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Introduction

At low energies, Quantum Gravity should yield an effective theory
(semi-classical Einstein equations):

(∗) Rµν −
1
2
gµνR = 8π ω(:T̂µν :)

where g is classical, and ω(:T̂µν :) quantum.

Major problem: If φ̂(x) is a quantum field (say, scalar, linear):

(−�g + m2)︸ ︷︷ ︸
P

φ̂(x) = 0, [φ̂(x), φ̂(y)] = 0 for spacelike sep. x, y

achieved through [φ̂(x), φ̂(y)] = i−1(P−1
+ − P−1

− )(x, y)1H. Hence

φ̂2(x) = lim
x→y

φ̂(x)φ̂(y), (∇µφ̂)(x)(∇ν φ̂)(x), etc.

need to be renormalized. Meaning of (∗) unclear.
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A bit of history

Formally, (∗) obtained from quantum Einstein-Hilbert action

SEH =
1

16πG

∫
M
dx
√
| det g|R + Smatter,

expanding around classical g and keeping only ~0 metric terms + ~1

quantum field terms [’60s].

Physicists promises:

◦ Weak energy condition violation (wormholes?)
◦ Minkowski space still stable
◦ Black hole evaporation
◦ Inflation without exotic matter

More rigorous first look: with physicist’s prescriptions, (∗) ill-posed
in Lorentzian signature, inconsistencies.
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The program of Kay, Wald et al.

I Given g, construct φ̂(x). Equivalent to specifying an exp. value

x, y 7→ 〈Ω, φ̂(x)φ̂(y)Ω〉 =·· ω(x, y)

At best we can hope limx→y φ̂(x)φ̂(y) ∼ limx→y ω(x, y) is no
worse than m = 0 vacuum on Minkowski space:

ωvac(x, y) = lim
ε↘0

1
4π2

1
(x− y)2 + iε(x0 − y0) + ε2

Better characterisation: (i−1∂t −
√
−∆)ωvac = 0.

Hadamard condition: a(x,Dx)ω(x, y) ∈ C∞(M ×M) for some
a with princ. symbol as (i−1∂t −

√
−∆).

I Radzikowski’s theorem [Radzikowski ’96]: ω(x, y) is of the form

lim
ε↘0

1
8π2

u(x, y)
σ(x− y) + iε(t(x)− t(y)) + ε2

+ log term + C∞(M ×M)

= H(x, y) + C∞(M ×M)



Introduction Coupling the classical & the quantum Quantum fields revisited Outlook

The program of Kay, Wald et al.

1. Given g, construct φ̂(x) or rather ω(x, y)
2. Substract singular part H(x, y) and take

limx→y(ω(x, y)−H(x, y)). [Wald]

3. Apply diff. operator Dµν that promotes :φ̂2: to :T̂µν :.
I ∇µ:T̂µν : = 0 with Moretti’s redefinition of Dµν [Moretti ’01].
I In (∗) the dynamical variables are g and ω.

Consequences of quantum :T̂µν :

I Violation of weak energy condition:
Nevertheless, lower bounds exist [Fewster ’00].

I Chronology protection theorems:
By [Kay, Radzikowski, Wald ’97], :T̂µν : diverges at any compactly
generated Cauchy horizon.

Problem for (∗): steps 1. and 2. very indirect.
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An intricate g-dependence
But how to construct and control g 7→ ω? Presently no working
example! Present approach via [Hollands & Wald ’05]:

1. Axioms on scaling behaviour, local dependence on g, etc. give

:Tµν :′ − :Tµν : = αIµν + βJµν + γGµν

with Iµν = gµν( 1
2R

2 + 2�R)− 2R;µν − 2RRµν , etc.
2. Find constants from experiment!

Gives self-consistent (∗). In simplified (low-regularity) FRLW
setting, encouraging results [Pinamonti et. al. ’10-’14], but does not
work in general.

So our primary tasks:
I Need g 7→ φ̂g with special properties (Hartle-Hawking state)

on black hole families to describe e.g. evaporation
I Construct g 7→ φ̂g and renormalize φ̂2

g keeping track of g
I Original [Fulling, Narcowich,Wald ’78] construction not useful

here.
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I. Pseudodifferential factorization of −�g +m2

Working on [−ε, ε]t ×Σ and coordinates s.t. P = ∂2
t + a(t) + r(t)∂t.

Theorem ( [Gérard, Oulghazi, W. ’16])
Choice of ω (pure)⇔ choice of b(t) ∈ C∞(R; Ψ1

ell(Σ)) s.t.

(∂t + ib(t) + r(t)) ◦ (∂t − ib(t)) = P + C∞(R; Ψ−∞(Σ))

Similarly (∂t − ib∗(t) + r(t)) ◦ (∂t + ib∗(t)) = P + C∞(R; Ψ−∞(Σ)).

On spacetimes like Kerr, Kerr-de Sitter, pseudodifferential
calculus on manifolds of bounded geometry [Kordyukov, Shubin]

Then :φ2(t, x): amounts to renormalized trace-density(
Trrenc(t)

)
(x), with c(t) ∈ Ψ1

ell(Σ) closely related to b(t). This has a
rich theory [Melrose, Nistor ’88] (generalized zeta functions).

Here b(t) determines g!
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II. Calderón projector

Vague idea: How to distinguish between eit
√
−∆+m2u and

e−it
√
−∆+m2u? Replace t = is and check L2 membership.

More precisely: [Gérard ’16] Near {s = 0}, P becomes PE. Calderón
projector C ··= proj. on space of {s = 0} Cauchy data of L2

solutions of PEu.

Yields the Hartle-Hawking state ω on spacetimes with static
bifurcate Killing horizon [Gérard ’16]

Work in progress: C is the Cauchy data of ω(x, y) satisfying
Hadamard condition? Gives Hartle-Hawking state on
Schwarzschild?

This would give a direct procedure g 7→ ω, and :φ2: amounts to
TrrenP−1

E .
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III. Global analysis

In Vasy’s global approach, the pos./neg. frequencies decomposition
happens at radial points for the bi-characteristic flow.
Example: Extended asymptotically dS spacetimes:
I g = df 2 − h(f 2, y, dy) in v < 0 ( f 2 times as. dS metric) ,

g = df 2 + h±(f 2, y, dy) in v > 0 ( f 2 times as. Hd
± metric)

(close to conformal horizon {v = 0} = {f = 0}).
The Vasy operator

P =

{
f iν−(d−1)/2−2(�f 2g − ( d−1

2 )2 − ν2)f −iν+(d−1)/2 on {v < 0},
f iν−(d−1)/2−2(−∆f 2g + ( d−1

2 )2 + ν2)f −iν+(d−1)/2 on {v > 0},
,

Solutions of Pu = 0, smooth in as. dS region have asymptotics:

u = (v + i0)−iνa+ + (v− i0)−iνa− + a, a+, a−, a ∈ C∞(M).

Let C ··= proj. to a+ component. Assume no trapping.
Theorem ( [Vasy, W. ’16])
C is the asymptotic data of ω(x, y) satisfying Hadamard condition.
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III. Global analysis

In Vasy’s global approach, the pos./neg. frequencies decomposition
happens at radial points for the bi-characteristic flow.

Example: Extended asymptotically dS spacetimes:
I g = df 2 − h(f 2, y, dy) in v < 0 ( f 2 times as. dS metric) ,

g = df 2 + h±(f 2, y, dy) in v > 0 ( f 2 times as. Hd
± metric)

(close to conformal horizon {v = 0} = {f = 0}).
The Vasy operator

P =

{
f iν−(d−1)/2−2(�f 2g − ( d−1

2 )2 − ν2)f −iν+(d−1)/2 on {v < 0},
f iν−(d−1)/2−2(−∆f 2g + ( d−1

2 )2 + ν2)f −iν+(d−1)/2 on {v > 0},
,

Solutions of Pu = 0, smooth in as. dS region have asymptotics:

u = (v + i0)−iνa+ + (v− i0)−iνa− + a, a+, a−, a ∈ C∞(M).

Now :φ2: amounts to TrrenP−1 with P−1 global inverse.
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Outlook

Despite its long history, formulation of

(∗) Rµν −
1
2
gµνR = 8π ω(:T̂µν :)

still very fragile. However progress in understanding g 7→ ω(:T̂µν :)

I. g 7→ b(t) 7→ ω gives universal construction but still difficult to
apply in this problem.

II. g 7→ PE 7→ C 7→ ω seems very robust for initial value
formulation, but still in progress

III. global approach could be well-suited for clear action principle

At the very least this could be used to study questions like:

When can we treat :T̂µν : as some perturbation of Tµν?
Thank you for your attention!
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