Lorentzian N-Bakry-Émery cosmological singularity and splitting theorems

Eric Woolgar

Dept of Mathematical and Statistical Sciences
University of Alberta
ewoolgar@math.ualberta.ca
http://www.math.ualberta.ca/~ewoolgar

October 2015

Collaborators

Talk based on

- EW and William Wylie, Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes, arxiv:1509:05734.
- Gregory J Galloway and EW, Cosmological singularities in Bakry-Émery spacetimes, J Geom Phys 86 (2014) 359–369.

Related work

 Matthew Rupert and EW, Bakry-Émery black holes, Class Quantum Gravit 31 (2014) 025008.

Anniversaries

- Hundredth anniversary of Einstein's Berlin Academic lectures: final form of field equations.
- Hundredth anniversary of Hilbert's variational derivation.
- Fiftieth anniversary of Penrose's singularity theorem.
- Almost the fiftieth anniversary of Hawking's 3 papers on cosmological singularity theorems.
- Thirtieth anniversary of the publication of Bakry and Émery's seminal paper on Markovian diffusions.

Prototype Singularity/Splitting theorems

- Hawking (1967)
 If
 - $R_{ab}t^at^b \ge 0$ for every timelike t^a ,
 - S is a compact spacelike hypersurface without edge, and
 - the (future) mean curvature of S is H < 0 everywhere,

then spacetime is not timelike geodesically complete.

- Indeed, if *S* is a Cauchy surface, then no timelike geodesic is future-complete.
- Geroch (1966) If we relax the mean curvature condition to $H \leq 0$, and if the spacetime is future-timelike geodesically complete, then it is flat.

Riemannian prototypes

- Myers (1941)
 - Let (M,g) be a Riemannian manifold with Ric $\geq kg$ for some k>0. Then (M,g) has finite diameter and finite fundamental group.
- Cheeger-Gromoll (1971)
 - If Ric ≥ 0 and (M, g) contains a complete, maximal geodesic, then it is isometric to $(\mathbb{R} \times S, dt^2 + g_S)$.

Note: These theorems are not true prototypes because they make no hypersurface assumption, giving the proofs a different character.

Extensions

Can one relax the assumptions of these theorems?

- "Averaged" conditions $\int_0^\infty \text{Ric}(\gamma', \gamma') ds \ge 0$.
- Bakry-Émery: Replace pointwise sign condition on Ric, e.g.,

$$Ric(X,X) \geq 0$$

for all X (or for a class of X), with a similar pointwise sign condition on

$$\operatorname{\mathsf{Ric}}_f^N := \operatorname{\mathsf{Ric}} + \operatorname{\mathsf{Hess}} f - \frac{1}{(N-n)} df \otimes df \; ,$$

f is the weight function, N is the synthetic dimension; conditions on f, N?

- Both? e.g.:
 - $\int_0^\infty \operatorname{Ric}_f^N(\gamma', \gamma') ds \ge 0$, N > n
 - $\int_0^\infty e^{2f(s)/(n-1)} \operatorname{Ric}_f^N(\gamma', \gamma') ds \ge 0$, $f \le k$, N < 1 or $N = \infty$.

4 D > 4 A > 4 B > 4 B > 9 Q Q

Ubiquity of Bakry-Émery

- Harmonic Einstein equation: Ric $+\frac{1}{2}\mathcal{L}_Xg=0$: special case X=df.
- Gradient Ricci soliton equation: Ric + Hess $f = \lambda g$.
- Lichnérowicz (1970): Cheeger-Gromoll-type splitting, assuming
 - N = n + 1
 - $\operatorname{Ric}_{f}^{n+1} \geq 0$
 - f bounded (can relax to f bounded above).
- Homage à Monge:
 - Dimension-curvature condition: $Ric_f^N \ge \lambda g$.
 - Use optimal transportation to prove analytical results: e.g., displacement convexity of entropy.
 - Bakry and Émery (1985).
 - Otto and Villani (2000).
 - Lott and Villani (2009): Synthetic Ricci curvature.
 - Cordero-Erausquin, McCann, and Schmuckenschläger (2006).

Physics: Kaluza-Klein theorems

 $\bullet \ \, \mathsf{Warped} \ \, \mathsf{product} \ \, \mathcal{N}^{\textit{N}} = \mathcal{M}^{\textit{n}} \times_{\varepsilon e^{-\textit{f}/(\textit{N}-\textit{n})}} \mathcal{F}$

$$g_{\mathcal{N}} = g_{\mathcal{M}} \oplus \varepsilon^2 e^{-2f/(N-n)} g_{\mathcal{F}}$$

Then

$$\begin{split} \operatorname{\mathsf{Ric}}(g) &= \left[\operatorname{\mathsf{Ric}}(g_{\mathcal{M}}) + \operatorname{\mathsf{Hess}}_{g_{\mathcal{M}}} f - \frac{1}{(N-n)} df \otimes df \right] \\ &\oplus \left[\operatorname{\mathsf{Ric}}(g_{\mathcal{F}}) + \frac{1}{(N-n)} e^{-2f/(N-n)} g_{\mathcal{F}} L(f) \right] \\ L(f) &= \Delta_{g_{\mathcal{M}}} f - \frac{(N-n+1)}{(N-n)} df \oplus df \; , \end{split}$$

• Justifies the term synthetic dimension.

Physics: Kaluza-Klein theorems

 $\bullet \ \, \text{Warped product} \, \, \mathcal{N}^{\textit{N}} = \mathcal{M}^{\textit{n}} \times_{\varepsilon e^{-f/(N-n)}} \mathcal{F}$

$$g_{\mathcal{N}} = g_{\mathcal{M}} \oplus \varepsilon^2 e^{-2f/(N-n)} g_{\mathcal{F}}$$

Then

$$\begin{aligned} \operatorname{Ric}(g) &= \left[\operatorname{Ric}(g_{\mathcal{M}}) + \operatorname{Hess}_{g_{\mathcal{M}}} f - \frac{1}{(N-n)} df \otimes df \right] \\ &\oplus \left[\operatorname{Ric}(g_{\mathcal{F}}) + \frac{1}{(N-n)} e^{-2f/(N-n)} g_{\mathcal{F}} L(f) \right] \\ L(f) &= \Delta_{g_{\mathcal{M}}} f - \frac{(N-n+1)}{(N-n)} df \oplus df \ . \end{aligned}$$

• Justifies the term synthetic dimension.

Physics: Scalar-tensor gravity

• Prototype: the Brans-Dicke family in n = 4 spacetime dimensions

$$\begin{split} \operatorname{Ric} &-\frac{1}{\varphi}\operatorname{Hess} \varphi - \frac{\omega}{\varphi^2}d\varphi \otimes d\varphi = \frac{8\pi}{\varphi}\tau \ , \\ \tau &:= T - \frac{(1+\omega)}{(3+2\omega)}(\operatorname{tr} T)g \ , \\ \Delta\varphi &= \frac{8\pi}{(3+2\omega)}\operatorname{tr} T \ . \end{split}$$

- $\omega \in \left(-\frac{3}{2}, \infty\right)$ is family parameter, $\varphi \sim 1/G_{\text{Newton}}$.
- For $\varphi := e^{-f}$, get

$$\mathrm{Ric}_f^N \equiv \mathrm{Ric} + \mathrm{Hess}\, f - rac{1}{(N-4)} df \otimes df = 8\pi e^f au \; ,$$
 $N = rac{5+4\omega}{1+\omega} \; .$

Negative synthetic dimension arises

We have

- n = 4.
- $N = \frac{5+4\omega}{1+\omega}$.
- $\omega \in \left(-\frac{3}{2}, \infty\right)$.

Then ω and N are related via:

- $N \in (4, \infty) \Leftrightarrow \omega \in (-1, \infty)$.
- $N = \infty \Leftrightarrow \omega = -1$ (dilaton gravity).
- $N \in (-\infty, 2) \Leftrightarrow \omega \in (-\frac{3}{2}, -1)$.

Timelike curvature-dimension condition

- Fix some $N \in \mathbb{R} \cup \{\infty\}$, $\lambda \in \mathbb{R}$.
- The timelike curvature-dimension condition $TCD(\lambda, N)$ is

$$\mathrm{Ric}_f^N(X,X) \geq \lambda \in \mathbb{R}$$

for every unit timelike vector X.

- The TCD(0, N) condition reduces to $Ric(X, X) \ge 0$ if f is constant.
- In general relativity:
 - $Ric(X, X) \ge 0$ follows from the *strong energy condition*.
 - $\lambda = -\Lambda/(n-1)$, $\Lambda = \text{cosmological constant}$.

Typical conditions on f when $N=\infty$ or N<1

These conditions are only needed when $N=\infty$ or $N\leq 1$ (or $N\leq 2$ for certain Lorentzian theorems)

- (a) The "classic" condition: $f \leq k$.
- (b) Wylie's weaker condition: $\int_0^\infty e^{-2f(t)/(n-1)} dt = \infty$ along (certain) complete geodesics.¹
- (c) Sometimes need a stronger condition: ∇f future-timelike to the future of a Cauchy surface S.

Note that

- (1) If (a) holds, then (b) holds for every complete geodesic.
- (2) If (c) holds and S is compact, then (a) holds to the future of S.
- (3) (b) says that complete geodesics are assumed also complete in the parameter $s = s(t) = \int_0^t e^{-2f(u)/(n-1)} du$.

 $^{^1}f(t)$ is short-hand for $f\circ\gamma(t)$ where γ is a geodesic.

Lorentzian results

- JS Case (2010)
 - $N \in (n, \infty]$
 - Hawking-Penrose theorem
 - Timelike splitting theorem
- GJ Galloway and EW
 - $N = \infty$, f < k.
 - Hawking's cosmological singularity theorem for nonnegative cosmological constant.
 - Splitting theorem for non-positive CMC Cauchy surface.
- EW and W Wylie
 - Generalize GJG and EW to $N \in (n, \infty] \cup (-\infty, 1]$.
 - For N = 1, splitting theorem yields a warped product.
- EW and WW in progress:
 - Generalize Case's Hawking-Penrose theorem to $N \in (-\infty, 2]$.
 - Generalize Case's timelike splitting theorem to $N \in (-\infty, 1]$.
 - Galloway's null splitting theorem.

Case's splitting conjecture

Take $N \in (n, \infty]$.

- Case's hard question:
 - (M,g) is globally hyperbolic with compact Cauchy surface S.
 - (M, g) is timelike geodesically complete.
 - TCD(0, N) holds.
 - If $N = \infty$ then f < k.

Then does (M,g) split isometrically as $(\mathbb{R} \times S, -dt^2 \oplus h)$, with f constant in time?

- Why it's hard: If a priori we set f = const, this is Bartnik's splitting conjecture.
- Case's tractable question:
 - With the above assumptions and
 - if S has f-mean curvature $H_f = 0$,

then does (M,g) split isometrically as $(\mathbb{R} \times S, -dt^2 \oplus h)$, with f constant in time?

Hawking-type cosmological singularity theorem

Assume that

- TCD(0, N) holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f := H \nabla_{\nu} f < 0$ everywhere, and
- if $N \in [-\infty, 1]$ then $\int_0^\infty e^{-2f(s)/(n-1)} ds$ diverges along every complete timelike geodesic orthogonal to S.

Then no timelike geodesic is future-complete.

Hawking-type cosmological singularity theorem

Assume that

- $\mathsf{TCD}(0, N)$ holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f := H \nabla_{\nu} f < 0$ everywhere, and
- if $N \in [-\infty, 1]$ then $\int_0^\infty e^{-2f(s)/(n-1)} ds$ diverges along every complete timelike geodesic orthogonal to S.

Then no timelike geodesic is future-complete.

- Recall $\mathsf{TCD}(0,N) \Rightarrow \mathsf{Ric}(X,X) + \mathsf{Hess}(X,X)f \frac{1}{(N-n)}\langle df,X \rangle^2 \geq 0$.
- When N > n, the $\langle df, X \rangle^2$ term *helps*: no control of f required.
- When $N \le 1$, the $\langle df, X \rangle^2$ term *hinders*: but can still obtain a theorem if we have mild control of f.

Splitting theorem

Assume that

- TCD(0, N) holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f := H \nabla_{\nu} f \leq 0$ everywhere,
- if $N \in [-\infty, 1]$ then $\int_0^\infty e^{-2f(s)/(n-1)} ds$ diverges along every complete timelike geodesic orthogonal to S, and
- the geodesics orthogonal to S are future-complete.

Then,

- if $N \in (-\infty, 1) \cup (n, \infty]$, the future of S is isometric to $-dt^2 \oplus h$ and f is independent of t (answers Case's tractable question).
- if N = 1, the future of S is isometric to $-dt^2 \oplus e^{2\psi(t)/(n-1)}h$ and $f = \psi(t) + \phi(y), y \in S$.

Positive cosmological constant singularity theorem

Assume that

- TCD(-(n-1), N) holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f:=H-\nabla_{\nu}f<-(n-1)$ everywhere, and
- if $N \in [-\infty, 1]$ then ∇f is future-causal to the future of S.

Then no timelike geodesic is future-complete.

Alternative version for $N \in [-\infty, 1]$

There are a number of versions that do not require that ∇f be future-causal, but require other assumptions to be strengthened; e.g., If

- $\mathsf{TCD}(-(n-1)e^{-4f/(n-1)}, N)$ holds for some $N \in [-\infty, 1]$,
- $H_f < -(n-1)e^{-2\inf_S f/(n-1)}$ on compact Cauchy surface S, and
- $\int_0^\infty e^{-2f(s)/(n-1)}ds$ diverges along every complete timelike geodesic orthogonal to S,

then no timelike geodesic is future-complete.

Splitting theorem

For $N \in [-\infty, 1] \cup (n, \infty]$, assume that

- $\mathsf{TCD}(-(n-1), N)$ holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f:=H-\nabla_{\nu}f\leq -(n-1)$ everywhere,
- ∇f is future-causal, and
- the geodesics orthogonal to S are future-complete.

Then the future of S splits as a warped product $-dt^2 \oplus e^{-2t}h$ and f is constant.

Alternative splitting theorem

For N > n, assume that

- $\mathsf{TCD}(-(N-1), N)$ holds for some fixed $N \in (-\infty, 1] \cup (n, \infty]$,
- ullet S is a compact Cauchy surface, u its future unit normal,
- the (future) f-mean curvature of S obeys $H_f := H \nabla_{\nu} f \le -(N-1)$ everywhere, and
- the geodesics orthogonal to S are future-complete.

Then the future of S splits as a warped product $-dt^2 \oplus e^{-2t}h$ and $f = (N - n)t + f_S(y)$, $y \in S$.

The (timelike) f-Raychaudhuri equation

$$\frac{\partial H}{\partial t} = -\operatorname{Ric}(\gamma', \gamma') - |K|^2 = -\operatorname{Ric}(\gamma', \gamma') - |\sigma|^2 - \frac{H^2}{(n-1)}$$

Use $H_f := H - f'$ and use definition of Ric_f^N . Get

$$\frac{\partial H_f}{\partial t} = -\operatorname{Ric}_f^N(\gamma', \gamma') - |\sigma|^2 - \frac{H^2}{(n-1)} - \frac{f'^2}{(N-n)}
= -\operatorname{Ric}_f^N(\gamma', \gamma') - |\sigma|^2 - \frac{1}{(n-1)} \left[H_f^2 + 2H_f f' + \frac{(1-N)}{(n-N)} f'^2 \right]$$

Analyse this. Use that H_f diverges along γ at finite t iff H diverges.

- First line: If N > n each term on right is ≤ 0 (assuming TCD(0, N)).
- Second line: Coefficient of f'^2 has same sign for N < 1 as for N > n, but must deal with $H_f f'$ term.

□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 釣魚◎

Example of a focusing argument: TCD(0, N) case

• For N > n, an easy identity yields

$$\begin{split} &\frac{\partial H_f}{\partial t} \leq -\operatorname{Ric}_f^N(\gamma', \gamma') - |\sigma|^2 - \frac{H_f^2}{(N-1)} \\ &\Rightarrow \frac{\partial x}{\partial t} \leq -x^2 \;, \; x := H_f/(N-1) \;, \; \text{using TCD}(0, N) \;. \end{split}$$

• Otherwise, use an integrating factor to eliminate $H_f f'$ term:

$$\begin{split} \frac{\partial}{\partial t} \left(e^{\frac{2f}{(n-1)}} H_f \right) &= -e^{\frac{2f}{(n-1)}} \left[\text{Ric}_f^N(\gamma', \gamma') + |\sigma|^2 + H_f^2 + \frac{(1-N)f'^2}{(n-N)(n-1)} \right] \\ \Rightarrow \frac{\partial x}{\partial t} &\leq -e^{-\frac{2f}{(n-1)}} x^2 , \ x := e^{\frac{2f}{(n-1)}} H_f , \ \text{using TCD}(0, N) . \end{split}$$

• Now
$$x(0) \le x_0 < 0$$
.
$$\begin{cases} x(t) \le \frac{1}{t+1/x_0}, & N > n \\ x(t) \le \frac{1}{\int_0^t e^{-2f(s)/(n-1)} ds + 1/x_0}, & N \in [-\infty, 1] \end{cases}$$

• Thus $x(t) \to -\infty$ as $t \nearrow t_0$.

Completion of the argument.

- $x \to -\infty$ as $t \to t_0$ for some $t_0 \le T(x_0) \le T$.
- Thus $H \to -\infty$ as $t \to t_0$ for some $t_0 \le T(x_0) \le T$.
- Thus no future-timelike geodesic orthogonal to S can maximize beyond t = T.
- If there were a future-complete timelike geodesic γ , there would be a sequence of maximizing geodesics from S to γ , meeting S orthogonally and of unbounded length.
- Thus there can be no future-complete timelike geodesic. QED.

Example of a splitting argument

- Now $H_f \leq 0$, and we assume future completeness.
- If $H_f < 0$ on S, cannot be future complete, so $H_f = 0$ at least somewhere on S.
- If H_f is not identically zero on S, do short f-mean curvature flow.

$$\frac{\partial X}{\partial s} = -H_f \nu \ .$$

- Strong maximum principle implies that $H_f(s) < 0$ for s > 0 (and still Cauchy).
- Therefore must have $H_f \equiv 0$ on S.
- And must have $H_f(t) \equiv 0$, so each term on right in Raychaudhuri equation must vanish.

Splitting argument: continued

• For N > n, recall

$$\frac{\partial H_f}{\partial t} = -\operatorname{Ric}_f^N(\gamma', \gamma') - |\sigma|^2 - \frac{H^2}{(n-1)} - \frac{f'^2}{(N-n)}.$$

- Must have $H_f \equiv 0$ on (0, t).
- Thus $\sigma = 0$, H = 0, f' = 0 on (0, t).
- $g = -dt^2 \oplus h$, f' = 0, and since the γ are future-complete, the splitting is global.

Splitting argument: continued

• For $N \in [-\infty, 1]$, had

$$\frac{\partial}{\partial t} \left(e^{\frac{2f}{(n-1)}} H_f \right) = -e^{\frac{2f}{(n-1)}} \left[\operatorname{Ric}_f^N(\gamma', \gamma') + |\sigma|^2 + H_f^2 + \frac{(1-N)f'^2}{(n-N)(n-1)} \right]$$

- Must have $H_f \equiv 0$ on (0, t).
- Thus $\sigma = 0$, H = f', and either f' = 0 or N = 1, on (0, t).
- If $N \neq 1$, get H = 0 and get global product splitting as before.
- If N = 1, use also that $Ric_f^1(\gamma', \gamma') = 0$ on (0, t).
- A computation then yields the warped product of the theorem.

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q♡

Further thoughts: Conjugate pairs

The timelike *f*-generic condition:

- Define $\mathcal{R}_{ijkl} := R_{ijkl} + \left[g \odot \left(\frac{1}{(n-1)} \operatorname{Hess} f + \frac{1}{(n-1)^2} df \otimes df \right) \right]_{ijkl}$.
- The timelike f-generic condition is said to hold if along each future-complete timelike geodesic $\gamma(t)$ there is a t_0 such that

$$w^q w^r w_{[i} \mathcal{R}_{j]qr[k} w_{l]} \neq 0 \ , \ w := \gamma'(0) \ .$$

- The shear σ and expansion θ_f (previously H_f) of a twist-free timelike congruence can be combined into $B_f := \sigma + \frac{1}{(n-1)}\theta_f$ id.
- It obeys a matrix Riccati equation

$$B_f' + B_f \cdot B_f = -\bar{R}_f ...(*)$$

• \bar{R}_f is non-zero $\Leftrightarrow w^q w^r w_{[i} \mathcal{R}_{i]qr[k} w_{l]} \neq 0 \Leftrightarrow (*)$ nonhomogeneous.

□ト 4個ト 4 差ト 4 差ト 差 めなる

Conjugate pairs: continued

Assume that

- TCD(0, N) holds for some $N \in (-\infty, 1] \cup (n, \infty]$,
- the timelike f-generic condition holds, and
- if $N \in [-\infty, 1]$ then along each complete timelike geodesic, $\int_0^\infty e^{-f(s)/(n-1)} ds = \infty$ and $\int_{-\infty}^0 e^{-f(s)/(n-1)} ds = \infty$.

Then

- each complete timelike geodesic has a pair of conjugate points, so
- an inextendible maximal timelike geodesic is necessarily incomplete.
- All this also holds for *null geodesics*, except that the domain $N \in [-\infty, 1]$ will now extend to $N \in [-\infty, 2]$.

Another question of Case

- Is tcd(0, N) weaker than the strong energy condition $Ric(X, X) \ge 0$?
 - That is, say
 - (M,g) is future timelike geodesically complete,
 - $\operatorname{Ric}_f^N(g)(X,X) \geq 0$ for all timelike X,
 - $f \leq k$ if $N \in [-\infty, 1]$.
 - Does M admit a future-timelike complete metric g_1 with $Ric(g_1)(X,X) \ge 0$?
 - If it also admits an $H_f \leq 0$ compact Cauchy surface, we know the answer is yes.
 - Posed in Riemannian setting by Wei-Wylie arxiv:0706.1120.
 - Posed in Lorentzian phrasing by Case arxiv:0712:1321.

