An extension procedure for the constraint equations

Stefan Czimek

Paris 6
stefan.czimek@upmc.fr

General Relativity Seminar
10th of October 2016

RDMath IdF
Domaine d'Intérêt Majeur (DIM) en Mathématiques

* îledeFrance

Overview of the talk

- The Cauchy problem
- The constraint equations
- Initial data
- The extension problem, past results and motivation
- Our extension procedure
- Sketch of the proof
- Part 1: The prescribed divergence equation for a 2-tensor
- Part 2: The prescribed scalar curvature equation

The Cauchy problem of general relativity

Spacetime $=4$-dim. Lorentzian manifold $(\mathcal{M}, \mathbf{g})$ solving the Einstein vacuum equations

$$
\operatorname{Ric}(\mathbf{g})_{\mu \nu}=0
$$

Initial data $=\mathrm{A}$ triple (Σ, g, k) where (Σ, g) is a Riem. 3-manifold, k a symmetric 2 -tensor solving the constraint equations

$$
\begin{aligned}
R(g) & =|k|_{g}^{2}-\left(\operatorname{tr}_{g} k\right)^{2} \\
\operatorname{div}_{g} k & =d\left(\operatorname{tr}_{g} k\right)
\end{aligned}
$$

In the future development $(\mathcal{M}, \mathbf{g}), \Sigma \subset \mathcal{M}$ is a spacelike Cauchy hypersurface with induced metric g and second fundamental form k

We consider in the following $\Sigma \subset(\mathcal{M}, \mathbf{g})$ that are maximal

$$
\operatorname{tr}_{g} k=0
$$

With this assumption, we arrive at the maximal constraint equations for (g, k),

$$
\begin{aligned}
R(g) & =|k|_{g}^{2} \\
\operatorname{div}_{g} k & =0 \\
\operatorname{tr}_{g} k & =0
\end{aligned}
$$

The initial data

The trivial solution to the Einstein vacuum equations is Minkowski spacetime

$$
\left(\mathbb{R}^{1+3}, \mathbf{m}\right)
$$

The corresponding initial data is

$$
(\Sigma, g, k)=\left(\mathbb{R}^{3}, e, 0\right)
$$

Asymptotic flatness

Consider asymptotically flat initial data

$$
g(x)=e+O\left(\frac{1}{|x|^{1 / 2}}\right), k(x)=O\left(\frac{1}{|x|^{3 / 2}}\right)
$$

as $|x| \rightarrow \infty$

Regularity of the data

The critical scaling is at $s_{c}=3 / 2$, that means

$$
(g, k) \in \mathcal{H}_{l o c}^{3 / 2} \times \mathcal{H}_{l o c}^{1 / 2}
$$

In the following, consider

$$
(g, k) \in \mathcal{H}_{l o c}^{2} \times \mathcal{H}_{l o c}^{1}
$$

Extension problem. Given initial data (g, k) on the unit ball $B_{1} \subset \mathbb{R}^{3}$, does there exist a regular asymptotically flat initial data set $\left(g^{\prime}, k^{\prime}\right)$ on \mathbb{R}^{3} that isometrically contains (g, k) and continuously depends on it?

Appears in the context of

- analysing the space of solutions of the constraint equations: Bartnik, Smith-Weinstein, Isenberg, Shi-Tam
- considering the rigidity of solutions of the constraint equations:

Corvino-Schoen, Chruściel-Delay, Isenberg, Pollack

- Bartnik's definition of quasi-local mass: Bartnik, Huisken-Ilmanen, Miao, Shi-Tam

Our motivation to study the extension problem

Theorem (Bounded L^{2} curvature theorem, Klainerman-Rodnianski-Szeftel)

Let (Σ, g, k) be initial data on a non-compact, maximal Σ. Then there exists a time $T>0$ depending on

$$
\|\operatorname{Ric}\|_{L^{2}(\Sigma)},\|k\|_{H^{1}(\Sigma)}
$$

such that the space-time can be continued and controlled up to time T

We want to prove a localised version of this theorem!

Theorem (S.C., 2016)

Let $(\bar{g}, \bar{k}) \in \mathcal{H}^{2}\left(B_{1}\right) \times \mathcal{H}^{1}\left(B_{1}\right)$ be a solution to the maximal constraint equations on $B_{1} \subset \mathbb{R}^{3}$. There is $\epsilon>0$ small enough such that if

$$
\|(\bar{g}-e, \bar{k})\|_{\mathcal{H}^{2}\left(B_{1}\right) \times \mathcal{H}^{1}\left(B_{1}\right)}<\epsilon
$$

then there exits a solution (g, k) on \mathbb{R}^{3} to the maximal constraint equations such that

- $\left.(g, k)\right|_{B_{1}}=(\bar{g}, \bar{k})$
- (g, k) is asymptotically flat
- $\|(g-e, k)\|_{\mathcal{H}_{-1 / 2}^{2}\left(\mathbb{R}^{3}\right) \times \mathcal{H}_{-3 / 2}^{1}\left(\mathbb{R}^{3}\right)} \lesssim\|(\bar{g}-e, \bar{k})\|_{\mathcal{H}^{2}\left(B_{1}\right) \times \mathcal{H}^{1}\left(B_{1}\right)}$

Our main theorem

Remarks

- does not need a gluing region
- preserves regularity
- holds also for higher regularity $\mathcal{H}_{-1 / 2}^{w} \times \mathcal{H}_{-3 / 2}^{w}$ with $w \geq 2$
- is fitted to the assumptions of the bounded L^{2} curvature theorem

Sketch of the proof

The idea: Construct a sequence of pairs $\left(g_{i}, k_{i}\right)$ that extend (\bar{g}, \bar{k}) and converge to a solution of the maximal constraints.

The construction: Given $\left(g_{i}, k_{i}\right)$ on \mathbb{R}^{3},
(1) Let g_{i+i} be an AF metric on \mathbb{R}^{3} such that

$$
\begin{aligned}
\left.g_{i+1}\right|_{B_{1}} & =\bar{g} \\
R\left(g_{i+1}\right) & =\left|k_{i}\right|_{g_{i}}^{2}
\end{aligned}
$$

(2) Let k_{i+1} be AF symmetric 2 -tensor on \mathbb{R}^{3} such that

$$
\begin{aligned}
\left.k_{i+1}\right|_{B_{1}} & =\bar{k} \\
\operatorname{div}_{g_{i+1}} k_{i+1} & =0 \\
\operatorname{tr}_{g_{i+1}} k_{i+1} & =0
\end{aligned}
$$

Sketch of the proof: The divergence equation

Lemma (Extension result for k)

Let g be an AF metric on \mathbb{R}^{3} and \bar{k} a symmetric 2-tensor on B_{1} such that

$$
\begin{aligned}
\operatorname{div}_{g} \bar{k} & =0 \\
\operatorname{tr}_{g} \bar{k} & =0
\end{aligned}
$$

If $g \approx e, \bar{k} \approx 0$, then there exists an $A F$ symmetric 2-tensor k on \mathbb{R}^{3} such that

$$
\begin{aligned}
\left.k\right|_{B_{1}} & =\bar{k} \\
\operatorname{div}_{g} k & =0 \\
\operatorname{tr}_{g} k & =0
\end{aligned}
$$

Sketch of the proof: The divergence equation

Idea: Extend just via standard Sobolev extension and then correct the error!

Correcting the error: For the error ρ, solve on $\mathbb{R}^{3} \backslash \overline{B_{1}}$ for \tilde{k}

$$
\begin{aligned}
\operatorname{div}_{g} \tilde{k} & =\rho \\
\operatorname{tr}_{g} \tilde{k} & =0
\end{aligned}
$$

such that

$$
\tilde{k} \in \overline{\mathcal{H}}_{-3 / 2}^{w-1}\left(\mathbb{R}^{3} \backslash \overline{B_{1}}\right)
$$

This means that all derivatives of \tilde{k} must vanish on $\{r=1\}$

Tools: Use the implicit function theorem + surjectivity at the Euclidean metric

Sketch of the proof: The divergence equation

Surjectivity at the Euclidean metric: Prove that for every ρ, there is an $\mathrm{AF} \tilde{k}$ such that on \mathbb{R}^{3}

$$
\begin{aligned}
\operatorname{div}_{e} \tilde{k} & =\rho \\
\operatorname{tr}_{e} \tilde{k} & =0
\end{aligned}
$$

Comments:

- This system is under-determined. But the 3-dimensional Hodge system

$$
\begin{aligned}
\operatorname{div}_{e} \tilde{k} & =\rho \\
\operatorname{curl}_{e} \tilde{k} & =\sigma \\
\operatorname{tr}_{e} \tilde{k} & =0
\end{aligned}
$$

is determined.

- Energy estimates give regularity on $\mathbb{R}^{3} \backslash \overline{B_{1}}$. But we need that all the derivatives vanish at $r=1$!
- Carefully pick σ by hand to make sure that all derivatives vanish at $r=1$

Sketch of the proof: The divergence equation

Analyse the above Hodge system as follows
(1) Decompose \tilde{k} with respect to ∂_{r} and tensors on 2-sphere S_{r}
\rightarrow Get equations for scalars, sphere-tangent 1-forms and symmetric tracefree 2-tensors
(2) Expansion of sphere-tangent tensors in spherical harmonics
\rightarrow Leads to: transport equations along r, elliptic equations on spheres S_{r}, scalar elliptic equations on $\mathbb{R}^{3} \backslash \overline{B_{1}}$

Sketch of the proof: The divergence equation

Sketch: How to control boundary derivatives.

Let $f \in C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash \overline{B_{1}}\right)$. Let u solve on $\mathbb{R}^{3} \backslash \bar{B}_{1}$

$$
\begin{aligned}
\Delta u & =f \\
\left.u\right|_{r=1} & =0
\end{aligned}
$$

Observation 1: If in addition

$$
\left.\partial_{r} u\right|_{r=1}=0
$$

then all derivatives of u vanish on the boundary

Observation 2: The above condition can be written as integral conditions on f

Derivation of the integral conditions

Let $f \in C_{c}^{\infty}\left(\mathbb{R}^{3} \backslash \overline{B_{1}}\right)$. Let u solve on $\mathbb{R}^{3} \backslash \bar{B}_{1}$

$$
\begin{aligned}
\Delta u & =f \\
\left.u\right|_{r=1} & =0
\end{aligned}
$$

Rewrite in spherical harmonics modes

$$
\begin{aligned}
f^{(I m)}=(\triangle u)^{(I m)} & =\left(\partial_{r}^{2} u+\frac{2}{r} \partial_{r} u+\triangle_{S_{r}} u\right)^{(I m)} \\
& =\left(\partial_{r}^{2} u+\frac{2}{r} \partial_{r} u\right)^{(I m)}-\frac{I(I+1)}{r^{2}} u^{(I m)} \\
& =\frac{1}{r^{I+1}} \partial_{r}\left(r^{2 I+2} \partial_{r}\left(r^{-I-1} u^{(I m)}\right)\right)
\end{aligned}
$$

Derivation of the integral conditions

This implies that

$$
\begin{aligned}
-\left.\partial_{r} u^{(I m)}\right|_{r=1} & =\int_{1}^{\infty} \partial_{r}\left(r^{2 /+2} \partial_{r}\left(r^{-I-1} u^{(I m)}\right)\right) \\
& =\int_{1}^{\infty} r^{I+1} f^{(I m)} \stackrel{!}{=} 0
\end{aligned}
$$

for all $I \geq 0, m \in\{-I, \ldots, I\}$. Then

$$
\left.\partial_{r} u\right|_{r=1}=0
$$

Sketch of the proof

The idea: Construct a sequence of pairs (g_{i}, k_{i}) that extend (\bar{g}, \bar{k}) and converge to a solution of the maximal constraints.

The construction: Given $\left(g_{i}, k_{i}\right)$ on \mathbb{R}^{3}
(1) Let g_{i+i} be such that

$$
\begin{aligned}
\left.g_{i+1}\right|_{B_{1}} & =\bar{g} \\
R\left(g_{i+1}\right) & =\left|k_{i}\right|_{g_{i}}^{2}
\end{aligned}
$$

(2) Let k_{i+1} be such that

$$
\begin{aligned}
\left.k_{i+1}\right|_{B_{1}} & =\bar{k} \\
\operatorname{div}_{g_{i+1}} k_{i+1} & =0 \\
\operatorname{tr}_{g_{i+1}} k_{i+1} & =0
\end{aligned}
$$

Sketch of the proof: The prescribed scalar curvature equation

The same idea as before: Extend \bar{g} from B_{1} to \mathbb{R}^{3}, then perturb its scalar curvature to the prescribed value.

Question: Given a metric g on \mathbb{R}^{3}, how to perturb its scalar curvature on $\mathbb{R}^{3} \backslash \overline{B_{1}}$ without changing g on B_{1} ?

Let

$$
g=a^{2} d r^{2}+\gamma_{A B}\left(\beta^{A} d r+d \theta^{A}\right)\left(\beta^{B} d r+d \theta^{B}\right)
$$

For a scalar function φ and sphere-tangent vectorfield β^{\prime}, let

$$
g_{\varphi, \beta^{\prime}}=a^{2} d r^{2}+e^{2 \varphi} \gamma_{A B}\left(\left(\beta+\beta^{\prime}\right)^{A} d r+d \theta^{A}\right)\left(\left(\beta+\beta^{\prime}\right)^{B} d r+d \theta^{B}\right)
$$

Sketch of the proof: The prescribed scalar curvature equation

Lemma (Surjectivity at the Euclidean metric)

The linearisation of the scalar curvature via the above variations $g \rightarrow g_{\varphi, \beta^{\prime}}$ is

$$
\left.D_{\varphi, \beta^{\prime}} R\right|_{e}=\partial_{r}^{2} \varphi+\frac{3}{r} \partial_{r} \varphi+\frac{1}{2} \triangle_{S_{r}} \varphi-\operatorname{div}_{S_{r}} \beta^{\prime}
$$

This is a surjective operator
Idea of proof: For a given h, we must show that there exist $\left(\varphi, \beta^{\prime}\right)$ solving

$$
\partial_{r}^{2} \varphi+\frac{3}{r} \partial_{r} \varphi+\frac{1}{2} \triangle_{S_{r}} \varphi-\operatorname{div}_{S_{r}} \beta^{\prime}=h
$$

Rewrite this into

$$
\begin{aligned}
\partial_{r}^{2} \varphi+\frac{3}{r} \partial_{r} \varphi+\frac{1}{2} \triangle_{S_{r}} \varphi & =h+\zeta \\
\operatorname{div}_{S_{r}} \beta^{\prime} & =\zeta
\end{aligned}
$$

Thank you for your attention.

