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Boundedness, |¢| < C, on fixed interior
Reissner-Nordstrom backgrounds

Sneak Preview:
e Validity of the
e Reissner-Nordstrom as a proxy for Kerr

e I[nvestigation of O,¢ = 0 as a “poor man’s” linearisation to the Einstein
field equations, using weighted energy estimates and commutation of an-
gular momentum operators



Reissner-Nordstrom spacetimes

(r,t, @, 0) coordinates:
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Note that 8% is a Killing vector, spacelike in the interior.



Reissner-Nordstrom spacetimes

(u, v, p, ) double null coordinates:

g = —Q%(u,v)dudv + r?(u,v)dos,  do? = sin? 0dp? + d6?,
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Motivation

The Strong Cosmic
Censorship Conjecture

Infalling radiation is likely to
convert into a curvature singu-
larity due to the divergence of
energy caused by the

Roger infinite blueshift effect.
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Motivation

The Strong Cosmic
Censorship Conjecture

“Generic asymptotically flat initial
data for Einstein-Maxwell spacetimes
| have a maximal future development
pemetrios  Which is inextendible as a suitably
Christodoulou  regular Lorentzian manifold.”




2 Reissner-Nordstrom spacetime
L e )\ s extendible but not generic.

G IP

The Strong Cosmic EXtendlblhty pI‘OpeI‘ty Of
Censorship Conjecture Reissner-Nordstrom spacetime

might not hold. might not be stable.




Instability investigations:

Numerically:

e Penrose & Simpson: perturbation leads to inextendibility as CV metric
— strong spacetime singularity

Null-fluid models:

e Hiscock: ingoing null dust via RN-Vaidya metric leads to diverging
tidal forces, well behaved curvature tensors
— weak null singularity

e Poisson & Israel: in and outgoing null fluids, influx gets blueshifted , out-
flux causes mass function to diverge at CH™
— curvature singularity

e Ori: two patches of Vaidya solutions matched along a thin null layer
of dust, metric tensor well behaved
— weak singularity



Instability mvestigations:

Partial Differential Equations:

e McNamara: Reissner-Nordstrom fixed mode stability at CH™
and instability for transverse derivative for spe-
cific initial data

e Dafermos: spherically symmetric Einstein-Maxwell-scalar
field, metric extendible as CY but not as C*!
— weak singularity

E We investigate O,¢ = 0 as a proxy for the

full non-linear Einstein-Maxwell equations.




Main results

/ Main Theorem \

On subextremal Reissner-Nordstrom spacetime (M, g), with
mass M and charge e and M > |e|] # 0, let ¢ be a solution
of the wave equation O,¢ = 0 arising from sufficiently regular
Cauchy data on a two-ended asymptotically flat Cauchy surface
>.. Then

9| < C

globally in the black hole interior, in particular up to and in-

\Cluding the Cauchy horizon CH™. /




Main results

Energy Theorem
On subextremal Reissner-Nordstrom spacetime (M, g), with mass M and charge
e and M > |e| # 0, let ¢ be a solution of the wave equation O,¢ = 0 arising
from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy
surface ¥. Then for all values of Eddington-Finkelstein coordinates (u iz, Vfiz)
in the black hole interior

[ [ 0700 wsier) + [96Pugin,0)] avicd < B, for vguz1,

S2 Vfix

// [up(aucb)z(uwfm)+|Y7¢|2(u,vf7;$)]dudaé < E, for wugy>1.
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Preliminaries

Emnergy currents and vector field method

Matter field Lagrangian:
L(6,dd,g™") = g 0,00, 0,
From the Euler-Lagrange equations:
Og¢ = 0.

Stress energy-momentum tensor of massless scalar field:

1
T;u/ — ,uﬁbaygb - §guugaﬁaa¢aﬁ¢

Energy conservation:

VAT, = (Oy6)d¢ = 0.



Preliminaries

Define the currents:
1
Ju () = T (VY KV (9) = VFJu(0) = 5(Lvg)" T (¢).

V timelike, nf, normal vector, ¥ spacelike or null = JY (¢)nf, > 0.

The divergence theorem

To obtain Energy Theorem use versions of the divergence theorem.
Consider a spacetime region & which is bounded by the homologous
hypersurfaces >, and >y and obtain

S

/ JY (¢)nk, dVoly, + / VH*J,.(¢)dVol

= / JY (¢)nk dVolZ.
20



Sketch of the proof

Separating into different regions

In order to obtain the result of the Energy Theorem we sep-

arate our spacetime different regions and use the divergence
Theorem in these.




Putting together work of P. Blue and A. Soffer [1] on integrated local energy
decay, M. Dafermos and I. Rodnianski on the redshift [2] and V. Schlue [3] on
improved decay in exterior black hole regions, results into

decay along the event horizon,

v+1
/ / (0,0)*(—00,v) + |VB|*(—00,v)] dvded < Cov™ 272,
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™ with angular derivatives
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Redshift region R = {r,eq <7 <71}

We make use of the fact, that the surface gravitiy x4 of

HT is positive.

Region R is characterized by the
fact that for r,.q4 close enough to H ™"
there exists a vector field N such that

bIY () N" < KNV ().

(Theorem by Dafermos and Rodnianski, )

T'red

Dafermos, M. and Rodninanski, I. (2013). Lectures on
black holes and linear waves. Clay Mathematics Proceedings,

Amer. Math. Soc. 17, 97-205. arziv:gr-qc/0811.0354.
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Noshift region N = {’T‘blue <r< ’rfrqned}

For the vector field
1
V2

we can control the bulk

—0r = (On + Oy)

Tred

|K=(¢)| < BJ, *r(p)nk.

T

e Timelike currents contain
all derivatives.

e Uniformity of B is given
since K9 is invariant
under translations along

Ot

Ve +1

= f f J % nt*dVol,do3

S2 V%
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Blueshift region B = {r_ <r <ryue},

where is B separated by a suitable hypersurface ~.

J (vy)NB  We use a vector field
S() = Tqa,,*,

for which the bulk K*°° is positive for big enough ¢ and for ryj,. close
enough to CH™T.



Blueshift region B = {r_ <r <ryue},

where is B separated by a suitable hypersurface ~.

J~(y)NB  Estimate for dyadic length
at the expense of one polynomial power

2V
‘ * ' 2 —1-2
Ublue * Z+ i JSO n‘u'dVO]f)/ dO_S S OU* 6 .
alog v, H v
S2 v«

Introducing a dyadic sequence v; € [v.,>0), with i € Ny, such that v;11 = 2v;,

by summing and then weighting the
above with v? we obtain the weighted
energy estimate

~

Filue 50
v — aloguy;
it = / / v JFnkdVol,dod < Cop T2t

< Uigne ..
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Blueshift region B = {r_ <r <ryue},

where is B separated by a suitable hypersurface ~.

JT(yY)NB

pointwise decay estimates on 2?

g ~
0?(@,7) < Cluy(0)| PP,

% for (u,v) € J*(v)

04002
Q b

0<pB<— a>1, af>p+1

By the choice of v the spacetime volume in J71(v) is finite,
Vol(J T (7)) < C.



Blueshift region B = {r_ <r <ryue},

where is B separated by a suitable hypersurface ~.

JT(v)NB  We use the
weighted vector field

S = |u|Pd, + vPd,.

With the pointwise decay of Q? we can
then estimate the bulk by the energy
flux along a constant u- and v-slice.

= / |K9|dVol < 6, sup / J5 (¢)nky_zdVol,—g
Uy (D) SUSuny (vs) _ N
Riv {UW(U)S’USU}
+ d2  sup / JS (¢)nh_zdVol,—s,
Ve ULV
{u~ (D) <u<Lu~(9)}

where 0; and d9 are positive constants, with 6; — 0 and 05 — 0 as v. — oo.



Blueshift region B = {r_ <r <ryue},

where is B separated by a suitable hypersurface ~.

Jt(y)NB
Uy (V)

:>/ / JfﬂgZ@dVOIU:@dgg < Qo l20tp,

S2 u. (D)

For all of = with v, > 1, we
obtain

C,U—l—25—|—p
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Once the Energy Theorem is obtained in the vicinity of i T it is straight forward

to extend it to the other regions.

Ry : W =2P0, + 0,

=: substitute u <> v,
7%\/ . ZZ&U—I-Upau

repeat all steps of =
Rvi: S =vP0, +uPo,

it it
N\
// N\
/ N
/ \
s M N
/ N\
N\
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Main results

Energy Theorem
On subextremal Reissner-Nordstrom spacetime (M, g), with mass M and charge
e and M > |e| # 0, let ¢ be a solution of the wave equation O,¢ = 0 arising
from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy
surface ¥. Then for all values of Eddington-Finkelstein coordinates (u iz, Vfiz)
in the black hole interior

[ [ 0700 wsier) + [96Pugin,0)] avicd < B, for vguz1,

S2 Vfix

// [up(aucb)z(uwfm)+|Y7¢|2(u,vf7;$)]dudaé < E, for wugy>1.
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Pointwise boundedness

The generators of spherical symmetry §2;, ¢ = 1,2,3 are
given by

§01 = singdy + cot b cos pd,,

§lo = —cospdy + cot b sinpd,,

g—ZS — _agov

and satisty 0,82;¢0 = 0.

The Main Theorem will follow from the global higher
order Energy Theorem and applying Sobolev embedding.




Main results

Global higher order Energy Theorem
On subextremal Reissner-Nordstrém spacetime (M, g), with mass M and charge
e and M > |e| # 0, let ¢ be a solution of the wave equation O,¢ = 0 arising
from sufficiently regular Cauchy data on a two-ended asymptotically flat Cauchy
surface X. Then, for vy, > v, Uiy > —00

/ / [(Jv] + 1)P(0u§2° )2 (wfin, v, 0, ) + |V G| (U fia, v, 0, )] r*°dvdos: < E,

82 Vfix

and for ugiy > Us<, Vfjp > —00

f / K'u‘ + 1)p(8ugzk¢)2(u’ Ufix, 0, 90) + Qz'WQk¢|2(ua Ufix, 0, 90)] T2dUdUSQ < Kk,

S2 Ufix

forall k € N and 1 < p <14 26. /




Pointwise boundedness

Finally we apply Sobolev embedding on the standard
spheres

sup |(’UJ’U97<P2<CZ/ ng

{0,p}€S? fo— ng
with
2 3 3
Y (b)) |¢I2+Z Q:0)° ZZ Q:526)",
k=0 =1 i=1 j=1

where k has to be understood as the order of an
exponent and not as an index.



Pointwise boundedness

By the fundamental theorem of calculus and the Cauchy-Schwarz inequality it
follows for all v, > 1,0 > v, and u € (—00, us<) that

0 0

/ (§2F6)?(u,0)dog: < C / f vP (0,52 6)% (u, v)dw / v Pdv | r?doge

§2 2 U ("

+ (@ 0P v)dos |
S2
< C {C’Ek + data} )

Similarly, we also integrate in u direction
/(Qkﬁb)z(ﬁ:?))d(fs? < C {C:’Ek —I—data} ,
82

where wu, > U, 4 € (uy,00) and v € (1,00) and k € N°,



Pointwise boundedness

Adding all up, we derive pointwise boundedness

sup |6 v.0,0)2 < C ] (6)2 (4, v)dogs + [ (26)*(, v)dogs + f (26)*(t, v)dos: | |

2
{0,0}€S : & &

< é [é (E() + F1 + EQ) —+ data)} < C,

with C' depending on the initial data.

The continuity statement of the Main Theorem follows easily by estimating

’¢(ua v, @, 9) o @(ﬂv v, @, 9)’

via the fundamental theorem of calculus and Sobolev embedding, and similarly
for v, ¢ and # in the role of of u.




Main results

/ Main Theorem \

On subextremal Reissner-Nordstrom spacetime (M, g), with
mass M and charge e and M > |e| # 0, let ¢ be a solution
of the wave equation O,¢ = 0 arising from sufficiently regular
Cauchy data on a two-ended asymptotically flat Cauchy surface
>.. Then

9l < C

globally in the black hole interior, in particular up to and in-

\cluding the Cauchy horizon CH™. /

Reference: A. F. (2014). Boundedness of massless scalar waves
on Reissner-Nordstrom interior backgrounds. To ap-

pear in Comm. Math. Phys. arXiv:gr-qc/1407.7093




Latest news

“poor” linear:

e boundedness on fixed Kerr backgrounds, A. F.

e stability and extendibility of extremal RN CH™, Gajic
e blow up of transverse derivatives for RN, Luk & Oh
non-linear:

o [Recall: inextendibility of spherically symmetric
Einstein-Maxwell-scalar field as C', Dafermos

o stability of Kerr CHT with C° extendibility,
Dafermos & Luk



Conclusions

The Strong Cosmic
Censorship Conjecture

A possible formulation:

Generic asymptotically flat initial data for
Einstein-Maxwell spacetimes have a maximal
future development which is inextendible as
a Lorentzian manifold with square integrable
Christoffel symbols.




