sigma_0, \tau_0)$ where \mathbf{g} is Yamabe positive, $\sigma \neq \mathbf{0}$, a > 0, and where

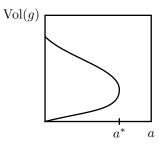
$$\frac{2}{3}\tau_0^2 - 2\Lambda < 0$$

There is an $a_* > 0$ such that

- If $a > a_*$ there are no solutions.
- If $a = a_*$ there is exactly one solution.
- If $0 < a < a_*$ there are at least two solutions.

Premoselli, schematically





Nonexistence/Nonuniqueness from Coupling

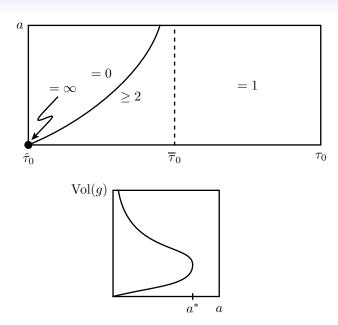
In fact, folds were observed in [M '11] in the **vacuum** setting with $\Lambda=0$. The culprit is the effective leakage of a term with a bad sign on ϕ^5 from the coupled system.

The conformal data involved a certain collection $(\mathbf{g}, a\boldsymbol{\sigma}_0, \tau)$ where $Y_{\mathbf{g}} = 0$, and

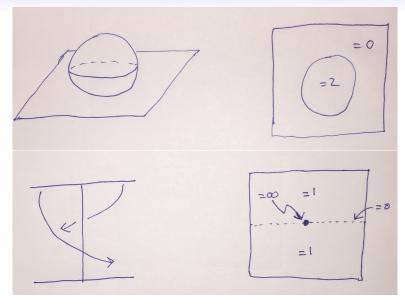
$$\tau = \tau_0 + \xi$$

 ξ is a particular fixed function and au_0 is an adjustable constant.

Nonexistence/Nonuniqueness from Coupling



Folds and Spikes



More Folds and Spikes

The followup study in [M '14b] gave more examples of spikes on $Y_{\bf g}=0$ conformal classes.

More Folds and Spikes

The followup study in [M '14b] gave more examples of spikes on $Y_{\rm g}$ = 0 conformal classes.

Very recently, fold-like behaviour for the **vacuum** constraints with $\Lambda = 0$:

Theorem (Nguyen '15)

There exist conformal parameters $(\mathbf{g}, a\sigma, \tau)$ with $Y_{\mathbf{g}} > 0$ such that

- There are no solutions of the vacuum constraints if a is large enough.
- There is a sequence $a_k \to 0$ such that for each $(\mathbf{g}, a_k \boldsymbol{\sigma}, \tau)$ there are at least two solutions of the constraints.

In [M '11] and [M '14b] the spikes appear for a conformal class with $Y_{\bf g}=0$ and when ${\pmb \sigma}={\pmb 0}$ and ${\tau}_*=0$ where

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

where g is the solution metric and $N_g = \omega_g/\alpha$.

In [M '11] and [M '14b] the spikes appear for a conformal class with $Y_{\bf g}=0$ and when ${\pmb \sigma}={\pmb 0}$ and ${\tau}_*=0$ where

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

where g is the solution metric and $N_g = \omega_g/\alpha$.

If $\tau \equiv \tau_0$ then $\tau_* = \tau_0$.

In [M '11] and [M '14b] the spikes appear for a conformal class with $Y_{\bf g}=0$ and when ${\pmb \sigma}={\pmb 0}$ and ${\pmb \tau}_*=0$ where

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

where g is the solution metric and $N_g = \omega_g/\alpha$.

If $\tau \equiv \tau_0$ then $\tau_* = \tau_0$.

The CMC spike for $Y_{\bf g}=0$, $\sigma={\bf 0}$, $\tau_0=0$ is well known. The slices have $K_{ab}\equiv 0$ and the resulting family of spacetimes are all homothetically related.

In [M '11] and [M '14b] the spikes appear for a conformal class with $Y_{\bf g}=0$ and when ${\pmb \sigma}={\pmb 0}$ and ${\tau}_*=0$ where

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

where g is the solution metric and $N_g = \omega_g/\alpha$.

If $\tau \equiv \tau_0$ then $\tau_* = \tau_0$.

The CMC spike for $Y_{\bf g}=0$, ${\bf \sigma}={\bf 0}$, $\tau_0=0$ is well known. The slices have $K_{ab}\equiv 0$ and the resulting family of spacetimes are all homothetically related.

The non-CMC versions of the spikes are more complicated. It is no longer true that $K_{ab}\equiv 0$, and the generated spacetimes are not homothetically related.

The Trouble with au_*

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

Given a gauge choice α and coords $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$, can you tell if a spike will be generated?

The Trouble with au_*

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

Given a gauge choice α and coords $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$, can you tell if a spike will be generated?

With respect to $h \in \mathbf{g}$,

$$\tau_* = \frac{\int \phi^{12} N_h \tau \, \omega_h}{\int \phi^{12} N_h \omega_h}$$

where ϕ is the conformal factor you don't know.

The Trouble with au_*

$$\tau_* = \frac{\int N_g \tau \, \omega_g}{\int N_g \omega_g}$$

Given a gauge choice α and coords $(\mathbf{g}, \boldsymbol{\sigma}, \tau)$, can you tell if a spike will be generated?

With respect to $h \in \mathbf{g}$,

$$\tau_* = \frac{\int \phi^{12} N_h \tau \, \omega_h}{\int \phi^{12} N_h \omega_h}$$

where ϕ is the conformal factor you don't know.

If τ doesn't change sign, you can be sure that $\tau^* \neq 0$. But otherwise?

Part III

Alternative to the Conformal Method

Volumetric Momentum

The quantity τ_* has an interpretation very similar to that of σ :

$$-\frac{4}{3}\tau_*$$

is the momentum conjugate to the volume form ω_{g} , modulo diffeomorphisms, as measured by α [M '14c].

Volumetric Momentum

The quantity τ_* has an interpretation very similar to that of σ :

$$-\frac{4}{3}\tau_*$$

is the momentum conjugate to the volume form ω_g , modulo diffeomorphisms, as measured by α [M '14c].

$$\sigma \longleftrightarrow \mathbf{g}$$
$$-\frac{4}{3}\tau_* \longleftrightarrow \omega_g$$

Volumetric Momentum

The quantity τ_* has an interpretation very similar to that of σ :

$$-\frac{4}{3}\tau_*$$

is the momentum conjugate to the volume form $\omega_{\rm g}$, modulo diffeomorphisms, as measured by α [M '14c].

$$\sigma \longleftrightarrow \mathbf{g}$$
$$-\frac{4}{3}\tau_* \longleftrightarrow \omega_g$$

This suggests finding variations of the conformal method where σ and τ_* are both explicit parameters.

What kind of motion is possible when $\sigma = 0$ and $\tau_* = 0$?

What kind of motion is possible when $\sigma = 0$ and $\tau_* = 0$?

Conformal class is fixed, up to diffeomorphism.

Volume is fixed.

But volume can be reallocated relative to the conformal class.

What kind of motion is possible when $\sigma = 0$ and $\tau_* = 0$?

Conformal class is fixed, up to diffeomorphism.

Volume is fixed.

But volume can be reallocated relative to the conformal class.

Represent the infinitesimal reallocation of volume using a vector field X^a .

What kind of motion is possible when $\sigma = 0$ and $\tau_* = 0$?

Conformal class is fixed, up to diffeomorphism.

Volume is fixed.

But volume can be reallocated relative to the conformal class.

Represent the infinitesimal reallocation of volume using a vector field X^a .

If $\operatorname{div} X = 0$, there is no reallocation.

If $\mathcal{D}X = 0$, there is no reallocation.

Drifts (II)

Definition

A **drift** at a metric g_{ab} is a vector field, modulo $\operatorname{Ker}\operatorname{div}_g$ and modulo $\operatorname{Ker}\mathcal{D}_g$.

Central Anzatz

Given (g_{ab}, K_{ab}) decompose the second fundamental form as follows.

$$K_{ab} = A_{ab} + \frac{\tau}{n} g_{ab}$$

with $g^{ab}A_{ab} = 0$

$$A_{ab} = \sigma_{ab} + \frac{1}{N} (\mathcal{D}W)_{ab}$$

$$\tau = \tau_* + \frac{1}{N} \operatorname{div} V$$

Each of W^a and V^a represent a drift.

Momentum constraint for drift variables

Momentum constraint:

$$-\mathcal{D}^*\left(\frac{1}{N}\mathcal{D}W\right) = d\left(\frac{1}{N}\operatorname{div}V\right)$$

Idea: specify V^a , and solve for W^a . But conformal Killing fields are an obstacle:

$$\int \frac{1}{N} \operatorname{div} V \operatorname{div} R \, \omega_g = 0$$

for all conformal Killing fields R^a .

Momentum constraint for drift variables (II)

Theorem (M '14c)

Let V^a be given. There is a conformal Killing field Q^a and a vector field W^a such that

$$-\mathcal{D}^*\left(\frac{1}{N}\mathcal{D}W\right) = d\left(\frac{1}{N}\operatorname{div}(V+Q)\right)$$

Moreover, Q^a is unique up to addition of a true Killing field, and W^a is unique up to addition of a conformal Killing field.

Momentum constraint for drift variables (II)

Theorem (M '14c)

Let V^a be given. There is a conformal Killing field Q^a and a vector field W^a such that

$$-\mathcal{D}^*\left(\frac{1}{N}\mathcal{D}W\right) = d\left(\frac{1}{N}\operatorname{div}(V+Q)\right)$$

Moreover, Q^a is unique up to addition of a true Killing field, and W^a is unique up to addition of a conformal Killing field.

The data V^a really represents a drift. Adding a divergence free vector field won't change W^a , nor will adding a conformal Killing field.

Momentum constraint for drift variables (III)

Theorem (M '14c)

Let W^a be given. There is a divergence free vector field E^a and a vector field V^a such that

$$-\mathcal{D}^*\left(\frac{1}{N}\mathcal{D}(W+E)\right) = d\left(\frac{1}{N}\operatorname{div}V\right)$$

Moreover, E^a is unique up to addition of a true Killing field, and V^a is unique up to addition of a divergence-free vector field.

The data W^a really represents a drift. Adding a conformal Killing field won't change V^a , nor will adding a divergence-free vector field.

One drift formulation of constraint equations

Gauge: N

Data: $(h_{ab}, \sigma_{ab}, \tau_*, V^a)$

Find ϕ , W^a and a conformal Killing field Q^a solving

$$-\Delta\phi + R\phi - \left|\sigma + \frac{1}{N}\mathcal{D}W\right|^2\phi^{-7} + \frac{2}{3}\tau^2\phi^5 = 2\Lambda\phi^5 + 2\rho(\phi)$$
$$\mathcal{D}^*\left[\frac{1}{N}\mathcal{D}W\right] + \frac{2}{3}\phi^6 d\tau = j(\phi).$$

where

$$\tau = \tau_* + \phi^{-12} \frac{1}{N} \operatorname{div}(\phi^6(V + Q))$$

Near-CMC Existence

Equations to solve for (ϕ, W^a, Q^a) :

$$-\Delta\phi + R\phi - \left|\sigma + \frac{1}{N}\mathcal{D}W\right|^2\phi^{-7} + \frac{2}{3}\tau^2\phi^5 = 2\Lambda\phi^5$$
$$\mathcal{D}^*\left[\frac{1}{N}\mathcal{D}W\right] + \frac{2}{3}\phi^6 d\tau = 0.$$

with

$$\tau = \tau_* + \phi^{-12} \frac{1}{N} \operatorname{div}(\phi^6(V + Q))$$

Near-CMC Existence

Theorem (HMM '15)

Fix N. Suppose $(h_{ab}, \hat{\sigma}_{ab}, \hat{\tau}_*, \hat{V}^a \equiv 0)$ lead to a CMC solution of the constraints. Suppose also that all of the following hold:

- 1. The CMC solution metric does not admit any true Killing fields.
- 2. $(2/3)\tau_*^2 \ge 2\Lambda$.
- 3. Either $(2/3)\tau_*^2 > 2\Lambda$, or $\hat{\sigma}_{ab} \neq 0$

Then there exists $\epsilon > 0$ such that all conformal data $(h_{ab}, \sigma_{ab}, \tau_*, V^a)$ satisfying

$$||\sigma - \hat{\sigma}||_{W^{2,p}} + |\tau_* - \hat{\tau}_*| + ||V||_{W^{2,p}} < \epsilon$$

generate a unique solution of system of the drift-parameterized constraint equation in a neighbourhood of the CMC solution.

Some difficulties and questions

- The PDEs are more technical than the standard conformal method. Lichnerowiz equation is no longer semilinear. Second derivatives of ϕ appear in both equations.
- If g_{ab} and g'_{ab} are representatives of \mathbf{g} , how are the drifts at g_{ab} and g'_{ab} related?
- We shouldn't be representing drifts with a vector field V^a . E.g., solutions are overcounted.
- Unclear if the broader difficulites with non-uniqueness/non-existence (i.e. folds) are addressed at all.

References

- M '14a The Conformal Method and the Conformal Thin Sandwich Method are the Same
- M '14b Conformal Parameterizations of Flat Kasner Spacetimes
- M '14c Initial Data in General Relativity Parameterized by Conformal Deformation, Expansion, and Drift
- HMM '15 (with M. Holst and R. Mazzeo)

 Conformal Killing Fields and the Space of Solutions of the Einstein Constraint Equations