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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

A few words about boundary conditions

∂t u + divx f (u) = 0, x ∈ Ω ⊂ Rd

u(x , t) = b(x , t), x ∈ ∂Ω

• Viscous (artificial) parabolic approximation

• Boundary entropy inequalities

• Effective/residual boundary condition :

u(x + 0−ν(x), t) ∈ O(b(x , t)), x ∈ ∂Ω

• Well-posed problems (L1-contractive semigroup)

Some references:
BARDOS, LEROUX & NEDELEC ’79
DUBOIS, LEFLOCH ’88
GISCLON, SERRE ’94
ANDREIANOV, SBIHI ’07, ’15 : maximal monotone graphs.
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Some related applications

• Numerical counterpart for 3-points finite volume schemes
LEROUX ’79 : Convergence for the Godunov and Lax-Friedrichs scheme
GODLEWSKI, RAVIART ’04 : for monotone and E-schemes

• Interfacial coupling in a conservative or nonconservative framework
Discontinuous flux conservation laws (large litterature, ...)
Coupling through admissible trace sets CHALONS, RAVIART & al.

L1-dissipative germs ANDREIANOV, KARLSEN & RISEBRO

• Shocks or transitions
Singularities in source terms, LAGOUTIERE, SEGUIN, TAKAHASHI, & AGUILLON

Discrete shock profiles SERRE & al.

Undercompressive shock profiles (from visco-dispersive approx.) and
travelling wave analysis
Nonclassical shocks and controled entropy dissipation
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Stability theory for the continuous IBVP

Non-characteristic linear hyperbolic IBVP

∂t u + A ∂x u = F(x , t), (x , t) ∈ R+ × R+

B u(0, t) = g(t), t ∈ R+

u(x , 0) = f (x), x ∈ R+

Definition (Strong stability for the BVP)
For f ≡ 0,

γ‖e−γ t u‖2
L2

t L2
x

+ ‖e−γ t u|x=0‖
2
L2

t
≤ C

(
1
γ
‖e−γ t F‖2

L2
t L2

x
+ ‖e−γ t g‖2

L2
t

)
.

(Fourier-Laplace transform and normal mode analysis, see e.g.
[BENZONI-GAVAGE & SERRE])

Strong stability is equivalent to the uniform Kreiss-Lopatinskii condition.
onedimensional case : RN = Ker B ⊕ E+(A).
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Stability theory for the continuous IBVP

Non-characteristic linear hyperbolic IBVP

∂t u + A ∂x u = F(x , t), (x , t) ∈ R+ × R+

B u(0, t) = g(t), t ∈ R+

u(x , 0) = f (x), x ∈ R+

Strong stability implies semigroup stability (multidimensional case) :

• RAUCH ’72 for symmetrizable or strictly hyperbolic systems
• AUDIARD ’11 for systems with constant multiplicities
• METIVIER ’14 for a more general class

Then for all γ > 0 :

e−2 γ T ‖u(·, T )‖2L2(R+) + γ‖e−γ t u‖2L2(R+×[0,T ]) + ‖e−γ t u|x=0‖
2
L2([0,T ])

≤ C

(
‖f ‖2L2(R+) +

1
γ
‖e−γ t F‖2L2(R+×[0,T ]) + ‖e−γ t g‖2L2([0,T ])

)
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Stability theory for the discrete IBVP

GUSTAFSSON, KREISS & SUNDSTRÖM ’72

Definition (Strong/GKS stability `2,γ
t `2

x )
γ

1 + γ∆t

∑
n≥0

∆t e−2 γ n∆t ‖un‖2∆ +
∑
n≥0

∆t e−2 γ n∆t ‖un‖2∂

≤ C

1 + γ∆t
γ

∑
n≥k

∆t e−2 γ n∆t ‖F n‖2∆ +
∑
n≥k

∆t e−2 γ n∆t ‖gn‖2∂


Strong stability equivalent to an algebraic condition (UKLC)

From the discrete Cauchy stability to the strong stability
• GOLDBERG & TADMOR ’81. In the scalar case, considering the Dirichlet

boundary condition: the stability for the discrete Cauchy problem implies
its strong stability.

• MICHELSON ’83. Multidimensional case, dissipative schemes only.

How to include nonzero initial data ?
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Discrete semigroup stability results

Cauchy stability + GKS stability⇒ semigroup stability

• WU ’95. For scalar equations or for one-dimensional systems, for
one-step difference schemes.
Tool: by a superposition argument, design auxiliary strictly dissipative boundary
conditions, and use the Goldberg-Tadmor result to connect with Dirichlet
boundary condition.

• COULOMBEL & GLORIA ’11. Extension for systems with several space
dimensions and variable coefficients. For one-step difference schemes.
Tool: energy method and another auxiliary dissipative boundary conditions,
without using the GKS stability result.

• COULOMBEL ’15. Multistep multidimensional systems. + simple roots in
the von Neumann Cauchy stability
Tool: Leray-Gårding multipliers, auxiliary strictly dissipative boundary condition.
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Our setting: multistep MOL schemes

Scalar one-dimensional transport equation (a , 0)

∂u
∂t

+ a
∂u
∂x

= 0, (x , t) ∈ R+ × R+

u(x , 0) = f (x), x ∈ R+

u(0, t) = 0 (weak), t ∈ R+

Multistep "Method Of Lines" finite difference schemes
un

j ' u(j∆x , n∆t), CFL parameter λ = ∆t/∆x

k∑
σ=0

ασun+σ
j +

∆t
∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`u
n+σ
j+` = 0 r ≤ j 0 ≤ n

un
j = f n

j :=
1

∆x

∫ xj+1

xj

f (x − atn) dx 0 ≤ j 0 ≤ n ≤ k − 1

un
j = 0 0 ≤ j ≤ r − 1 k ≤ n
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Numerical stencil and notations

k∑
σ=0

ασun+σ
j +

∆t
∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`u
n+σ
j+` = 0, r ≤ j , 0 ≤ n

j

n

0 r0

k

k

r + 1 + p

un
j = 0

un
j = f n

j

9/36



Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Reminder of the pure discrete Cauchy problem

k∑
σ=0

ασun+σ
j +

∆t
∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`u
n+σ
j+` = 0, j ∈ Z

Fourier multiplier of the space discretization (von Neumann analysis):
A(z) =

∑p
`=−r a`z`, z , 0

Linear recurrence relation of the time discretization:
Characteristic polynomial: Pµ(X) = ρ(X) − µσ(X), µ ∈ C

with the Dahlquist’s generating polynomials:
ρ(X) =

∑k
σ=0 ασXσ, σ(X) =

∑k−1
σ=0 βσXσ

Consistency of the numerical scheme

A(1) = 0, A′(1) = a,

ρ(1) = 0, ρ′(1) = σ(1) (= 1).
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Semigroup stability for the discrete Cauchy problem

The discrete Cauchy problem is supposed to be semigroup stable :

∃C > 0, ∀∆t ∈ (0, 1), ∀(fσ)0≤σ≤k−1 ∈
(
`2

x (Z)
)k

sup
n≥0
‖un‖`2(Z) ≤ C

k−1∑
σ=0

‖fσj ‖`2(Z)

Power boundedness of the companion matrices in the time recurrence
relation→ Stability region:

S =

µ ∈ C, Pµ(z) = 0⇒

 |z | < 1, or
|z | = 1 and z is simple

 .
Common theorem:

The (semigroup) stability for the Cauchy problem is equivalent to:

∀ξ ∈ R, −λA(eiξ) ∈ S.

[HAIRER, NØRSETT & WANNER] ’93, [HAIRER & WANNER] ’96
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Selected examples (1)

The everyday ones:

Time discretization: one-step explicit Euler method

Pµ(X) = X − 1 − µ.

S =
{
µ ∈ C, |1 + µ| ≤ 1

}
= D(−1, 1).

Space discretization:

• upwindA(S1) = ∂D(1, |a|). Stability under CFL condition |λa| ≤ 1.

• downwindA(S1) = ∂D(−1, |a|). Instability.

• two-points centeredA(S1) = ia[−1, 1]. Instability.
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Selected examples (2)

A third order explicit scheme : AB3 - 5pts (to be continued)

Time discr.: 3rd order explicit Adams-Bashforth
Space discr.: centered 5pts approximation of the flux term plus a fourth order
stabilizing dissipative term

un+1
j = un

j − λ
(23
12

vn
j −

16
12

vn−1
j +

5
12

vn−2
j

)
vn

j := a
−un

j+2 + 8un
j+1 − 8un

j−1 + un
j−2

12
−
−un

j+2 + 4un
j+1 − 6un

j + 4un
j−1 − un

j−2

24

Pµ(X) = X 3 − X 2 − µ
(23
12

X 2 −
16
12

X +
5

12

)
A(z) =

a
12

(−z2 + 8z − 8z−1 + z−2) −
1
24

(−z2 + 4z − 6 + 4z−1 − z−2)
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Selected examples (2)

Stability assumption: (CFL parameter λ = 0.4)
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Discrete semigroup estimate for the IBVP

k∑
σ=0

ασun+σ
j +

∆t
∆x

k−1∑
σ=0

βσ

p∑
`=−r

a`u
n+σ
j+` = 0, un

j = 0 (boundary), un
j = f n

j (initial).

Theorem (B. & COULOMBEL)
Consider an initial data f ∈ H2(R+) satisfying the compatibility conditions∣∣∣∣∣∣ f (0) = 0, if a < 0,

f (0) = f ′(0) = 0, if a > 0.

Suppose the above scheme (with zero source data and zero boundary data)
to be consistent, Cauchy stable, and "dissipative" (see further).

sup
n≤NT

∑
j≥0

∆x |un
j |

2 ≤ C
(
‖f ‖2L2(R+) + ∆t1−3µe2T∆tµ‖f ‖2H2(R+)

)
, µ ∈ [0, 1/3].
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Numerical experiment

Test case: (AB3 - 5pts scheme)

∂u
∂t
−
∂u
∂x

= 0, x ∈ [0, 1], t ≥ 0,

u(x , 0) = f (x) = e−100(x−0.5)2
, x ∈ [0, 1],

Solution computed at time T = 0.4 with different ∆x
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Strategy

1. Find an expansion un
j = uapp

j ,n − ej ,n such that

· uapp
j ,n is a sufficiently accurate description of un

j including the boundary layer
· ej ,n, the residual error terms, solves the discrete IBVP with zero initial data

and small boundary terms and small source terms.
k∑

σ=0

ασ ej ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` ej+`,n+σ = ∆t εj ,n+k

ej ,n = ηj ,n, (0 ≤ j ≤ r − 1)

ej ,0 = · · · = ej ,k−1 = 0, (j ≥ 0)

where we set

∣∣∣∣∣∣∣∣∣∣∣
εj ,n+k :=

1
∆t

 k∑
σ=0

ασ uapp
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uapp
j+`,n+σ


ηj ,n := uapp

j ,n

2. Goldberg-Tadmor lemma applied to ej ,n gives GKS strong estimate

3. + Error estimates for εj ,n+k and ηj ,n ⇒ semigroup estimate for ej ,n

4. Semigroup estimate on uapp
j ,n
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Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

Heuristics

At the discrete level, two scales
x and ∆x .

un
j ' uapp

j ,n = uint(xj , t
n) + ubl(j , tn)

ubl(j , tn) = ubl,0(j , tn) + ∆x ubl,1(j , tn)

• uint(x , t) corresponds to the smooth part of the solution

• ubl(j , t) is the sawtoothed pattern localized in the very first cells near the
boundary

19/36
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Ê Far from the boundary: uint

εj ,n+k :=
1

∆t

 k∑
σ=0

ασ uapp
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uapp
j+`,n+σ


Fix x ∈ R∗+ and let ∆t ,∆x → 0.
Then for xj ' x , j → ∞ so that ubl(j , tn) tends to 0.
Thus

εj ,n+k '
1

∆t

 k∑
σ=0

ασ uint
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uint
j+`,n+σ

 .

⇐ Set uint(x , t) as the solution of the unbounded domain problem:

∂t u + a ∂x u = 0, x ∈ R, t ≥ 0

u(x , 0) = f (x)11R+
+ 0 × 11R−

20/36
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Ë Leading boundary layer profile: ubl,0

εj ,n+k :=
1

∆t

 k∑
σ=0

ασ uapp
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uapp
j+`,n+σ


Fix now j ∈ Z and let ∆t ,∆x → 0.

uint(xj+`, t
n+σ) = uint(0, tn) + O(∆x) + O(∆t)

Suppose moreover some time-regularity in the boundary layer

ubl(j , tn+σ) = ubl(j , tn) + O(∆t),

then

εj ,n+k '
1

∆x

 k−1∑
σ=0

βσ

 p∑
`=−r

a` ubl,0(j + `, tn+k ) + O(1).

⇐ Set (ubl,0(j , t))j a solution of
∑p
`=−r a` ubl,0(j + `, t) = 0, together with the

boundary conditions ubl,0(j , t) = −uint(0, t), 0 ≤ j ≤ r − 1, and the limiting
behavior limj→∞ ubl,0(j , t) = 0.
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Ë Leading boundary layer profile: ubl,0
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∆t
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ασ uapp
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σ=0

βσ

p∑
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a` uapp
j+`,n+σ
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Ë Leading boundary layer profile: ubl,0

Definition
Being given u ∈ R, a sequence (vj )j∈N is said to be a stable boundary layer
profile associated with u if:

1. v0 = · · · = vr−1 = −u,

2.
∑p
`=−r a`vj+`+r = 0 for all j ≥ 0,

3. limj→∞ vj = 0.

Denote Cnum the set of all u such that a stable boundary layer exists.

Identify the set Cnum ?
Being given u ∈ Cnum, is there a unique associated stable boundary layer
profile ?

• DUBOIS & LEFLOCH ’88 - admissible entropy boundary data

• GISCLON & SERRE ’97 - residual boundary conditions for the Godunov scheme

• CHAINAIS-HILLAIRET & GRENIER ’01 - conservative schemes
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Technical "dissipativity" assumption

Stable boundary layers are obtained by considering roots ofA, with |z | < 1.

Assumption (H)

z = 1 is the unique root ofA on S1

Lemma
Under the Cauchy stability assumption and the above assumption (H),
A(z) = 0 admits exactly R roots (with multiplicity) in

{
z ∈ C , 0 < |z | < 1

}
where R =

 r , if a < 0 ,

r − 1, if a > 0 .
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Proof of the Lemma

1
2 i π

∫
Γ

A′(z)

A(z)
dz

= #{zeros} −#{poles} ,
x

y

1

ε

Γε,1

Γε,2

• 0 is pole of order r

• 1 is zero of order 1 : A(1) = 0,A′(1) = a , 0

• does not vanish on Γε,1, therefore1 A(z) < R∗− / use log−
• aA(z) < R+ for z ∈ Γε,2 (ε being sufficiently small):

· case a < 0 : A(z) < R− for z ∈ Γε,2 / use log− : R = r
· case a > 0 : A(z) < R+ for z ∈ Γε,2 / use log+ : R = r − 1.

1The stability region S contains no positive real number
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Example for selected schemes

Assumption (H)

z = 1 is the unique root ofA on S1

? Explicit Euler time discretization: Pµ(X) = X − 1 − µ

A(eiη) = 0⇔ 1 − λA(eiη) = 1

• Any dissipative scheme satifies (H):

∃c > 0, ∃m ∈ N∗, ∀|η| ≤ π, |1 − λA(eiη)| ≤ 1 − cη2m.

• Some other usual non-dissipative schemes also satisfy (H).
The Lax-Friedrichs scheme:

un+1
j =

1
2

(un
j+1 + un

j−1) −
λa
2

(un
j+1 − un

j−1),

1 − λA(eiη) = cos η − iλa sin η.

? The AB3 - 5pts scheme satisfies also (H)

<A(eiη) =
2
3

sin4
(
η

2

)
,
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Example for selected schemes (2)

? The leap frog scheme as a (well-known) counterexample (N = 300)

un+1
j − un−1

j

2∆t
+ a

un
j+1 − un

j−1

2∆x
= 0, 1 ≤ j ≤ N − 1, un

0 = un
N = 0.

Pµ(X) =
1
2

(X 2 − 1) − µX

A(z) =
1
2

(
z −

1
z

)
A(1) = A(−1) = 0

bounded oscillating pattern:
un

j = (−1)j+n
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Back to Ë Leading boundary layer profile: ubl,0

Consequently, comparing the number of (independant) generators for the
boundary layer to the number of Dirichlet boundary datas :

Lemma
• if a > 0, then Cnum = {0} and the unique boundary layer profile

associated with u = 0 is the zero sequence

• if a < 0, then Cnum = R and for any u ∈ R there is a unique
stable boundary layer profile (vj )j∈N associated with u, that
decreases exponentially fast at infinity.

vj = u wj , j ≥ 0 ,

where (wj )j∈N denotes the (canonical) boundary layer profile
associated with u = 1.

ubl,0
j ,n = uint(0, tn)wj .
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Ì First boundary layer corrector: ubl,1

εj ,n+k :=
1

∆t

 k∑
σ=0

ασ uapp
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uapp
j+`,n+σ


Remainder terms (up to every previous approximation) are

εj ,n+k '
1

∆t

k∑
σ=0

ασ ubl,0(j , tn+σ) +

 k−1∑
σ=0

βσ

 p∑
`=−r

a` ubl,1(j + `, tn) .

To be solved :

wj +

p∑
`=−r

a` w̃j+` = 0, j ≥ r ,

w̃0 = · · · = w̃r−1 = 0 , lim
j→∞

w̃j = 0 .

Lemma
In the case a < 0, there exists a unique solution (w̃j )j∈N and this
solution decays exponentially fast at infinity.
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Numerical experiment around the boundary layer expansion
Comparisons

Test case: (AB3 - 5pts scheme)

∂u
∂t
−
∂u
∂x

= 0, x ∈ [0, 1], t ≥ 0,

u(x , 0) = f (x) = e−100(x−0.5)2
, x ∈ [0, 1],

Root ofA in {z ∈ C, 0 < |z | < 1}: z1 ' −0.6595 and z2 ' 0.0809

un
j ' uapp

j ,n := uint
j ,n + ubl,0

j ,n + ∆x ubl,1
j ,n

Solution computed at time T = 0.4 with different ∆x
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Numerical experiment around the boundary layer expansion
Rate of convergence `2

E int
2 :=

(∑N
j=0 ∆x

∣∣∣∣un
j − uint(xj , tn)

∣∣∣∣2)1/2

, Eapp
2 :=

(∑N
j=0 ∆x

∣∣∣∣un
j − uapp(xj , tn)

∣∣∣∣2)1/2

.

At time T=0.125 : no significant boundary layer at x = 0.

E int
2 = O(∆x3), Eapp

2 = O(∆x3)
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Numerical experiment around the boundary layer expansion
Rate of convergence `2

E int
2 :=

(∑N
j=0 ∆x

∣∣∣∣un
j − uint(xj , tn)

∣∣∣∣2)1/2

, Eapp
2 :=

(∑N
j=0 ∆x

∣∣∣∣un
j − uapp(xj , tn)

∣∣∣∣2)1/2

.

At time T=0.4 : a boundary layer.

E int
2 = O(∆x1/2), Eapp

2 = O(∆x3/2)
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Numerical experiment around the boundary layer expansion
Rate of convergence `∞

E int
∞ := max0≤j≤N |un

j − uint(xj , tn)| , Eapp
∞ := max0≤j≤N |un

j − uapp(xj , tn)| .

At time T=0.125 : no significant boundary layer at x = 0.

E int
∞ = O(∆x3), Eapp

∞ = O(∆x3)
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Numerical experiment around the boundary layer expansion
Rate of convergence `∞

E int
∞ := max0≤j≤N |un

j − uint(xj , tn)| , Eapp
∞ := max0≤j≤N |un

j − uapp(xj , tn)| .

At time T=0.4 : a boundary layer.

E int
∞ = O(∆x0), Eapp

∞ = O(∆x1)
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"GKS estimate" for the error terms

Recall we set
εj ,n+k :=

1
∆t

 k∑
σ=0

ασ uapp
j ,n+σ + λ

k−1∑
σ=0

βσ

p∑
`=−r

a` uapp
j+`,n+σ


ηj ,n := uapp

j ,n

Then, ∃C > 0, ∀∆t ∈ (0, 1], ∀γ > 0, ∀f ∈ H2
0 (R+) :

∑
n≥k

∑
j≥r

∆t ∆x e−2 γ n ∆t |εj ,n |
2 ≤ C

(
1 +

1
γ

)
∆t2 ‖f ‖2H2(R+) ,

∑
n≥k

r−1∑
j=0

∆t e−2 γ n ∆t |ηj ,n |
2 ≤ C ∆t2 ‖f ‖2H1(R+).

Some ingredients:
• Consistency of the interior scheme
• Compatibility condition : homogeneous Dirichlet/initial data
• Exponential decrease in space of the boundary layer
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Semigroup estimate for the error term

GOLDBERG AND TADMOR ’81: For homogeneous Dirichlet conditions and
under the discrete Cauchy stability assumption, one has the GKS estimate

∃C > 0, ∀∆t ∈ (0, 1], ∀γ > 0 :

γ

1 + γ∆t

∑
n≥0

∑
j≥0

∆t ∆x e−2 n γ∆t |en
j |

2 +
∑
n≥0

r+p−1∑
j=0

∆t e−2 n γ∆t |en
j |

2

≤ C

1 + γ∆t
γ

∑
n≥k

∑
j≥r

∆t ∆x e−2 n γ∆t |εn
j |

2 +
∑
n≥k

r−1∑
j=0

∆t e−2 n γ∆t |ηn
j |

2


≤ C ∆t2 ‖f ‖2H2(R+)

(
1 + γ∆t

γ

(
1 +

1
γ

)
+ 1

)
,

To make it readable, choose γ = 1, we easily get:

sup
n≥0

e−2 tn
∑
j≥0

∆x |en
j |

2

 ≤ C ∆t ‖f ‖2H2(R+)
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Semigroup estimate for the numerical solution

From the previous semigroup estimate for the error terms:

sup
n≥0

e−2 tn
∑
j≥0

∆x |en
j |

2

 ≤ C ∆t ‖f ‖2H2(R+) ,

and from an direct semigroup estimate concerning the boundary layer
expansion: ∑

j≥0

∆x |uapp
j ,n |

2 ≤ C ‖f ‖2L2(R+)

Finally, using a triangular inequality (un
j = uapp

j ,n − en
j ), we get :

∑
j≥0

∆x |un
j |

2 ≤ C
(
‖f ‖2L2(R+) + ∆t e2tn

‖f ‖2H2(R+)

)
.

Remark:
without the corrector ubl,1

j ,n , the last estimate would lose the ∆t factor.
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Conclusions and perspectives

• Main result: close to optimal semigroup stability estimate for the discrete
IBVP, compatible in the limit with the continuous one:

sup
t≥0
‖u(·, t)‖2L2(R+) ≤ K ‖u(·, 0)‖2L2(R+)

• The two-scale asymptotic boundary layer expansion allows the
treatment of MOL multistep schemes.

• The discrete boundary layer structure is not directly related to the
equivalent equation of the scheme.

? Up to now, the approach is restricted to Dirichlet boundary conditions,
for which the strong GKS stability estimate is known to hold under the
discrete Cauchy stability.

? Explore higher order boundary layer expansions (up to the order of
accuracy of the numerical scheme), and initial layers as well.

? Weaken the (H) assumption on the spatial discretization.

? Export the tool to the multidimensional situations.
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