Characterization of (asymptotically) Kerr-de Sitter-like spacetimes at null infinity

Marc Mars

Universidad de Salamanca

October 2015

Workshop Dynamics of Self-Gravitating Matter, Institute Henri Poincaré

Joint work with Tim Paetz, José Senovilla and Walter Simon

Outline

- Introduction.
- 2 Kerr-de Sitter metric: local properties and vanishing of \mathcal{S}^Q .
- 3 Cauchy Killing initial data at \mathscr{I} .
- 4 Necessary conditions at \mathscr{I} for $\mathcal{S}^Q = 0$.
- **5** Sufficient conditions at \mathscr{I} for $S^Q = 0$.
- 6 Characterization of Kerr-de Sitter at null infinity.

Aim and motivation

Motivation:

The Kerr-de Sitter spacetime has a number of interesting properties which make it worth studying.

ullet Expected to satisfy a stationary black hole uniqueness theorem among vacuum solutions with positive $\Lambda.$

From a dynamical perspective:

- It may play some role in the future asymptotic behaviour of matter solutions with positive Λ , when black holes form.
- Also, the dynamical stability of the Kerr-de Sitter spacetime in the expanding region is an interesting problem.

Useful to have a good understanding of the asymptotics of the Kerr-de Sitter metric at null infinity.

Aim:

Characterize uniquely the Kerr-de Sitter spacetime among spacetimes:

- (i) solving the $(\Lambda > 0)$ -vacuum equations,
- (ii) admitting a Killing vector field (KVF),
- (iii) admitting a smooth conformal compactification,

in terms of data at infinity.

Introduction. 3/26

Kerr-(A) de Sitter spacetime

- The Kerr-de Sitter family of spacetimes depends on three parameters: Λ, a, m.
- Solves the vacuum Einstein equations with Λ:

$$R_{\alpha\beta} - rac{1}{2}R\,g_{\alpha\beta} + \Lambda g_{\alpha\beta} = 0.$$

Away from fixed points of Killing vectors, the local form of the metric is

Λ can take any value:

• $\Lambda > 0$ is Kerr-de Sitter, $\Lambda = 0$ is Kerr, $\Lambda < 0$ is Kerr- anti de Sitter.

Admits a generalization with NUT charge ℓ (also Λ -vacuum). Called Kerr-NUT-(A) de Sitter.

Asymptotic properties

The Kerr-NUT-(A) de Sitter metric admits a conformal compactification at infinity.

Recall:

Definition (Conformal compactification à la Penrose)

A spacetime (\mathcal{M}, g) admits a smooth conformal compactification at infinity if

ullet There exists a spacetime $(\widetilde{\mathscr{M}}\,,\widetilde{g})$ and a conformal embedding ϕ

$$\mathscr{M} \stackrel{\phi}{\hookrightarrow} \widetilde{\mathscr{M}} , \qquad \phi^{\star}(\Theta^{-2}\widetilde{g}) = g \qquad \Theta \in C^{\infty}(\widetilde{\mathscr{M}}, \mathbb{R}), \quad \Theta|_{\phi(\mathscr{M})} > 0$$

such that $\mathscr{I}:=\partial(\phi(\mathscr{M}))\neq\emptyset$ is smooth hypersurface where $\Theta=0$ and $d\Theta\neq0$.

Is called "null infinity"

If (\mathcal{M}, g) solves the Λ -vacuum field equations then:

 \mathscr{I} is null if $\Lambda=0$, \mathscr{I} is spacelike if $\Lambda>0$, \mathscr{I} is timelike if $\Lambda<0$.

Our aim is to characterize the Kerr-NUT-de Sitter spacetime from data at \mathscr{I} .

Two main ingredients:

- Local characterization of Kerr-NUT-de Sitter.
- Friedrich's Cauchy problem for $(\Lambda > 0)$ -vacuum equations at \mathscr{I} .

Algebraic properties

• The Kerr-NUT-(A) de Sitter metric admits two linearly independent KVF ∂_u , ∂_{φ} .

The Killing field ∂_u is geometrically privileged:

• For any KVF X in a spacetime (\mathcal{M}, g) :

$$F_{\alpha\beta} := \nabla_{\alpha} X_{\beta}$$
 is a two-form. Called Killing form associated to X .

Assume: (\mathcal{M}, g) orientable with volume form η .

• Convenient to work with self dual two-forms $U^* = -iU$.

$$\mathcal{U}$$
 self-dual \iff $\mathcal{U} = U + i U^*$, with U real.

Space of self-dual two-forms at $p \in \mathscr{M}$ admits a canonical metric $\mathcal{I} = \frac{i}{4} \left(\boldsymbol{\eta} + i \boldsymbol{\eta}^{\star} \right)$

- $\mathcal{I}_{\alpha\beta\mu\nu}\mathcal{W}^{\mu\nu} = \mathcal{W}_{\alpha\beta}$.
- Define $\mathcal{F}_{\alpha\beta} := F_{\alpha\beta} + i F_{\alpha\beta}^{\star}$. The tensor

$$\mathcal{U}_{\alpha\beta\mu\nu} := -\mathcal{F}_{\alpha\beta}\mathcal{F}_{\mu\nu} + \frac{1}{3}\mathcal{F}^2\mathcal{I}_{\alpha\beta\mu\nu}, \qquad \mathcal{F}^2 := \mathcal{F}_{\alpha\beta}\mathcal{F}^{\alpha\beta}$$

is a symmetric, double, self-dual, two-form and trace-free.

• Same properties as the self-dual Weyl tensor: $\mathcal{C}_{\alpha\beta\mu\nu}:=\mathsf{C}_{\alpha\beta\mu\nu}+i\,\mathsf{C}_{\alpha\beta\mu\nu}^{\star}$

The Kerr-NUT-(A) de Sitter metric has the following property:

• Construct \mathcal{F} and \mathcal{U} associated to $X = \partial_u$ in the Kerr-NUT-(A) de Sitter metric.

Algebraic property

There exists a function $Q \in C^{\infty}(\mathcal{M}, \mathbb{C})$ satisfying $\mathcal{S}^{Q}_{\alpha\beta\mu\nu} := \mathcal{C}_{\alpha\beta\mu\nu} + Q \mathcal{U}_{\alpha\beta\mu\nu} = 0$.

In the $\Lambda = 0$ case, this property was know to characterize the Kerr-NUT spacetime:

Theorem (M., 2001)

Let (\mathcal{M}^4, g) be Ricci-flat with a KVF X. Assume (\mathcal{M}, g) is not locally flat and \mathcal{F}^2 not identically zero. If \mathcal{S}^Q vanishes for some $Q \in C^\infty(\mathcal{M}, \mathbb{C})$ then

- \mathcal{F}^2 vanishes nowhere.
- ullet There exist constants $\mathcal{A}\in\mathbb{C}\setminus\{0\}$ and $c\in\mathbb{R}$ such that

$$Q = -\frac{6\mathcal{A}}{(\mathcal{F}^2)^{\frac{1}{4}}} \qquad -g(X,X) + Re\left(\frac{(\mathcal{F}^2)^{\frac{1}{4}}}{\mathcal{A}}\right) = c.$$

If c>0 then (\mathcal{M},g) is locally isometric to Kerr-NUT with mass m and NUT parameter ℓ

$$m - i\ell = -\frac{i}{2c\sqrt{c}A^2}.$$

A similar local characterization exists for all A. [M & Senovilla '2014]

Useful intermediate result:

Proposition (M. & Senovilla)

Let (\mathcal{M}, g) be a Λ -vacuum spacetime with a KVF X such that $S^Q = 0$ for some $Q \in C^{\infty}(\mathcal{M}, \mathbb{C})$. There are four exclusive cases:

- (a) If Q=0 everywhere then (\mathcal{M},g) is locally isometric to (A) de Sitter or Minkowski.
- (b) If $Q \not\equiv 0$ and $\mathcal{F}^2 = 0$ on a non-empty open set then $\Lambda \leq 0$.
- (c) If exists $p \in \mathcal{M}$ where $\mathcal{F}^2Q|_p \neq 0$, then \mathcal{F}^2 vanishes nowhere. Moreover, either $Q\mathcal{F}^2-4\Lambda$ vanishes everywhere (c.1) or nowhere (c.2)
 - (c.1) The metric is locally $g = h_- + h_+$ with h_\pm of constant curvature.

Consequence:

To study spacetimes with $\mathcal{S}^Q=0$ admitting a conformal compactification, we can assume $\mathcal{F}^2\neq 0$ and $Q\mathcal{F}^2-4\Lambda\neq 0$ everywhere.

Conformal Λ -vacuum field equations and Cauchy problem at $\mathscr I$

The Λ -vacuum field equations are conformally regular (Friedrich 1986):

- The Einstein equations $R(g)_{\alpha\beta} = \Lambda g_{\alpha\beta}$ on \mathcal{M} are equivalent to a set of equations on $(\mathcal{M}, \widetilde{g} := \Theta^2 g)$ called Conformal Field Equations.
- Fundamental property: the equations are regular at $\Theta = 0$.

Assume $\Lambda > 0$. The conformal Λ -vacuum equations have well-posed initial data at \mathscr{I} .

Theorem (H. Friedrich, 1986)

Let (Σ,h,D) be a Riemannian 3-manifold (Σ,h) endowed with a symmetric tensor D_{ij} . There exists a unique (up to conformal diffeomorphism) maximal globally hyperbolic development $(\widetilde{\mathcal{M}},\widetilde{g})$ of the conformal $(\Lambda>0)$ -vacuum field equations and an isometric embedding $\iota:(\Sigma,h)\longrightarrow (\widetilde{\mathcal{M}},\widetilde{g})$ satisfying

- $\iota^{\star}(\Theta) = 0$
- $\iota^*(\Theta^{-1}\widetilde{C}(n,\cdot,n,\cdot))_{ij}=D_{ij}$, where n is the unit future normal to $\mathscr{I}:=\iota(\Sigma)$, if and only if D is a TT-tensor (i.e. $tr_hD=0$ and $div_hD=0$).

Define \mathcal{M} as the connected component of $\{\Theta > 0\}$ with $\mathscr{I} \subset \overline{\mathcal{M}}$.

- Then $(\mathcal{M}, g := \Theta^{-2}\widetilde{g})$ is Λ -vacuum with a smooth conformal compactification.
- (Σ,h,D) defines the Cauchy data at ${\mathscr I}$ for the $(\Lambda>0)$ -vacuum field equations.

Killing initial data at §

Assume: (\mathcal{M}, g) admits a conformal compactification and KVF X.

• $\phi_*(X)$ is a conformal Killing vector (CKV) of $(\mathcal{M}, \widetilde{g})$ which extends smoothly as a tangential vector to \mathscr{I} .

Let Y be the restriction of $\phi_{\star}(X)$ to \mathscr{I} and (Σ, h, D) the Cauchy data at \mathscr{I} :

- Y is a CKV of (Σ, h).
- The TT-tensor *D* satisfies the reduced KID equation:

$$\mathscr{L}_Y D + \frac{1}{3} (\operatorname{div}_h Y) D = 0.$$

Converse also true:

Theorem (Paetz, 2014)

Let (Σ, h, D) be the Cauchy data at \mathscr{I} for the conformal $(\Lambda > 0)$ -vacuum field equations.

The maximal development $(\widetilde{\mathcal{M}}, \widetilde{g})$ of this data admits a CKV X with the properties

- X is tangential to \mathscr{I} and $X|_{\mathscr{I}} = \iota_{\star}(Y)$,
- X is Killing in $(\mathcal{M}, g := \Theta^{-2}\widetilde{g})$,

if and only if Y is a CKV of (Σ, h) satisfying the reduced KID equations.

- Call such data Killing initial data at \mathscr{I} .
- ullet We want to find necessary conditions for Killing data at $\mathscr I$ of Kerr-NUT-de Sitter.

Cauchy Killing initial data at §.

Strategy:

• Study the family of tensors \mathcal{S}^Q at \mathscr{I} for $(\Lambda > 0)$ -vacuum solutions admitting a conformal compactification.

Assumptions:

- (\mathcal{M},g) admits a conformal compactification $(\widetilde{\mathcal{M}},\widetilde{g})$ with data at \mathscr{I} : (Σ,h,D,Y) .
- Denote by X the CKV at $(\widetilde{\mathcal{M}}, \widetilde{g})$ generated by Y.

We are not assuming that $S^Q := C + QU$ vanishes for some Q.

• Conformal invariance of the Weyl tensor $C_{\alpha\beta\mu}{}^{\nu} = \widetilde{C}_{\alpha\beta\mu}{}^{\nu}$ implies $\mathcal{C}_{\alpha\beta\mu}{}^{\nu} \stackrel{\mathscr{I}}{\longrightarrow} 0$.

At \mathscr{I} :

$$\mathcal{S}_{\alpha\beta\mu}^{Q}{}^{\nu}|_{\mathscr{I}} = Q \mathcal{U}_{\alpha\beta\mu}{}^{\nu}|_{\mathscr{I}}.$$

• Need to find the behaviour of $\mathcal{U}:=-\mathcal{F}\otimes\mathcal{F}+\frac{1}{3}\mathcal{F}^2\mathcal{I}$ near $\mathscr{I}.$

Lemma

The tensor $\Theta^4 \mathcal{U}_{\alpha\beta\mu}{}^{\nu}$ admits a smooth extension at \mathscr{I} which vanishes at $p \in \mathscr{I}$ if and only if $Y|_p = 0$.

Consequences:

- \mathcal{S}^Q is regular at \mathscr{I} if and only if $\Theta^{-4}Q$ admits a smooth extension to \mathscr{I} .
- ullet \mathcal{S}^Q vanishes at \mathscr{I} if and only if Q has a zero of order five at null infinity.

It turns out there is a natural choice of Q for which this is always true.

ullet Whenever $\mathcal{F}^2
eq 0$ a convenient way to define Q is by the condition

$$(\mathcal{S}^Q)_{lphaeta\mu
u}\mathcal{F}^{lphaeta}\mathcal{F}^{\mu
u}=0\quad\Longleftrightarrow\quad Q=Q_0:=rac{3}{2}rac{1}{\mathcal{F}^4}\mathcal{C}_{lphaeta\mu
u}\mathcal{F}^{lphaeta}\mathcal{F}^{\mu
u}.$$

Asymptotics of \mathcal{F}^2 and \mathcal{Q}_0

$$\mathcal{F}^2 = -\frac{4}{3}\Theta^{-2}|Y|^2 + \textit{O}(\Theta^{-1}), \quad \text{and} \quad \textit{Q}_0 \quad = \frac{\Theta^5}{|Y|^4}(\text{smooth expression at }\mathscr{I}) + \textit{O}(\Theta^6).$$

Consequence: $S^{(0)} := S^{Q_0}$ vanishes at \mathscr{I} .

- The rescaled tensor $\mathcal{T}^{(0)}_{\alpha\beta\mu}{}^{\nu}:=\Theta^{-1}\mathcal{S}^{(0)}_{\alpha\beta\mu}{}^{\nu}$ is well-defined and regular near any non-fixed point of Y at \mathscr{I} .
 - For any Q: Regularity of \mathcal{T}^Q at \mathscr{I} holds as long as $Q = O(\Theta^5)$.

Necessary conditions at $\mathscr I$ for the vanishing of $\mathcal T^{(0)}$

• Use $\hat{ }$ to denote objects associated to (\mathscr{I}, h) :

Schouten tensor:
$$\widehat{L}_{ij} = \widehat{R}_{ij} - \frac{1}{4}\widehat{R}h_{ij}$$
Cotton-York tensor:
$$\widehat{C}_{ij} = -\frac{1}{2}\widehat{\eta}_{i}^{\ kl}\left(\widehat{\nabla}_{k}\widehat{L}_{ij} - \widehat{\nabla}_{j}\widehat{L}_{ik}\right)$$

• \widehat{C} is a TT-tensor. Vanishes everywhere iff (Σ, h) is locally conformally flat.

Proposition

Let (\mathcal{M},g) be a $(\Lambda>0)$ -vacuum spacetime with a smooth conformal compactification and a KVF X. Let (\mathcal{I},h,D,Y) be the KID data at \mathcal{I} and assume $|Y|^2>0$. Then

$$\mathcal{T}^{(0)}(\textbf{n},\cdot,\textbf{n},\cdot)_{ij}|_{\mathscr{I}}=\mathcal{D}_{ij}-\textit{scalar}\times(\textbf{Y}\otimes\textbf{Y})^{\mathrm{tf}}_{ij}$$

where
$$\mathcal{D}_{ij}:=D_{ij}-i\sqrt{\frac{3}{\hbar}}\widehat{\mathsf{C}}_{ij}$$
 and $(Y\otimes Y)^{\mathrm{tf}}_{ij}:=Y_{i}Y_{j}-\frac{1}{3}|Y|^{2}h_{ij}.$

Moreover, $\mathcal{T}^{(0)}|_{\mathscr{I}}$ vanishes if and only if

$$D_{ij} = \frac{A_D}{|Y|^5} (Y \otimes Y)^{\mathrm{tf}}_{ij} \qquad \widehat{C}_{ij} = \frac{A_{\widehat{C}}}{|Y|^5} (Y \otimes Y)^{\mathrm{tf}}_{ij},$$

where A_D and $A_{\widehat{C}}$ are constants on each connected component of \mathscr{I} .

• Condition $Y \neq 0$ is superfluous except in de Sitter $(\Sigma, h, D) = (\mathbb{S}^3, h \in [\gamma_{\mathbb{S}^3}], D = 0)$.

If we are not in de Sitter, then:

- either $\hat{C}_{ij} \neq 0$ somewhere (metric not in the conformal class of $\gamma_{\mathbb{S}^3}$)
- or $D_{ij} \not\equiv 0$ (rescaled electric part of Weyl tensor not zero at \mathscr{I}), or both.

Since $|Y|^{-5}(Y \otimes Y)^{\mathrm{tf}}$ is singular at $Y = 0 \implies$ fixed points of Y are not part of \mathscr{I} .

Combining the Proposition with the property that Kerr-NUT-de Sitter has $S^Q = 0$:

Theorem (Necessary conditions at \mathscr{I} [M., Paetz, Senovilla, Simon], 2015)

Let (\mathcal{M},g) be the Kerr-NUT-de Sitter spacetime or, more generally, a $(\Lambda>0)$ -vacuum spacetime satisfying

- (i) (\mathcal{M}, g) admits a smooth conformal compactification.
- (ii) there is a function $Q \in C^{\infty}(\mathcal{M}, \mathbb{C})$ such that $S^{Q} = 0$.

Then, the asymptotic Killing data (Σ, h, D, Y) at each connected component of $\mathscr I$ satisfies

$$D_{ij} = \frac{A_D}{|Y|^5} (Y \otimes Y)^{\text{tf}}_{ij} \qquad \widehat{C}_{ij} = \frac{A_{\widehat{C}}}{|Y|^5} (Y \otimes Y)^{\text{tf}}_{ij},$$

where A_D and $A_{\widehat{c}}$ are constants.

What about sufficient conditions?

Strategy:

- (i) Prove that $\mathcal{T}^Q|_{\mathscr{I}}=0$ implies $\mathcal{T}^Q=0$ (i.e. $\mathcal{S}^Q=0$) everywhere.
- (ii) Identify Kerr-de Sitter among all spacetimes with $S^Q = 0$.

Start with item (i):

- \bullet $\mathcal{T}^{(0)}$ does not seem to satisfy any useful evolution equation.
- Need a better choice of Q to deal with sufficiency:

On (\mathcal{M}, g) with a KVF X: Ernst one-form: $\sigma_{\mu} := 2\mathcal{F}_{\nu\mu}X^{\nu}$

- In Λ -vacuum, σ_{μ} is closed. Locally exists an Ernst potential σ , $(\nabla_{\mu}\sigma = \sigma_{\mu})$.
- Defined up to an additive complex constant (called σ -constant).

Proposition (Further properties of spacetimes with $\mathcal{S}^{\textit{Q}}=0$ [M. & Senovilla, 2014])

Let (\mathcal{M},g) be a $(\Lambda>0)$ -vacuum spacetime with a Killing vector X. Assume $\mathcal{S}^Q=0$ for some $Q\in C^\infty(\mathcal{M},\mathbb{C})$ and $Q\mathcal{F}^2$ and $Q\mathcal{F}^2-4\Lambda$ are both not identically zero.

Then the Ernst potential σ exists globally. Moreover, the σ -constant can be chosen so that σ has no zeros and

$$Q = rac{3}{\sigma} \left(1 - \sqrt{1 + rac{4 \Lambda \sigma}{\mathcal{F}^2}}
ight) + rac{4 \Lambda}{\mathcal{F}^2} := Q^{\mathrm{ev}}.$$

ullet We can compute Q^{ev} near $\mathscr I$ for any $(\mathscr M,g)$ with a smooth conformal compactification and a KVF X.

Requires four terms in the expansion of the Ernst potential σ near \mathscr{I} .

Proposition

Let (\mathcal{M},g) be $(\Lambda>0)$ -vacuum with a smooth conformal compactification and a KVF X. The function Q^{ev} vanishes to order Θ^4 at \mathscr{I} near any non- fixed point of Y. Moreover, there exists a (unique) choice of σ -constant such that Q^{ev} has a zero of order 5 if and only if

$$D_{ij}Y^j \propto Y_i, \qquad \widehat{C}_{ij}Y^j \propto Y_i,$$
 (1)

In that case the leading order terms of Q_{ev} and Q_0 coincide, which implies

$$\mathcal{T}^{(\mathrm{ev})\rho}_{\mu\nu\sigma}|_{\mathscr{I}} = \mathcal{T}^{(0)\rho}_{\mu\nu\sigma}|_{\mathscr{I}}.$$

ullet $\mathcal{T}^{(0)}$ is always finite at \mathscr{I} . $\mathcal{T}^{(\mathrm{ev})}$ is finite only under (1), which is much weaker than

$$D_{ij} - i \sqrt{\frac{3}{\Lambda}} \widehat{C}_{ij} = \text{Const} \times \left(Y_i Y_j - \frac{|Y|^2}{3} h_{ij} \right) \quad \Longleftrightarrow \quad \mathcal{T}^{(0) \ \rho}_{\mu\nu\sigma}|_{\mathscr{I}} = 0 = \mathcal{T}^{\mathrm{ev} \ \rho}_{\mu\nu\sigma}|_{\mathscr{I}}.$$

Makes sense to put forward a definition:

Asymptotically Kerr-de Sitter like spacetimes

Definition (Asymptotically Kerr-de Sitter like spacetimes)

Let (\mathcal{M},g) be a $(\Lambda>0)$ -vacuum space-time admitting smooth conformal compactification and corresponding null infinity \mathscr{I} . (\mathcal{M},g) is called asymptotically Kerr-de Sitter-like at a connected component \mathscr{I}_0 of \mathscr{I} if it admits a (non-trivial) KVF X which induces a CKV Y on \mathscr{I}_0 such that

- The rescaled electric part of the Weyl tensor $D_{ij} := \Theta^{-1}\widetilde{\mathsf{C}}(n,\cdot,n,\cdot)_{ij}$
- The Cotton-York tensor \widehat{C}_{ij} of (\mathscr{I}_0, h)

have Y as a common eigenvector.

Equivalently: The rescaled tensor $\mathcal{T}_{\alpha\beta\mu}^{(\mathrm{ev})\nu}$ is regular at \mathscr{I}_0 .

- Generically: $\mathcal{T}_{\alpha\beta\mu}^{(\mathrm{ev})\nu}$ is singular at \mathscr{I} , with a leading order term diverging as Θ^{-1} .
- ullet Cannot be expected to satisfy an evolution equation with regular coefficients at $\mathscr{I}.$

However, it does satisfy a symmetric hyperbolic system of PDE with a Fuchsian term.

Linear evolution equation for $\mathcal{T}^{(ev)}$

- In the Ricci flat case, the tensor $\mathcal{S}^{(\mathrm{ev})}$ satisfies a linear wave equation [lonescu, Klainerman, 2007].
 - Useful to study uniqueness of the Kerr black hole without assuming analyticity.
- ullet For Λ -vacuum spacetimes, Q^{ev} also satisfies a useful evolution equation.

Lemma

Let (\mathcal{M},g) be a Λ -vacuum spacetime with a Killing vector X. On a neighborhood of a point where \mathcal{F}^2 and the Ernst-potential do not vanish, $\mathcal{S}^{(\mathrm{ev})}$ satisfies the equation

$$abla_{
ho} \mathcal{S}_{lphaeta\mu}^{(\mathrm{ev})\,
ho} = \mathcal{J}(\mathcal{S}^{(\mathrm{ev})})_{lphaeta\mu}$$

where $\mathcal{J}(\mathcal{S}^{(\mathrm{ev})})_{\alpha\beta\mu}$ is linear and homogeneous in $\mathcal{S}^{(\mathrm{ev})}_{\alpha\beta\mu}$.

ullet The rescaled $\mathcal{T}^{(\mathrm{ev})} := \Theta^{-1} \mathcal{S}^{(\mathrm{ev})}$ satisfies the PDE

$$\widetilde{\nabla}_{\rho} \mathcal{T}_{\alpha\beta\mu}^{(\mathrm{ev})\rho} = \mathcal{J}(\mathcal{T}^{(\mathrm{ev})})_{\alpha\beta\mu} .$$

• Need to understand $\mathcal{J}(\mathcal{T}^{(\mathrm{ev})})_{\alpha\beta\mu}$ near \mathscr{I} .

Structure of the PDE

- Given the symmetries of $\mathcal{T}^{(\mathrm{ev})\nu}_{\alpha\beta\mu}$, $\mathcal{E}_{\alpha\mu}:=n^{\beta}n_{\nu}\mathcal{T}^{(\mathrm{ev})\nu}_{\alpha\beta\mu}$ contains all independent components.
- ullet The system of equations satisfied by $\mathcal{T}_{lphaeta\mu}^{(\mathrm{ev})
 u}$ contains the following subsystem

$$n^{\rho}\widetilde{\nabla}_{\rho}\mathcal{E}_{\alpha\beta} - i\widehat{\eta}_{\mu(\alpha}{}^{\rho}\widetilde{\nabla}_{\rho}\mathcal{E}_{\beta)}{}^{\mu} + \frac{1}{\Theta}\sqrt{\frac{\Lambda}{3}}N_{0}(\mathcal{E})_{\alpha\beta} = N_{1}(\mathcal{E})_{\alpha\beta}, \tag{2}$$

where $\widehat{\eta}_{\mu\alpha\beta} := n^{\nu} \eta_{\nu\mu\alpha\beta}$.

• $N_0(\mathcal{E})_{\alpha\beta}$, $N_1(\mathcal{E})_{\alpha\beta}$ are linear homogeneous in $\mathcal{E}_{\alpha\beta}$ and regular at \mathscr{I} .

In Gaussian coordinates $\{t,x^i\}$ adapted to $\mathscr I$ and $n=\partial_t$

$$\bullet \Theta = \sqrt{\frac{\Lambda}{3}}t + O(t^2)$$

• \mathcal{E}_{ij} are the only non-zero components. Decompose $\mathcal{E}_{ij} = E_{ij} + i B_{ij}$.

The system (2) has the form

$$A^0 \partial_t u + A^i \partial_i u + \frac{1}{t} N_0(u) = N_1(u), \qquad u = (E_{ij}, B_{ij})$$

- A^0, A^i are self-adjoint w.r.t the scalar product $\langle u, u \rangle = E_{ii}E^{ij} + B_{ij}B^{ij}$.
- A^0 is positive definite.

The system is symmetric hyperbolic with a zeroth-order, divergent term $\frac{1}{t}$.

Uniqueness of solutions to Fuchsian equations

- System of PDEs with divergence terms $\frac{1}{t}$ are called Fuchsian.
- Fuchsian system of PDE have been analyzed mainly in the analytic case.
- In the smooth case, there are results by [Claudel & Newman, 1997], [Rendall, 2000] and recently [Ames. Beyer, Eisenberg & LeFloch, 2012].

Adapting ideas of Ames et. al. we can prove a localized uniqueness theorem for symmetric hyperbolic, linear, homogeneous Fuchsian system.

Lemma (Uniqueness of solutions)

Consider a manifold \mathcal{N}^n and a smooth hypersurface $\Sigma:=\{t=0\}$. Suppose that $u:=\mathcal{M}\mapsto\mathbb{R}^m$ satisfies the PDE

$$A^0\partial_t u + A^i\partial_i u + \frac{1}{t}N_0(u) = N_1(u),$$

with N_0 , N_1 linear, homogeneous and regular and A^0 , A^i self-adjoint w.r.t a positive definite scalar product $\langle u, u \rangle|_p$, at each $p \in \mathcal{N}$.

If a C^1 solution u vanishes on a domain $\Omega \subset \Sigma$ and A^0 and $A^0 + N_0$ are positive definite, then $u \equiv 0$ on the domain of dependence of Ω .

Characterization result at \mathscr{I}

- Concerning the PDE satisfied by $\mathcal{T}_{\alpha\beta\mu}^{(\mathrm{ev})\mu}$ it turns out that A^0+N_0 is positive definite.
- We conclude that if $\mathcal{T}_{\alpha\beta\mu}^{(\mathrm{ev})\mu}$ vanishes at \mathscr{I} , then it vanishes in a neighbourhood of \mathscr{I} .
- It is the easy to conclude that $\mathcal{T}^{(\mathrm{ev})\mu}_{\alpha\beta\mu}$ and hence $\mathcal{S}^{(\mathrm{ev})\nu}_{\alpha\beta\mu}$ vanish everywhere. We conclude:

Theorem (M., Paetz, Senovilla, Simon, 2015)

Let (\mathcal{M},g) be a $(\Lambda>0)$ -vacuum smooth spacetime admitting a smooth conformal compactification at \mathscr{I} and a KVF X. Let \mathscr{I}_0 be a connected component of \mathscr{I} . Let h be the induced by $\widetilde{g}=\Theta^2g$ on \mathscr{I}_0 and Y the CKV induced by X on \mathscr{I}_0 .

Then, there exists a smooth function Q_0 for which the tensor $S_{\mu\nu\sigma}^{(0)}{}^{\rho}$ associated to X vanishes in the domain of dependence of \mathscr{I}_0 if and only if:

(i) The Cotton-York tensor \widehat{C}_{ij} of h has the form

$$\widehat{C}_{ij} = \frac{A_{\widehat{C}}}{|Y|^5} (Y_i Y_j - \frac{1}{3} |Y|^2 h_{ij}), \qquad B \in \mathbb{R}.$$

(ii) The electric part of the rescaled Weyl tensor at \mathscr{I}_0 $D_{ij}=\Theta^{-1}\widetilde{C}(n,\cdot,n,\cdot)_{ij}|_{\mathscr{I}_0}$ is

$$D_{ij} = \frac{A_D}{|Y|^5} (Y_i Y_j - \frac{1}{3} |Y|^2 h_{ij}), \qquad A \in \mathbb{R}.$$

- It remains to identify Kerr-NUT-de Sitter at \mathscr{I} .
- ullet Apply a local characterization result among spacetimes with $\mathcal{S}^Q=0$.

Theorem (Local characterization of Kerr-NUT-(A) de Sitter [M. & Senovilla, 2014])

Let (\mathcal{M},g) be a $(\Lambda > 0)$ -vacuum spacetime with a KVF X such that $S^Q = 0$ for some $Q \in C^\infty(\mathcal{M},\mathbb{C})$. Assume \mathcal{F}^2 and $Q\mathcal{F}^2 - 4\Lambda$ vanish nowhere.

Define $W:=\frac{6\sqrt{\mathcal{F}^2}}{Q\mathcal{F}^2-4\Lambda}:=y+iZ$. There exist four real constants $b_1,b_2,c,k\in\mathbb{R}$ such that

$$b_2 - i \ b_1 = -rac{1}{6} Q \mathcal{F}^2 W^3, \qquad rac{3}{\Lambda} c = -|X|_g^2 - Re \left(rac{1}{6} W^2 (Q \mathcal{F}^2 + 2\Lambda)
ight)$$

 $\left(rac{3}{\Lambda}
ight)^3 k = |W|^2 |\nabla Z|_g^2 - b_2 Z + c Z^2 + rac{\Lambda}{3} Z^4.$

Moreover, (\mathcal{M},g) is locally isometric to the Kerr-de Sitter spacetime if and only if $\mathbf{b}_2=\mathbf{0}$ and

$$k > 0$$
 or $(k = 0, c > 0)$.

The Kerr-de Sitter parameters are

$$m = \sqrt{2} \left(\frac{\Lambda}{3}\right)^{\frac{3}{2}} \frac{b_1}{\left(c + \sqrt{c^2 + 4k}\right)^{\frac{3}{2}}} \qquad a = \sqrt{\frac{3}{\Lambda}} \frac{2\sqrt{k}}{c + \sqrt{c^2 + 4k}}.$$

• We want to identify these constants in terms of the asymptotic data (\mathscr{I}, h, D, Y) .

Using $Q=Q_0$, the functions b_1,b_2,c,k can be evaluated at \mathscr{I} for any $(\Lambda>0)$ -vacuum spacetime admitting a conformal compactification.

Proposition (The "constants" at \mathscr{I} ,)

Let (\mathcal{M},g) be $(\Lambda>0)$ -vacuum spacetime (\mathcal{M},g) with KVF X and admitting a conformal compactification.

- The functions b_1, b_2, c, k defined with $Q = Q_0$ extend smoothly to \mathscr{I} .
- Their expressions at \mathscr{I} in terms of the asymptotic Killing data (\mathscr{I}, h, D, Y) are

$$\begin{split} b_2 - ib_1|_{\mathscr{I}} &= \left(\frac{3}{\Lambda}\right)^{\frac{3}{2}} |Y| \left(\sqrt{\frac{3}{\Lambda}} \widehat{C}_{ij} + i \, D_{ij}\right) Y^i Y^j \; \left(= \frac{6}{\Lambda^2} \left(A_{\widehat{C}} + i \sqrt{\frac{\Lambda}{3}} A_D\right) \; \text{if } \mathcal{S}^{(0)}|_{\mathscr{I}} = 0 \right) \\ c|_{\mathscr{I}} &= \text{explicit expression in terms of } Y \; \text{and the geometry } (\mathscr{I}, h) := c(Y). \end{split}$$

 $k|_{\mathscr{I}}=$ explicit expression in terms of Y and the geometry $(\mathscr{I},h):=k(Y)$.

• c(Y) and k(Y) depend only depend on (Σ, h, Y) (not on D).

Kerr-de Sitter data is:

- Y CKV in (\mathbb{S}^3 , [$\gamma_{\mathbb{S}^3}$]), \mathscr{I} domain of $\mathbb{S}^3 \setminus \{Y = 0\}$, $D = A_D |Y|^{-5} (Y \otimes Y)^{\mathrm{tf}}, Y)$,
- Constant A_D is directly related to the mass parameter.

- The algebra of CKV in $(\mathbb{S}^3, [\gamma_{\mathbb{S}^3}])$ is ten dimensional.
- Need to classify the asymptotic data
 - \circ c(Y) and k(Y) play an essential role.

In $(\mathbb{S}^3, [\gamma_{\mathbb{S}^3}], Y)$: c(Y), k(Y) are necessarily constant.

- The data (Σ, h, D, Y) is conformally invariant, i.e. $(\Sigma, \Omega^2 h, \Omega^{-1} D, Y)$ gives rise to the same spacetime.
- Fixing the representative in $[\gamma_{\mathbb{S}^3}]$ as $h=\gamma_{\mathbb{S}^3}$ leaves as freedom the conformal group of the sphere.

$$\mathsf{Conf}(\mathbb{S}^3) = \{ \Phi \in \mathsf{Diff}(\mathbb{S}^n) \quad \textit{s.t.} \quad \Phi^{\star}(\gamma_{\mathbb{S}^n}) = \Omega^2 \gamma_{\mathbb{S}^n}, \Omega \in \mathit{C}^{\infty}(\mathbb{S}^3, \mathbb{R}^+) \}$$

Consequence:

Conformal invariance

Let \mathscr{I} be a domain in \mathbb{S}^3 and $\Phi \in \mathsf{Conf}(\mathbb{S}^3)$. Then

$$(\mathscr{I},\gamma_{\mathbb{S}^3},D(Y):=A_D|Y|^{-5}(Y\otimes Y)^{\mathrm{tf}},Y)\quad \sim\quad (\Phi(\mathscr{I}),\gamma_{\mathbb{S}^3},D(\Phi_\star(Y)),\Phi_\star(Y))$$

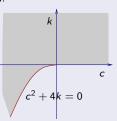
Define the equivalence relation $Y_1 \sim Y_2$ iff $Y_1 = \Phi_*(Y_2)$.

• Denote by \bar{Y} the equivalence class of Y.

Theorem (Behaviour under conformal group, [M., Paetz, Senovilla, 2015])

Let Y denote a CKV in (S^3, γ_{S^3}) . The following properties hold:

- The constants c(Y) and k(Y) depend only on the conformal class [Y].
- The range of (c(Y), k(Y)) is
- Given constants (c, k) in this range there exists precisely one equivalence class \overline{Y} with $(c(\overline{Y}) = c, k(\overline{Y}) = k)$, except if c < 0 and k = 0 where there are precisely two classes.



• The equivalence classes with $\{k(Y) > 0\}$ or $\{k(Y) = 0, c(Y) > 0\}$ (corresponding to the Kerr-de Sitter data) are characterized by the property that Y has precisely two isolated zeros.

Conclusions and outlook

Conclusions:

- All $(\Lambda > 0)$ -vacuum spacetimes with a KVF satisfying $\mathcal{S}^Q = 0$ and admitting a smooth conformal compactification (\star) can be characterized from data at \mathscr{I} .
- In particular, the Kerr-de Sitter spacetime corresponds to data

$$\begin{split} & \Sigma = \mathbb{S}^3 \setminus \{\mathsf{N},\mathsf{S}\}, \qquad h \in [\gamma_{\mathbb{S}^3}] \\ & Y = \text{ is any CKV of } \big(\mathbb{S}^3,\gamma_{\mathbb{S}^3}\big) \text{ vanishing precisely at N and } S \\ & D_{ij} = A_D |Y|^{-5} \Big(Y_i Y_j - \frac{1}{3} |Y|^2 h_{ij}\Big). \end{split}$$

- All spacetimes satisfying (\star) with $(\Sigma, h \in [\gamma_{\mathbb{S}^3}])$ can be completely identified.
- A much larger class of data for so-called asymptotically Kerr-de Sitter like spacetimes arises naturally.

Future work:

• Identify all three-geometries (Σ,h) with a CKV Y and Cotton-York tensor \widehat{C}_{ij} satisfying

$$\widehat{C}_{ij} = A_{\widehat{C}} |Y|^{-5} \Big(Y_i Y_j - \frac{1}{3} |Y|^2 h_{ij} \Big).$$

• Identify all data (Σ, h, D, Y) at infinity for asymptotically Kerr-de Sitter like spacetimes.