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The model problem

Consider the stochastic conservation law

du+ O0xf(u)odz=0, in (0,T] xR,
u(0,-) = up € (L* N L*)(R).

Regularity assumptions
m f € C3(R;R)
m z € CO([0, T];R) for some o > 0. That is,
|2(t) — z(s)|

sup ——————— < o0
s#teo, 1] |t — s



The model problem

Consider the stochastic conservation law
du+ O0xf(u)odz=0, in (0,T] xR,
u(0,-) = up € (L* N L*)(R).
Regularity assumptions
m f € C3(R;R)
m z € CO([0, T];R) for some o > 0. That is,

wp 120 = Z(9)

< 00.
stteo, 1] |t —s|®

Examples z(t) = t, Wiener processes, fractional Brownian motions.



Motivation

For the mean-field SDE

. . 1 .
dX'=¢ x',ﬁzcsxj odW, fori=1,2,...

JF#i
with o : R x P(R) — R, one has that

L

1

7 > Oxi(y) — (t) € P(P(R)), as L — 0.
i=1

The measure’s density satisfies the dynamics

dpr + 0xo(x, pr) o dW = 0.



Our contribution

m Develop numerical methods for solving the SSCL
m Show that oscillations in z may lead to cancellations in the flow map.
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The equation

up+ 0 f(u) =0 in (0,00) xR
u(0,-) = up € (L* N L) (R)

takes its name from the property

d
— udx=/utdx=—/f(u)xdx=0.
dt Jr R R
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The deterministic conservation law

The equation

us + Oxf(u) =0 in(0,00) xR
u(0,-) = up € (L* N L) (R)

takes its name from the property

i/udx:/uth:f/)‘(u)de:O.
dt Jr R R

Classical notion of weak solutions

/00/ P+ F(u)dydxdt + / ?(0,x)up(x)dx =0, V¢ € D(R x R),
o Jr R

leads to existence, but not uniqueness, due to formation of shocks.



Well-posedness

Definition 1 (Kruzkov's entropy condition)

dn(u) +0xq(u) <0, ¢ €D, (RxR),
holds for all smooth and convex : R — R, and ¢’'(u) := '(u)n/(u).

Theorem 2
Consider

up+ 0k f(u) =0, inRy xR
u(0, x) = up.
Assume that ug € (L' N L*®)(R) and f € C?(R;R). Then there exists a unique

solution u € C(Ry; L}(R)) N L®(Ry x R) which satisfies the Kruzkov entropy
condition. Moreover, for any t > 0,

lu(t) = v(B)ll1 < |luo — vollx-




Well-posedness

Definition 3 (Kruzkov's entropy condition for z € C')

dem(u) +20.q(u) <0, ¢ € DL (R x R),
holds for all smooth and convex  : R — R, and ¢'(u) := f'(u)n'(u).

Theorem 4
Consider
ur+zf(u)xy =0, inRy xR
u(0,x) = up.
Assume that ug € (L' N L=)(R), z piecewise C* and f € C?(R;R). Then there

exists a unique solution u € C(Ry; L}(R)) N L>=(Ry x R) which satisfies the
Kruzkov entropy condition. Moreover, for any t > 0,

[[u(t) = v(t)lls < [luo — vollx-
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Definition

The problem formulation

du+ 0yf(u)odz=0, in (0,T] xR,
u(0,-) = up € (L* N L>®)(R).

Kruzkov's entropy condition
dn(u) + dxq(u) odz <0, in D\ (R x R)
is difficult to work with: If w is a standard Wiener process, then

Oxq(u) o dw = ... + 0" (u)(f'(u))?(uy)dt.
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Kinetic formulation

Consider the kinetic formulation instead
dx + f'(§)xxodz =9emdt in D'(R xR x Re)
for some non-negative, bounded measure m(t, x,£) and the constraint

1 if 0 <& <u(t,x)
x(t:x,8) = x(§ u(t, x)) == ¢ =1 ifu(t,x) <£<0
0 otherwise.



Kinetic formulation
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dx + f'(§)xxodz =9emdt in D'(R xR x Re)

for some non-negative, bounded measure m(t, x,£) and the constraint

1 if 0 <& <u(t,x)
x(t:x,8) = x(§ u(t, x)) == ¢ =1 ifu(t,x) <£<0
0 otherwise.

Formal motivation for equivalence:

Xe (& u(t, X)) + F(E)xx (& u(t, X)) 0 dz = d(u = &) (ur + /() uy 0 dz).



Kinetic formulation

Consider the kinetic formulation instead
dx + f'(§)xxodz =9emdt in D'(R xR x Re)

for some non-negative, bounded measure m(t, x,£) and the constraint

1 if 0 <& <u(t,x)
x(t:x,8) = x(§ u(t, x)) == ¢ =1 ifu(t,x) <£<0
0 otherwise.

Formal motivation for equivalence:

Xe (& u(t, X)) + F(E)xx (& u(t, X)) 0 dz = d(u = &) (ur + /() uy 0 dz).

And L! isometry:
; d¢ = su) — yv)dé|dx = — vl|dx.
[ xt€uteyde = uiex) = [ | [ a6 0) = & v)de|de = [ Ju— vlax




The term /(&) xx o dz is difficult to treat, even as distribution.

Workaround: introduce p° € D(R) and

p(t,x, & y) = p°(y — x + F'(£)z(1)),
Then, if z € CY([0, T]),

dp+f'(§)pxodz =0, in (0, T] x R, x Re.
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Notion of solution

The term f'(§)xx o dz is difficult to treat, even as distribution.

Workaround: introduce p° € D(R) and

p(t,x, & y) = p°(y — x + F'(€)z(t)),
Then, if z € CY([0, T]),
dp+f'(§)pxodz =0, in (0, T] x Ry x Re.

Consequently,

d(px) + f'(€)(px)x 0 dz = x (dp + ' (E)pxo dZ) +p (dx + F()xx 0 dZ) = pmgdt.

=0 =mg dt
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Notion of solution

The term /(&) xx o dz is difficult to treat, even as distribution.

Workaround: introduce p° € D(R) and

p(t,x, & y) = p°(y — x + F(£)z(1)),
Then, if z € CY([0, T]),

dp+f'(€)pxodz =0, in (0, T] x Ry x Re.

Consequently,

/d(px) + (&) (px)x © dzdx = /pmgdtdx.
R R

13/33



Notion of solution

The term /(&) xx o dz is difficult to treat, even as distribution.

Workaround: introduce p° € D(R) and

p(t,x, & y) = p°y —x + ()z(1)),
Then, if z € CY([0, T]),

dp+f'(§)pxodz=0, in (0, T] x Ry, x Re.

Leads to condition

d

— | pxdx = /pmgdx, in D'(Ry x Re).
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Notion of solution

The term f'(§)xx o dz is difficult to treat, even as distribution.

Workaround: introduce p° € D(R) and

p(t,x, & y) = p°y — x + F'(€)z(t)),
Then, if z € CY([0, T]),
dp+f'(§)pxodz =0, in (0, T] x Ry x Re.

Leads to condition

4 pxdx = /pmgdx in D'([0, T] x Re). (1)
dt Jr Jr

Definition 5 (Pathwise entropy solution (PES))

u e LN L>=([0, T] x R) is a PES if there exists a non-negative, bounded measure
m such that equation (1) holds for all p, as defined above.
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Well-posedness

Theorem 6 (Lions, Perthame, Souganidis, 2013)

Assume f € C?(R;R), z € C([0, T|;R) and up € (L1 N L>=)(R). Then, for all
T > 0, there exists a unique PES u € C([0, T]; L}(R)) N L>([0, T] x R).
Furthermore, for two solutions u, v generated from the respective driving paths
z,Z and up, vo € BV(R),

IW@d—V@OMSHw—WM+C¢SWIdﬂ—ﬂﬁh

s€(0,t)

for a uniform constant C(ug, vo, f,f', ") > 0.
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Well-posedness

Theorem 6 (Lions, Perthame, Souganidis, 2013)

Assume f € C?(R;R), z € C([0, T|;R) and up € (L1 N L>=)(R). Then, for all
T > 0, there exists a unique PES u € C([0, T]; L}(R)) N L>([0, T] x R).
Furthermore, for two solutions u, v generated from the respective driving paths
z,Z and up, vo € BV(R),

lu(t,-) = v(t; )l < [l — voll + C\/ sup [z(s) — 2(s)|,

s€(0,t)

for a uniform constant C(ug, vo, f,f', ") > 0.

Note that if z" is a piecewise linear interpolation of z € C%® using interpolation
points with z"(tx) = z(tx) and u" := u(:,-; z"), then

lu(t,-) = u"(t, )|l = O(n=*/2).




Numerical solution approach

(i) Approximate the rough path z by a piecewise linear interpolation

t— T t—T
Z"(t)—(l— ATk>Z(Tk)+ ATkZ(TkH)v t € [Tk, Tky1]s

where 74 = kA7 and AT =T/n
(ii) Solve the conservation law with driving noise z" using a standard numerical
method in classical Kruzkov entropy sense.

0.8

0.6,

0.0 0.2 0.4 0.6 0.8 1.0
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The problem to solve:

ul + 2" F(u") =0, in (0, T] xR,
u"(0,-) = uo.
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Solution with approximated driving noise z”

The problem to solve:

ul + 2"0f(u") =0, in (0, T] xR,
u"(0,+) = up.

Let S(ATA2)§ denote the solution of

Az .
ur + A—Tﬁxf(u) =0, in(0,A7] xR,

Then

u"(re) = [[ S@™49ug, for k=0,1,....n,

where Az; := 2(Tj41) — Z(Tj)-

16 /33



Numerical schemes

Solve iteratively k =0,1,...,n

Az

ug + AT

8Xf(u") = 0, in (Tk,Tk+1] X R,
with Ax = O(N~1) and time-steps Aty = A7/Ng.
Numerical solution 7, := T(t, Xm; 2").

Solve, for instance, by Lax—Friedrichs (assuming t; € (7k, Tk+1)),

ol — U1 + Oy Ap D f(Gmy1) — F(@-1)
m 2 N 2Ax

, over £, m, k.

()
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Numerical schemes

Solve iteratively k =0,1,...,n

n Azk n .
ug + E(‘?Xf(u )=0, in (7k, Tks1] X R,
with Ax = O(N~1) and time-steps Aty = A1/ Nj.
Numerical solution @, := G(ty, Xpm; 2").

Solve, for instance, by Lax—Friedrichs

Gt — Dby + 05 4 Az F(Th) — F(Th_ )

- — , over £, m, k.

m 2 Nk 2Ax

()
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Numerical schemes

Solve iteratively k =0,1,...,n

n, Dz n ,
uf + A—Taxf(u )=0, in (7k, Tks1] X R,
with Ax = O(N~1) and time-steps Aty = A1/ Nj.
Numerical solution @, := T(ty, Xpm; 2").

Solve, for instance, by Lax—Friedrichs

G0+ — Oyt + 0oy Az F(O541) — F(B-1)

e > N A , over £, m, k. 2)
With initial data
1 Xm+1/2
i = Ax up(x)dx.

Xm—1/2
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Numerical schemes

Solve iteratively k =0,1,...,n

n Azk n .
uy + E(‘?Xf(u )=0, in (7, Tks1] X R,
with Ax = O(N~1) and time-steps Aty = A1/ Nj.

Numerical solution @, := G(ty, Xpm; 2").

Solve, for instance, by Lax—Friedrichs

Bt U1 + Uy Az F(0h00) — F(G5-1)

over £, m, k. 2
m 2 N, 20 x  oversm, 2)
n At Az Can—
CPL I e o o e <1 = = 0 (1520) = 0ron)

So Aty = A1/N, = O(n*"IN~1) for all k.
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If up € (L1 N BV)(R) and f € C2(R;R),
|@(T,-) = u"(T, )l < |50 — ugll + CVAXY  [Az
k=0

= O(N7Y) + O(N~Y/2pt=e),
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Convergence rates
If up € (L* N BV)(R) and f € C?(R; R),
|@(T,-) = u"(T, )l < |50 — ugll + CVAXY  [Az
k=0
= O(N7Y) + O(N~Y/2pt=2),

Recall further

lu(T.-) = u"(T,)la < c¢ sup_|z(s) — z0(s)| = O(n~°72).

s€[0,T]

Hence,
||U(T, ) — L_I(T’ )||1 = O(N71/2n170‘ + n*a/2). (3)



Convergence rates
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Hence,
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Balance error contributions:

N(n) = O(n*~®).



Convergence rates

If up € (L* N BV)(R) and f € C?(R; R),
|@(T,-) = u"(T, )l < |50 — ugll + CVAXY  [Az
k=0
= O(N7Y) + O(N~Y/2pt=2),

Recall further

lu(T.-) = u"(T,)la < c¢ sup_|z(s) — z0(s)| = O(n~°72).

s€[0,T]

Hence,
lu(T,-) = (T, )ls = O(N"2p'=* 4 n=2/2), (3)

Balance error contributions:

N(n) = O(n*~®).

If up has compact support, the cost of achieving O(e) error in (3)
O(e—(2/a)(5—3(y))!

Which is O(e=1*) for z € C%¥/2([0, T]).



Numerical example with

<05 and f(u) = u?/2.

Engquist Osher solution

=

00

Lax-Friedrichs solution

0]

0.6

0.4

00

x
Driving rough path

01 06

19

33



Numerical example with ug = sign(x)1 <05 and f(u) = u?/2.

Engquist-Osher solution

—05 —01 02 00 02 01 05

Lax-Friedri

=~

06 01 02 00 02 01 3

x
Driving rough path
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Flow map cancellations

Recall that S(A™A2)§; denotes the solution of

Az
— O f
uy + ATaX (v)
u(0,-) = 0.

0, in(0,A7] xR,

and
k—1

u"(n) = [[ 8429wy, for k=0,1,....n,
j=0
where Azj := z(7j41) — z(7;).
Provided u"(s,-) € C(R) for all s € (74, 74), then

k—1
Un(Tk) _ H S(A’T,AZ/)UH(TZ) _ 8((k—Z)A7—,ZJ‘.‘;£1 Azj)un(Tg)
=t



Flow map cancellations

Recall that S(A™A2)§; denotes the solution of

Az .
uy + Eaxf(u) 07 n (07 AT] X R,
u(0,-) = 0.

and
k—1
u"(1y) = H SOTAZ) o for k=0,1,...,n,
j=0
where Az; := z(7j11) — z(75).
Provided u"(s,-) € C(R) for all s € (¢, 7«), then

k—1
Un(Tk) _ H S(AT’AZJ)UH(’Q) _ ‘S»((k—é)AT,z:J‘.‘;Z1 Azj)un(Tg)
=t

Benefit |z(7x) — z(7¢)| replaces ij:_el |Azj| in the numerical error bound, CFL ...



One-sided estimates deterministic setting (z(t) = t): If f/ > « > 0 then

u(x+ h,t) — u(x, t) < 1
T oat

p Vh>0, andt >0

and if " < —a <0

1 < u(x+ hyt) — u(x,t)
at — h

Vh>0and t > 0.
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Local continuity of solutions

One-sided estimates deterministic setting (z(t) = t): If f/ > a > 0 then

u(x+ h,t) — u(x,t)
h

1
<— Vh>0,and t>0
at

and if " < —a <0

_i< u(x+ h,t) — u(x,t)

< p Vh>0and t > 0.

at

One-sided estimates: If f/ > « > 0 and z" > 0 for all t € (a, b), then

u"(x+ h,t) — u"(x, t) 1
h = 2@z 00 - 27(3))

and if 2" < 0 for t € (b, ¢)

Vh>0and t € (a,b),

1 u"(x + h,t) — u"(x,t)
oz () — 27(b)) = h

Vh > 0and t € (b, c).



Continuity result

Theorem 7 (Flow map product sum property)

Consider Burgers' equation, f(u) = u?/2. Let

M™(t) = (s), M=(t):= min z"(s).
(t) nas (s) (1) il (s)

For all t and all intervals s.t.: t € (a, b) C [0, T] for which
M~(a) < z"(t) < M*(a), we have that

u"(s,-) € C(R), Vse€(a,b),

and
Un(b) _ Sbfa,z"(b)fz"(a) un(a).

Secondly, whenever Az Az, > 0, then

S(AT,AZQ)S(AT,Azl) _ S(2AT,A21+A22).




0.6 T T T T T T T T T
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An equivalent integration path

Theorem 8 (Oscillating running max/min (ORM) function)
For
n(t) _: M+(t)ls+(t)25*(t) -+ M_(t)ls—(t)25+(t) ifte (O, T)
YW= 2 ift=T
with sT(t) = max{s < t|z"(s) = M*(s)} and
s™(t) = max{s < t|z"(s) = M~ (s)}.
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An equivalent integration path

Theorem 8 (Oscillating running max/min (ORM) function)
For

( ) _ {M (t) sH(t)>s— (t)+M ( ) —(t)>s+(t) ifte (O, T)
(T) ift=T

with s*(t) = max{s < t|z"(s) = M*(s)} and
s™(t) = max{s < t|z"(s) = M~ (s)}.
Then, for Burgers’ equation,

n—1
H A‘r Az) H S (AT ij
Jj=0

(Note that S(A™0) = |)




0.6 T T

-0.8+
ak 2N

—_— M+

A2t M
—-—-ORM

1.4 1 1 1 1 1 T T 1 1

0 0.1 0.2 03 0.4 05 0.6 07 0.8 0.9
t
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Numerical errors

Numerical integration “along” the ORM yields
1G(T,-) = u"(T, )l < [l — wgll + CVAXY | Ayg]
k=0

= O(N_l/Z\yn|Bv(o,T))7

where Ax = O(N71).
Recall that integrating “along” z” yields O(N*1/2|z"\3\/(o,t)) num error bound.



Numerical errors
Numerical integration “along” the ORM yields
1G(T,-) = w"(T, )l < [[5o — uglls + CVAX D |Ay]]
k=0

= O(N_l/Z\yn|Bv(o,T))7

where Ax = O(N71).

Recall that integrating “along” z” yields O(N*1/2|z"\3\/(o,t)) num error bound.

Efficiency to be gained provided

ly"8v(o,T)
12" Bv (0, T)

= o(1),
since, respectively

N(n) = O(|z"|fgv(0’7)na), O(|yn|25v(o,T)”a)

and
Cost(u(T)) = O(N(n)n).



Bounded variation of ORM

Theorem 9 (Bounded variation of Wiener path ORM)

For standard Wiener paths w : [0, T| — R, the ORM function y"(-) : [0, T] = R
associated to w" fulfils

y"€ BV([0,T]) ¥Yn>0 almost surely,

and
E[|Y"|BV[0,1]] < oo, Vn>0.

The above also holds for the ORM y of w.




Bounded variation of ORM

Theorem 9 (Bounded variation of Wiener path ORM)

For standard Wiener paths w : [0, T| — R, the ORM function y"(-) : [0, T] = R
associated to w" fulfils

y"€ BV([0,T]) ¥Yn>0 almost surely,

and
EUy"lBV[O,l]] < oo, Vn>0.

The above also holds for the ORM y of w.

Implication: Cost of achieving O(e) approximation error is improved by this
sharper bound from O(e~1*) to O(¢~*) for Burgers' equation.



ur + = (UZ)X odz =0, up(x) = ].|X|<1/27 t €10,2]
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t€0,2]

u(2,z)

——initial data
——front tracking
——EO, using ORM
—EO, not using orm
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m Does the driving noise z have a regularizing effect on the solution?
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Regularity of solutions

m Does the driving noise z have a regularizing effect on the solution?

m For Burgers’, u"(t) can only be discontinuous at times when z"(t) = M™(t)
and/or z"(t) = M~ (t):
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Regularity of solutions

m Does the driving noise z have a regularizing effect on the solution?

m For Burgers’, u"(t) can only be discontinuous at times when z"(t) = M™(t)
and/or z"(t) = M~ (t):

m For Wiener processes {s € [0, T]|w(s) = M*(s) and/or w(s) = M~(s)} has
Lebesgue measue 0.

m But, not (presently) clear if regularity behavior of u” extends to the limit
solution.
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Summary

m Developed a numerical method for solving stochastic scalar conservation laws.

m Identified cancellations of oscillations that in some settings lead to sharper
error bounds and more efficient numerical algorithms.

m Future challenge: Develop numerics for higher dimensional version

d
du+ Y O f(x,u)odz’ =0, in (0,T] xR,
i=1
u(0,-) = up € (L* N L®)(RY).
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Thank you for your attention!
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