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The Cauchy problem of general relativity

Spacetime = 4-dim. Lorentzian manifold (M, g) solving the Einstein
vacuum equations

Ric(g)µν = 0

Initial data = A triple (Σ, g , k) where (Σ, g) is a Riem. 3-manifold, k a
symmetric 2-tensor solving the constraint equations

R(g) = |k |2g − (trgk)2

divgk = d(trgk)

In the future development (M, g), Σ ⊂M is a spacelike Cauchy
hypersurface with induced metric g and second fundamental form k
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The initial data

We consider in the following Σ ⊂ (M, g) that are maximal

trgk = 0

With this assumption, we arrive at the maximal constraint equations for
(g , k),

R(g) = |k |2g
divgk = 0

trgk = 0
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The initial data

The trivial solution to the Einstein vacuum equations is Minkowski
spacetime

(R1+3,m)

The corresponding initial data is

(Σ, g , k) = (R3, e, 0)

Asymptotic flatness

Consider asymptotically flat initial data

g(x) = e + O

(
1

|x |1/2

)
, k(x) = O

(
1

|x |3/2

)
as |x | → ∞
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The initial data

Regularity of the data

The critical scaling is at sc = 3/2, that means

(g , k) ∈ H3/2
loc ×H

1/2
loc

In the following, consider

(g , k) ∈ H2
loc ×H1

loc
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The extension problem

Extension problem. Given initial data (g , k) on the unit ball B1 ⊂ R3,
does there exist a regular asymptotically flat initial data set (g ′, k ′) on
R3 that isometrically contains (g , k) and continuously depends on it?

Appears in the context of

analysing the space of solutions of the constraint equations: Bartnik,
Smith-Weinstein, Isenberg, Shi-Tam

considering the rigidity of solutions of the constraint equations:
Corvino-Schoen, Chruściel-Delay, Isenberg, Pollack

Bartnik’s definition of quasi-local mass: Bartnik, Huisken-Ilmanen,
Miao, Shi-Tam
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Our motivation to study the extension problem

Theorem (Bounded L2 curvature theorem,
Klainerman-Rodnianski-Szeftel)

Let (Σ, g , k) be initial data on a non-compact, maximal Σ. Then there
exists a time T > 0 depending on

‖Ric‖L2(Σ), ‖k‖H1(Σ)

such that the space-time can be continued and controlled up to time T

We want to prove a localised version of this theorem!
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The main theorem

Theorem (S.C., 2016)

Let (ḡ , k̄) ∈ H2(B1)×H1(B1) be a solution to the maximal constraint
equations on B1 ⊂ R3. There is ε > 0 small enough such that if

‖(ḡ − e, k̄)‖H2(B1)×H1(B1) < ε

then there exits a solution (g , k) on R3 to the maximal constraint
equations such that

(g , k)|B1 = (ḡ , k̄)

(g , k) is asymptotically flat

‖(g − e, k)‖H2
−1/2

(R3)×H1
−3/2

(R3) . ‖(ḡ − e, k̄)‖H2(B1)×H1(B1)
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Our main theorem

Remarks

does not need a gluing region

preserves regularity

holds also for higher regularity Hw
−1/2 ×H

w
−3/2 with w ≥ 2

is fitted to the assumptions of the bounded L2 curvature theorem
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Sketch of the proof

The idea: Construct a sequence of pairs (gi , ki ) that extend (ḡ , k̄) and
converge to a solution of the maximal constraints.

The construction: Given (gi , ki ) on R3,

1 Let gi+i be an AF metric on R3 such that

gi+1|B1 = ḡ

R(gi+1) = |ki |2gi

2 Let ki+1 be AF symmetric 2-tensor on R3 such that

ki+1|B1 = k̄

divgi+1ki+1 = 0

trgi+1ki+1 = 0
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Sketch of the proof: The divergence equation

Lemma (Extension result for k)

Let g be an AF metric on R3 and k̄ a symmetric 2-tensor on B1 such that

divg k̄ = 0

trg k̄ = 0

If g ≈ e, k̄ ≈ 0, then there exists an AF symmetric 2-tensor k on R3

such that

k |B1 = k̄

divgk = 0

trgk = 0
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Sketch of the proof: The divergence equation

Idea: Extend just via standard Sobolev extension and then correct the
error!

Correcting the error: For the error ρ, solve on R3 \ B1 for k̃

divg k̃ = ρ

trg k̃ = 0

such that

k̃ ∈ Hw−1
−3/2(R3 \ B1)

This means that all derivatives of k̃ must vanish on {r = 1}

Tools: Use the implicit function theorem + surjectivity at the Euclidean
metric
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Sketch of the proof: The divergence equation

Surjectivity at the Euclidean metric: Prove that for every ρ, there is
an AF k̃ such that on R3

dive k̃ = ρ

tre k̃ = 0

Comments:

This system is under-determined. But the 3-dimensional Hodge
system

dive k̃ = ρ

curle k̃ = σ

tre k̃ = 0

is determined.

Energy estimates give regularity on R3 \ B1. But we need that all
the derivatives vanish at r = 1!

Carefully pick σ by hand to make sure that all derivatives vanish at
r = 1
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Sketch of the proof: The divergence equation

Analyse the above Hodge system as follows

(1) Decompose k̃ with respect to ∂r and tensors on 2-sphere Sr

→ Get equations for scalars, sphere-tangent 1-forms and symmetric
tracefree 2-tensors

(2) Expansion of sphere-tangent tensors in spherical harmonics

→ Leads to: transport equations along r , elliptic equations on spheres
Sr , scalar elliptic equations on R3 \ B1
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Sketch of the proof: The divergence equation

Sketch: How to control boundary derivatives.

Let f ∈ C∞c (R3 \ B1). Let u solve on R3 \ B1

4u = f

u|r=1 = 0

Observation 1: If in addition

∂ru|r=1 = 0

then all derivatives of u vanish on the boundary

Observation 2: The above condition can be written as integral
conditions on f
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Derivation of the integral conditions

Let f ∈ C∞c (R3 \ B1). Let u solve on R3 \ B1

4u = f

u|r=1 = 0

Rewrite in spherical harmonics modes

f (lm) = (4u)(lm) =

(
∂2
r u +

2

r
∂ru +4Sru

)(lm)

=

(
∂2
r u +

2

r
∂ru

)(lm)

− l(l + 1)

r2
u(lm)

=
1

r l+1
∂r

(
r2l+2∂r

(
r−l−1u(lm)

))
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Derivation of the integral conditions

This implies that

−∂ru(lm)|r=1 =

∞∫
1

∂r

(
r2l+2∂r

(
r−l−1u(lm)

))

=

∞∫
1

r l+1f (lm) !
= 0

for all l ≥ 0,m ∈ {−l , . . . , l}. Then

∂ru|r=1 = 0
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Sketch of the proof

The idea: Construct a sequence of pairs (gi , ki ) that extend (ḡ , k̄) and
converge to a solution of the maximal constraints.

The construction: Given (gi , ki ) on R3

1 Let gi+i be such that

gi+1|B1 = ḡ

R(gi+1) = |ki |2gi
2 Let ki+1 be such that

ki+1|B1 = k̄

divgi+1ki+1 = 0

trgi+1ki+1 = 0
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Sketch of the proof: The prescribed scalar curvature
equation

The same idea as before: Extend ḡ from B1 to R3, then perturb its scalar
curvature to the prescribed value.

Question: Given a metric g on R3, how to perturb its scalar curvature
on R3 \ B1 without changing g on B1?

Let

g = a2dr2 + γAB(βAdr + dθA)(βBdr + dθB)

For a scalar function ϕ and sphere-tangent vectorfield β′, let

gϕ,β′ = a2dr2 + e2ϕγAB((β + β′)Adr + dθA)((β + β′)Bdr + dθB)
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Sketch of the proof: The prescribed scalar curvature
equation

Lemma (Surjectivity at the Euclidean metric)

The linearisation of the scalar curvature via the above variations
g → gϕ,β′ is

Dϕ,β′R|e = ∂2
r ϕ+

3

r
∂rϕ+

1

2
4Srϕ− divSrβ

′

This is a surjective operator

Idea of proof: For a given h, we must show that there exist (ϕ, β′)
solving

∂2
r ϕ+

3

r
∂rϕ+

1

2
4Srϕ− divSrβ

′ = h

Rewrite this into

∂2
r ϕ+

3

r
∂rϕ+

1

2
4Srϕ = h + ζ

divSrβ
′ = ζ
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Thank you for your attention.
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