Boundedness of massless scalar waves on Reissner-Nordström interiors

Anne Franzen

under supervision of Mihalis Dafermos

Institute Henri Poincaré, Paris, 4. Nov. 2015

Boundedness, $|\phi| < C$, on fixed interior Reissner-Nordström backgrounds

Sneak Preview:

- Validity of the Strong Cosmic Censorship Conjecture
- Reissner-Nordström as a proxy for Kerr
- Investigation of $\Box_g \phi = 0$ as a "poor man's" linearisation to the Einstein field equations, using weighted energy estimates and commutation of angular momentum operators

Reissner-Nordström spacetimes

 (r, t, φ, θ) coordinates:

$$g = -\left(1 - \frac{2M}{r} + \frac{e^2}{r^2}\right) dt^2 + \left(1 - \frac{2M}{r} + \frac{e^2}{r^2}\right)^{-1} dr^2 + r^2 d\sigma_{\mathbb{S}}^2,$$
$$d\sigma_{\mathbb{S}}^2 = \sin^2\theta d\varphi^2 + d\theta^2$$

horizons:

$$r_{\pm} = M \pm \sqrt{M^2 - e^2}$$

surface gravities:

$$\kappa_{\pm} = \frac{r_{\pm} - r_{\mp}}{2r_{+}^2}$$

Note that $\frac{\partial}{\partial t}$ is a Killing vector, spacelike in the interior.

Reissner-Nordström spacetimes

 (u, v, φ, θ) double null coordinates:

$$g = -\Omega^{2}(u, v) du dv + r^{2}(u, v) d\sigma_{\mathbb{S}}^{2}, \quad d\sigma_{\mathbb{S}}^{2} = \sin^{2}\theta d\varphi^{2} + d\theta^{2},$$

Motivation

The Strong Cosmic Censorship Conjecture

Roger Penrose Infalling radiation is likely to convert into a curvature singularity due to the divergence of energy caused by the infinite blueshift effect.

Motivation

The Strong Cosmic Censorship Conjecture

Demetrios Christodoulou

"Generic asymptotically flat initial data for Einstein-Maxwell spacetimes have a maximal future development which is inextendible as a suitably regular Lorentzian manifold."

Reissner-Nordström spacetime is extendible but not generic.

The Strong Cosmic Censorship Conjecture might not hold. Extendibility property of Reissner-Nordström spacetime might not be stable.

Instability investigations:

Numerically:

• Penrose & Simpson: perturbation leads to inextendibility as C^0 metric $\rightarrow strong$ spacetime singularity

Null-fluid models:

- <u>Hiscock:</u> ingoing null dust via RN-Vaidya metric leads to diverging tidal forces, well behaved curvature tensors \rightarrow weak null singularity
- Poisson & Israel: in and outgoing null fluids, influx gets blueshifted , outflux causes mass function to diverge at \mathcal{CH}^+ $\rightarrow curvature$ singularity
- <u>Ori:</u> two patches of Vaidya solutions matched along a thin null layer of dust, metric tensor well behaved
 - \rightarrow weak singularity

Instability investigations:

Partial Differential Equations:

- <u>McNamara:</u> Reissner-Nordström fixed mode stability at \mathcal{CH}^+ and instability for transverse derivative for specific initial data
- <u>Dafermos:</u> spherically symmetric Einstein-Maxwell-scalar field, metric extendible as C^0 but not as C^1 $\rightarrow weak$ singularity
- <u>A.F.:</u>

We investigate $\Box_g \phi = 0$ as a proxy for the full non-linear Einstein-Maxwell equations.

Main results

Main Theorem

On subextremal Reissner-Nordström spacetime (\mathcal{M}, g) , with mass M and charge e and $M > |e| \neq 0$, let ϕ be a solution of the wave equation $\Box_g \phi = 0$ arising from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy surface Σ . Then

$$|\phi| \le C$$

globally in the black hole interior, in particular up to and including the Cauchy horizon \mathcal{CH}^+ .

Main results

Energy Theorem

On subextremal Reissner-Nordström spacetime (\mathcal{M}, g) , with mass M and charge e and $M > |e| \neq 0$, let ϕ be a solution of the wave equation $\Box_g \phi = 0$ arising from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy surface Σ . Then for all values of Eddington-Finkelstein coordinates (u_{fix}, v_{fix}) in the black hole interior

$$\int_{\mathbb{S}^2} \int_{v_{fix}}^{\infty} \left[v^p (\partial_v \phi)^2 (u_{fix}, v) + |\nabla \phi|^2 (u_{fix}, v) \right] dv d\sigma_{\mathbb{S}}^2 \leq E, \quad for \quad v_{fix} \geq 1,$$

$$\int_{\mathbb{S}^2} \int_{u_{fix}}^{\infty} \left[u^p (\partial_u \phi)^2 (u, v_{fix}) + |\nabla \phi|^2 (u, v_{fix}) \right] du d\sigma_{\mathbb{S}}^2 \le E, \quad for \quad u_{fix} \ge 1.$$

Preliminaries

Energy currents and vector field method

Matter field Lagrangian:

$$\mathcal{L}(\phi, d\phi, g^{-1}) = g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi,$$

From the Euler-Lagrange equations:

$$\Box_g \phi = 0.$$

Stress energy-momentum tensor of massless scalar field:

$$T_{\mu\nu} = \partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}g^{\alpha\beta}\partial_{\alpha}\phi\partial_{\beta}\phi$$

Energy conservation:

$$\nabla^{\mu} T_{\mu\nu} = (\Box_g \phi) d\phi = 0.$$

Preliminaries

Define the currents:

$$J_{\mu}^{V}(\phi) \doteq T_{\mu\nu}(\phi)V^{\nu}, \quad K^{V}(\phi) \doteq \nabla^{\mu}J_{\mu}(\phi) = \frac{1}{2}(\mathcal{L}_{V}g)^{\mu\nu}T_{\mu\nu}(\phi).$$

V timelike, n_{Σ}^{μ} normal vector, Σ spacelike or null $\Rightarrow J_{\mu}^{V}(\phi)n_{\Sigma}^{\mu} \geq 0$.

The divergence theorem

To obtain Energy Theorem use versions of the divergence theorem. Consider a spacetime region S which is bounded by the homologous hypersurfaces Σ_{τ} and Σ_{0} and obtain

$$\int_{\Sigma_{\tau}} J^{V}_{\mu}(\phi) n^{\mu}_{\Sigma_{\tau}} dVol_{\Sigma_{\tau}} + \int_{\mathcal{S}} \nabla^{\mu} J_{\mu}(\phi) dVol$$

$$= \int_{\Sigma_{0}} J^{V}_{\mu}(\phi) n^{\mu}_{\Sigma_{0}} dVol_{\Sigma_{0}}.$$

Sketch of the proof

Separating into different regions

In order to obtain the result of the <u>Energy Theorem</u> we separate our spacetime different regions and use the divergence Theorem in these.

Putting together work of P. Blue and A. Soffer [1] on integrated local energy decay, M. Dafermos and I. Rodnianski on the redshift [2] and V. Schlue [3] on improved decay in exterior black hole regions, results into

decay along the event horizon,

with angular derivatives

$$|\nabla \phi|^2 = \frac{1}{r^2} \left[(\partial_\theta \phi)^2 + \frac{1}{\sin^2 \theta} (\partial_\varphi \phi)^2 \right],$$

and boundedness along a null segment transverse to the event horizon,

- [1] Blue, P. and Soffer, A. (2007) Phase Space Analysis on some Black Hole Manifolds. arXiv:0511281 [math.AP]
- [2] Dafermos, M. and Rodnianski, I. (2005). A proof of Price's law for the collapse of a selfgravitating scalar field. Invent. Math. 162, 381-457.
- [3] Schlue, V. (2010). Decay of linear waves on higher-dimensional Schwarzschild black holes. Analysis & PDE, 6, 3, 515-600.arXiv:gr-qc/1012.5963

$$\int_{\mathbb{S}^2} \int_{-\infty}^{u_{\diamond}} \left[(\partial_u \phi)^2(u, v_{fix}) + |\nabla \phi|^2(u, v_{fix}) \right] du d\sigma_{\mathbb{S}}^2 \leq D_0(u_{\diamond}, v_{fix}),$$

$$\sup_{-\infty \le u \le u_{\diamond}} \int_{\mathbb{S}^2} (\phi)^2(u, v_{fix}) d\sigma_{\mathbb{S}}^2 \le D_0(u_{\diamond}, v_{fix}).$$

Redshift region $\mathcal{R} = \{r_{red} \le r \le r_+\}$

We make use of the fact, that the surface gravitiy κ_+ of \mathcal{H}^+ is positive.

Region \mathcal{R} is characterized by the fact that for r_{red} close enough to \mathcal{H}^+ there exists a vector field N such that

$$bJ_{\mu}^{N}(\phi)N^{\mu} \le K^{N}(\phi).$$

(Theorem by Dafermos and Rodnianski,)

Dafermos, M. and Rodninanski, I. (2013). Lectures on black holes and linear waves. Clay Mathematics Proceedings, Amer. Math. Soc. 17, 97-205. arxiv:gr-qc/0811.0354.

$$\Rightarrow \int_{\mathbb{S}^2} \int_{v_*}^{v_*+1} J^N_{\mu} n^{\mu}_r dVol_r d\sigma^2_{\mathbb{S}} \leq Cv_*^{-2-2\delta}, \text{ matching the decay on } \mathcal{H}^+$$

Noshift region $\mathcal{N} = \{r_{blue} \leq r \leq r_{r_red}\}$

For the vector field

$$-\partial_r = \frac{1}{\sqrt{\Omega^2}} (\partial_u + \partial_v)$$

we can control the bulk

$$|K^{-\partial_r}(\phi)| \le BJ_\mu^{-\partial_r}(\phi)n_r^\mu.$$

- Timelike currents contain all derivatives.
- Uniformity of B is given since $K^{-\partial_r}$ is invariant under translations along ∂_t .

$$\Rightarrow \int_{\mathbb{S}^2} \int_{u}^{v_*+1} J_{\mu}^{-\partial_r} n_r^{\mu} d\text{Vol}_r d\sigma_{\mathbb{S}}^2 \leq C v_*^{-2-2\delta}, \text{ matching the decay on } \mathcal{H}^+$$

Blueshift region
$$\mathcal{B} = \{r_{-} \leq r \leq r_{blue}\},\$$

where is \mathcal{B} separated by a suitable hypersurface γ .

 $J^{-}(\gamma) \cap \mathcal{B}$ We use a vector field

$$S_0 = r^q \partial_{r^*},$$

for which the bulk K^{S_0} is positive for big enough q and for r_{blue} close enough to \mathcal{CH}^+ .

Blueshift region
$$\mathcal{B} = \{r_- \leq r \leq r_{blue}\},\$$

Toblue N i+

where is \mathcal{B} separated by a suitable hypersurface γ .

 $J^{-}(\gamma) \cap \mathcal{B}$ Estimate for dyadic length at the expense of one polynomial power

$$\longrightarrow^{i_+} \Rightarrow \int_{\mathbb{S}^2} \int_{v_*}^{2v_*} J_{\mu}^{S_0} n_{\gamma}^{\mu} dVol_{\gamma} d\sigma_{\mathbb{S}}^2 \leq Cv_*^{-1-2\delta}.$$

Introducing a dyadic sequence $v_i \in [v_*, \infty)$, with $i \in \mathbb{N}_0$, such that $v_{i+1} = 2v_i$, by summing and then weighting the above with v^p we obtain the weighted

energy estimate

$$\Rightarrow \int \int_{\mu}^{\infty} v^{p} J_{\mu}^{S_{0}} n_{\gamma}^{\mu} dVol_{\gamma} d\sigma_{\mathbb{S}}^{2} \leq C v_{*}^{-1-2\delta+p}.$$

Blueshift region
$$\mathcal{B} = \{r_{-} \leq r \leq r_{blue}\},\$$

Tred R

where is \mathcal{B} separated by a suitable hypersurface γ .

$$J^+(\gamma) \cap \mathcal{B}$$

pointwise decay estimates on Ω^2

$$\Omega^{2}(\bar{u}, \bar{v}) \leq C|u_{\gamma}(\bar{v})|^{-\beta\alpha}e^{-\beta|u_{\gamma}-\bar{u}|},$$
for $(\bar{u}, \bar{v}) \in J^{+}(\gamma)$

$$0 < \beta \le -\frac{\partial_{u,v}\Omega}{\Omega}, \quad \alpha > 1, \quad \alpha\beta > p+1$$

By the choice of γ the spacetime volume in $J^+(\gamma)$ is finite, $\operatorname{Vol}(J^+(\gamma)) < C$.

Blueshift region
$$\mathcal{B} = \{r_{-} \leq r \leq r_{blue}\},\$$

Tolue N 1+

where is \mathcal{B} separated by a suitable hypersurface γ .

 $J^+(\gamma) \cap \mathcal{B}$ We use the weighted vector field

$$S = |u|^p \partial_u + v^p \partial_v.$$

With the pointwise decay of Ω^2 we can then estimate the bulk by the energy flux along a constant u- and v-slice.

$$\Rightarrow \int_{\mathcal{R}_{IV}} |\tilde{K}^{S}| dVol \leq \delta_{1} \sup_{u_{\gamma}(\hat{v}) \leq \bar{u} \leq u_{\gamma}(v_{*})} \int_{\{v_{\gamma}(\bar{u}) \leq v \leq \hat{v}\}} J_{\mu}^{S}(\phi) n_{u=\bar{u}}^{\mu} dVol_{u=\bar{u}}$$

$$+ \delta_{2} \sup_{v_{*} \leq \bar{v} \leq \hat{v}} \int_{\{u_{\gamma}(\hat{v}) \leq u \leq u_{\gamma}(\bar{v})\}} J_{\mu}^{S}(\phi) n_{v=\bar{v}}^{\mu} dVol_{v=\bar{v}},$$

where δ_1 and δ_2 are positive constants, with $\delta_1 \to 0$ and $\delta_2 \to 0$ as $v_* \to \infty$.

Blueshift region
$$\mathcal{B} = \{r_{-} \leq r \leq r_{blue}\},\$$

where is \mathcal{B} separated by a suitable hypersurface γ .

$$J^+(\gamma)\cap \mathcal{B}$$

$$\Rightarrow \int_{\mathbb{S}^2} \int_{u_{\gamma}(\hat{v})}^{u_{\gamma}(v_*)} J_{\mu}^{S} n_{v=\hat{v}}^{\mu} dVol_{v=\hat{v}} d\sigma_{\mathbb{S}}^2 \leq Cv_*^{-1-2\delta+p}.$$

For all of Ξ with $v_* > 1$, we obtain

$$\Rightarrow \int_{\mathbb{S}^2} \int_{v_*}^{\tilde{v}} J_{\mu}^S n_{u=\tilde{u}}^{\mu} dVol_{u=\tilde{u}} d\sigma_{\mathbb{S}}^2 \leq Cv_*^{-1-2\delta+p}.$$

Once the Energy Theorem is obtained in the vicinity of i^+ it is straight forward to extend it to the other regions.

 $\tilde{\Xi}$: substitute $u \leftrightarrow v$, repeat all steps of Ξ

$$\mathcal{R}_V: W = v^p \partial_v + \partial_u$$

$$\tilde{\mathcal{R}}_V: Z = \partial_v + u^p \partial_u$$

Main results

Energy Theorem

On subextremal Reissner-Nordström spacetime (\mathcal{M}, g) , with mass M and charge e and $M > |e| \neq 0$, let ϕ be a solution of the wave equation $\Box_g \phi = 0$ arising from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy surface Σ . Then for all values of Eddington-Finkelstein coordinates (u_{fix}, v_{fix}) in the black hole interior

$$\int_{\mathbb{S}^2} \int_{v_{fix}}^{\infty} \left[v^p (\partial_v \phi)^2 (u_{fix}, v) + |\nabla \phi|^2 (u_{fix}, v) \right] dv d\sigma_{\mathbb{S}}^2 \leq E, \quad for \quad v_{fix} \geq 1,$$

$$\int_{\mathbb{S}^2} \int_{u_{fix}}^{\infty} \left[u^p (\partial_u \phi)^2 (u, v_{fix}) + |\nabla \phi|^2 (u, v_{fix}) \right] du d\sigma_{\mathbb{S}}^2 \leq E, \quad for \quad u_{fix} \geq 1.$$

The generators of spherical symmetry Ω_i , i = 1, 2, 3 are given by

$$\Omega_1 = \sin \varphi \partial_\theta + \cot \theta \cos \varphi \partial_\varphi,
\Omega_2 = -\cos \varphi \partial_\theta + \cot \theta \sin \varphi \partial_\varphi,
\Omega_3 = -\partial_\varphi,$$

and satisfy $\Box_g \Omega_i \phi = 0$.

The Main Theorem will follow from the global higher order Energy Theorem and applying Sobolev embedding.

Main results

Global higher order Energy Theorem

On subextremal Reissner-Nordström spacetime (\mathcal{M}, g) , with mass M and charge e and $M > |e| \neq 0$, let ϕ be a solution of the wave equation $\Box_g \phi = 0$ arising from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy surface Σ . Then, for $v_{fix} \geq v_{\approx}$, $u_{fix} > -\infty$

$$\int_{\mathbb{S}^2} \int_{v_{fix}}^{\infty} \left[(|v|+1)^p (\partial_v \Omega^k \phi)^2 (u_{fix}, v, \theta, \varphi) + \Omega^2 |\nabla \Omega^k \phi|^2 (u_{fix}, v, \theta, \varphi) \right] r^2 dv d\sigma_{\mathbb{S}^2} \le E_k,$$

and for $u_{fix} \geq u_{\approx}, v_{fix} > -\infty$

$$\int_{\mathbb{S}^2} \int_{u_{fix}}^{\infty} \left[(|u|+1)^p (\partial_u \Omega^k \phi)^2 (u, v_{fix}, \theta, \varphi) + \Omega^2 |\nabla \Omega^k \phi|^2 (u, v_{fix}, \theta, \varphi) \right] r^2 du d\sigma_{\mathbb{S}^2} \le E_k,$$

for all $k \in \mathbb{N}^0$ and 1 .

Finally we apply <u>Sobolev embedding</u> on the standard spheres

$$\sup_{\{\theta,\varphi\}\in\mathbb{S}^2} |\phi(u,v,\theta,\varphi)|^2 \le \tilde{C} \sum_{k=0}^2 \int_{\mathbb{S}^2} \left(\Omega^k \phi \right)^2,$$

with

$$\sum_{k=0}^{2} (\Omega^{k} \phi)^{2} = |\phi|^{2} + \sum_{i=1}^{3} (\Omega_{i} \phi)^{2} + \sum_{i=1}^{3} \sum_{j=1}^{3} (\Omega_{i} \Omega_{j} \phi)^{2},$$

where k has to be understood as the order of an exponent and not as an index.

By the fundamental theorem of calculus and the Cauchy-Schwarz inequality it follows for all $v_* > 1$, $\hat{v} > v_*$ and $u \in (-\infty, u_{\approx})$ that

$$\int_{\mathbb{S}^{2}} (\Omega^{k} \phi)^{2}(u, \hat{v}) d\sigma_{\mathbb{S}^{2}} \leq \tilde{C} \left[\int_{\mathbb{S}^{2}} \left(\int_{v_{*}}^{\hat{v}} v^{p} (\partial_{v} \Omega^{k} \phi)^{2}(u, v) dv \int_{v_{*}}^{\hat{v}} v^{-p} dv \right) r^{2} d\sigma_{\mathbb{S}^{2}} + \int_{\mathbb{S}^{2}} (\Omega^{k} \phi)^{2}(u, v_{*}) d\sigma_{\mathbb{S}^{2}} \right],$$

$$\leq \tilde{C} \left[\tilde{\tilde{C}} E_{k} + \text{data} \right].$$

Similarly, we also integrate in u direction

$$\int_{\mathbb{S}^2} (\Omega^k \phi)^2 (\hat{u}, v) d\sigma_{\mathbb{S}^2} \leq \tilde{C} \left[\tilde{\tilde{C}} E_k + \text{data} \right],$$

where $u_* \geq u_*$, $\hat{u} \in (u_*, \infty)$ and $v \in (1, \infty)$ and $k \in \mathbb{N}^0$.

Adding all up, we derive pointwise boundedness

$$\sup_{\{\theta,\varphi\}\in\mathbb{S}^{2}} |\phi(\hat{u},v,\theta,\varphi)|^{2} \leq \tilde{C} \left[\int_{\mathbb{S}^{2}} (\phi)^{2} (\hat{u},v) d\sigma_{\mathbb{S}^{2}} + \int_{\mathbb{S}^{2}} (\Omega\phi)^{2} (\hat{u},v) d\sigma_{\mathbb{S}^{2}} + \int_{\mathbb{S}^{2}} (\Omega^{2}\phi)^{2} (\hat{u},v) d\sigma_{\mathbb{S}^{2}} \right],$$

$$\leq \tilde{C} \left[\tilde{C} \left(E_{0} + E_{1} + E_{2} \right) + \operatorname{data} \right) \right] \leq C,$$

with C depending on the initial data.

The continuity statement of the <u>Main Theorem</u> follows easily by estimating

$$|\phi(u, v, \varphi, \theta) - \phi(\tilde{u}, v, \varphi, \theta)|$$

via the fundamental theorem of calculus and Sobolev embedding, and similarly for v, φ and θ in the role of u.

Main results

Main Theorem

On subextremal Reissner-Nordström spacetime (\mathcal{M}, g) , with mass M and charge e and $M > |e| \neq 0$, let ϕ be a solution of the wave equation $\Box_g \phi = 0$ arising from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy surface Σ . Then

$$|\phi| \le C$$

globally in the black hole interior, in particular up to and including the Cauchy horizon \mathcal{CH}^+ .

Reference: A. F. (2014). Boundedness of massless scalar waves on Reissner-Nordström interior backgrounds. To appear in Comm. Math. Phys. arXiv:gr-qc/1407.7093

Latest news

"poor" linear:

- boundedness on fixed Kerr backgrounds, A. F.
- stability and extendibility of extremal RN \mathcal{CH}^+ , Gajic
- blow up of transverse derivatives for RN, Luk & Oh

non-linear:

- Recall: inextendibility of spherically symmetric Einstein-Maxwell-scalar field as C^1 , Dafermos
- stability of Kerr \mathcal{CH}^+ with C^0 extendibility, Dafermos & Luk

Conclusions

The Strong Cosmic Censorship Conjecture

A possible formulation:

Generic asymptotically flat initial data for Einstein-Maxwell spacetimes have a maximal future development which is inextendible as a Lorentzian manifold with square integrable Christoffel symbols.