Non-linear stability of Kerr-de Sitter black holes

Peter Hintz 1 (joint with András Vasy 2)

 1 Miller Institute, University of California, Berkeley 2 Stanford University

Seminar on Mathematical General Relativity
Laboratoire Jacques-Louis Lions
October 10, 2016

Einstein vacuum equations

$$\operatorname{Ein}(g) - \Lambda g = 0 \iff \operatorname{Ric}(g) + \Lambda g = 0$$

- g: Lorentzian metric (+---) on 4-manifold Ω
- \wedge $\Lambda > 0$: cosmological constant
- $ightharpoonup ext{Ein}(g) = G_g ext{Ric}(g), \ G_g r = r rac{1}{2} (ext{tr}_g \ r) g \ (ext{trace-reversal})$

Initial value problem

Data:

- Σ: 3-manifold
- \triangleright h: Riemannian metric on Σ
- ▶ k: symmetric 2-tensor on Σ

Find spacetime (Ω, g) , $\Sigma \hookrightarrow \Omega$, solving $\operatorname{Ric}(g) + \Lambda g = 0$, with

$$h = -g|_{\Sigma}, \quad k = II_{\Sigma}.$$

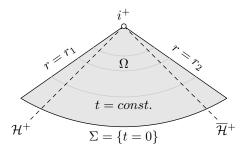
Theorem (Choquet-Bruhat '53)

Necessary and sufficient for local well-posedness: constraint equations for (h, k).

Key difficulty: diffeomorphism invariance ⇒ need for gauge fixing

Kerr-de Sitter family

- ightharpoonup manifold: $\Omega = [0, \infty)_t \times [r_1, r_2]_r \times \mathbb{S}^2$
- Cauchy surface: $\Sigma = \{t = 0\}$
- ▶ \mathcal{C}^{∞} family of stationary metrics g_b , $b = (M, \vec{a}) \in \mathbb{R} \times \mathbb{R}^3$
 - ► *M*: mass of the black hole
 - ► **a**: angular momentum



Kerr-de Sitter family

Example. $b_0 = (M_0, \vec{0})$, Schwarzschild-de Sitter space

Metric:

$$g_{b_0} = f d\tilde{t}^2 - f^{-1} dr^2 - r^2 d\sigma^2, \quad f(r) = 1 - \frac{2M_0}{r} - \frac{\Lambda r^2}{3}$$

Valid for $r \in (r(\mathcal{H}^+, b_0), r(\overline{\mathcal{H}}^+, b_0)) \subset [r_1, r_2]$.

Extension: $t = \tilde{t} - F(r)$

Black hole stability

Theorem (H.–Vasy '16)

Given C^{∞} initial data (h, k) on Σ

- satisfying the constraint equations,
- close (in H^{21}) to the initial data induced by g_{b_0} ,

there exist

- ▶ a C^{∞} metric g on Ω solving $Ric(g) + \Lambda g = 0$ with initial data (h, k) at Σ ,
- ▶ parameters $b \in \mathbb{R}^4$ close to b_0 such that

$$g = g_b + \widetilde{g}, \quad |\widetilde{g}| = \mathcal{O}(e^{-\alpha t}), \ \alpha > 0.$$

Exponential decay towards a Kerr-de Sitter solution!

Related work

Non-linear stability:

- de Sitter: Friedrich ('80s), Anderson ('05), Ringström ('08), Rodnianski-Speck ('09)
- Minkowski: Christodoulou-Klainerman ('93), Lindblad-Rodnianski ('00s), Bieri-Zipser ('09), Speck ('14), Taylor ('15), Huneau ('15), LeFloch-Ma ('15)
- ► Hyperbolic space: Graham–Lee ('91)

Linear (mode) stability of black holes:

- \wedge $\Lambda > 0$: Kodama–Ishibashi ('04)
- N = 0: Regge-Wheeler ('57), Chandrasekhar ('83), Whiting ('89), with Andersson-Ma-Paganini ('16), Finster-Smoller ('00s+), Dafermos-Holzegel-Rodnianski ('16)

Related work

(Non-)linear fields on black hole spacetimes:

- \(\lambda > 0:\) Bachelot ('91), S\(\text{Barreto-Zworski}\) ('97), Bony-H\(\text{H\(\text{Barreto}}\), Vasy ('13), Melrose-S\(\text{Barreto-Vasy}\) ('14), Dyatlov ('10s), Schlue ('15), H.-Vasy ('10s), . . .
- N = 0: Wald ('79), Kay-Wald ('87), Andersson-Blue ('10s), Tataru, with Marzuola, Metcalfe, Sterbenz, and Tohaneanu ('10s), Luk ('13), Dafermos-Rodnianski-Shlapentokh-Rothman ('14), Lindblad-Tohaneanu ('16), . . .

Gauge fixing

Goal: Solve $Ric(g) + \Lambda g = 0$.

DeTurck[/Friedrich]: Demand that $\mathbf{1}: (\Omega, g) \to (\Omega, g_{b_0})$ be a [forced] wave map

$$\iff W(g) = g_{kl}g^{ij}(\Gamma(g)_{ij}^k - \Gamma(g_{b_0})_{ij}^k)dx^l = 0 \ [-\theta].$$

Reduced Einstein equation:

$$(\operatorname{Ric} + \Lambda)(g) - \delta_g^*(W(g)[+\theta]) = 0. \tag{*}$$

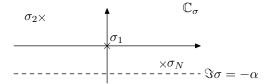
- ▶ $(h, k) \mapsto \text{Cauchy data for } g \text{ in } (*) \text{ with } W(g)[+\theta] = 0 \text{ at } \Sigma.$
- ▶ Solve (*) (quasilinear wave equation) $\Longrightarrow \mathcal{L}_{\partial_t}W(g) = 0$ at Σ .
- Second Bianchi: $\delta_g G_g \delta_g^*(W(g)[+\theta]) = 0$. Wave equation! $\Longrightarrow W(g)[+\theta] = 0$, and $(\operatorname{Ric} + \Lambda)(g) = 0$.

Linearization around $g = g_{b_0}$

Asymptotics for equation $Lr = D_g(\text{Ric} + \Lambda)(r) - \delta_g^* D_g W(r) = 0$:

$$r = \sum_{j=1}^{N} r_j a_j(x) e^{-i\sigma_j t} + \widetilde{r}(t, x), \quad t \gg 0,$$

- $\sigma_j \in \mathbb{C}$ resonances (quasinormal modes)
- ▶ $a_j(x)e^{-i\sigma t}$ resonant states, $L(a_j(x)e^{-i\sigma_j t})=0$
- $ightharpoonup r_i \in \mathbb{C}, \ \widetilde{r} = \mathcal{O}(e^{-\alpha t}), \ \alpha > 0 \ \text{fixed, small}$

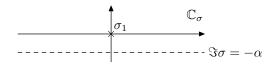


(Wunsch-Zworski '11, Vasy '13, Dyatlov '15, H. '15)

Attempt #1

$$(Lr = 0, L = D_g(\operatorname{Ric} + \Lambda) - \delta_g^* D_g W.)$$

Hope: N = 1, $\sigma_1 = 0$.



$$r = \frac{d}{ds} g_{b_0 + sb} \big|_{s=0} + \widetilde{r}.$$

Then: Could solve

$$(\operatorname{Ric} + \Lambda)(g_b + \widetilde{g}) - \delta_g^* W(g_b + \widetilde{g}) = 0$$

for
$$\widetilde{g} = \mathcal{O}(e^{-\alpha t})$$
, $b \in \mathbb{R}^4$. (H.–Vasy '16)

False!

Attempt #2

$$(Lr = 0, L = D_g(\operatorname{Ric} + \Lambda) - \delta_g^* D_g W.)$$

Say N=2, ${\rm Im}\,\sigma_2>0$, and (ignoring linearized KdS family)

$$r = r_2 a_2(x) e^{-i\sigma_2 t} + \widetilde{r}(t, x).$$

Hope: $a_2(x)e^{-i\sigma_2t} = \mathcal{L}_V g$ is pure gauge, so $r = r_2\mathcal{L}_{\chi V} g + \widetilde{r}$.

$$L\widetilde{r} = -L(r_2\mathcal{L}_{\chi V}g) = r_2\delta_g^* \underbrace{D_g W(\mathcal{L}_{\chi V}g)}_{0}$$

Thus:

$$D_{\mathbf{g}}(\operatorname{Ric} + \Lambda)(\widetilde{r}) - \delta_{\mathbf{g}}^{*}(D_{\mathbf{g}}W(\widetilde{r}) + r_{2}\theta) = 0.$$

Attempt #2, cont.

Then: Could solve

$$(\operatorname{Ric} + \Lambda)(g_b + \widetilde{g}) - \delta_g^*(W(g_b + \widetilde{g}) + \theta) = 0$$

for \widetilde{g} and (b, θ) (finite-dimensional parameters).

Hope is false!

Not to worry: Have not yet used the constraint equations.

$$L = D_g(\operatorname{Ric} + \Lambda) - \delta_g^* D_g W$$

Delicate!

Fix?

$$L = D_g(\operatorname{Ric} + \Lambda) - \delta^* D_g W$$
, where $\delta^* = \delta_g^* + 0$ th order.

Apply linearized second Bianchi identity to

$$0 = L(a_2(x)e^{-i\sigma_2t})$$

= $D_g(\operatorname{Ric} + \Lambda)(a_2e^{-i\sigma_2t}) - \delta^*D_gW(a_2e^{-i\sigma_2t}).$

Fix?

$$\implies \delta_g G_g \delta^* (D_g W(a_2 e^{-i\sigma_2 t})) = 0.$$

Theorem (H.-Vasy '16)

For g the Schwarzschild–de Sitter metric, one can choose δ^* such that $\delta_g G_g \delta^*$ has no resonances with $\text{Im } \sigma \geq 0$. ('Constraint damping,' Gundlach et al ('05).) Take

$$\delta^* w = \delta_g^* w + \gamma_1 dt \otimes_s w - \gamma_2 w(\nabla t) g, \quad \gamma_1, \gamma_2 \gg 0.$$

$$\implies D_g W(a_2 e^{-i\sigma_2 t}) = 0$$

$$\implies D_g (\operatorname{Ric} + \Lambda)(a_2 e^{-i\sigma_2 t}) = 0$$

Mode stability for linearized Einstein equation (Kodama–Ishibashi '04) $\Longrightarrow a_2 e^{-i\sigma_2 t} = \mathcal{L}_V g$

Attempt #3

Solve

$$(\operatorname{Ric} + \Lambda)(g_b + \widetilde{g}) - \delta^*(W(g_b + \widetilde{g}) + \theta) = 0$$

for $\widetilde{g} = \mathcal{O}(e^{-\alpha t})$ and (b, θ) .

Almost: $\mathbf{1}: (\Omega, g_b) \to (\Omega, g_{b_0})$ is not a wave map: $W(g_b) \neq 0$.

Final attempt

Solve

$$(\operatorname{Ric} + \Lambda)(g_b + \widetilde{g}) - \delta^*(W(g_b + \widetilde{g}) - \chi W(g_b) + \theta) = 0.$$

Solution of the non-linear equation

Nash-Moser iteration scheme:

- Solve linearized equation globally at each step.
- Use linear solutions to update \widetilde{g} , b and θ .

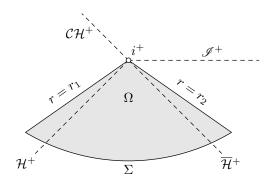
Automatically find

- final black hole parameters b,
- finite-dimensional modification θ of the gauge.

Outlook

- more precise asymptotic expansion, ringdown
- stability for large a (mode stability?)
- couple Einstein equation with matter
 - Non-linear stability of the Kerr-Newman-de Sitter family (for small a) for the Einstein-Maxwell system: work in progress
 - ► Einstein-(Maxwell-)scalar field, Einstein-Vlasov, ...

Outlook



- ► analysis in the cosmological region (ongoing work by Schlue)
- ▶ Penrose's Strong Cosmic Censorship Conjecture (work by Dafermos-Luk for Kerr)

Thank you!