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A few words about boundary conditions

du+ divef(u) =0, xeQcR?
u(x,t) = b(x,t), xedQ

e Viscous (artificial) parabolic approximation
e Boundary entropy inequalities
o Effective/residual boundary condition :

u(x +07v(x),t) € O(b(x,t)), xedN
o Well-posed problems (L'-contractive semigroup)

Some references:

BARDOS, LEROUX & NEDELEC '79

DuBoIS, LEFLOCH '88

GISCLON, SERRE '94

ANDREIANOV, SBIHI ‘07, '15 : maximal monotone graphs.
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Some related applications

e Numerical counterpart for 3-points finite volume schemes
LERoux 79 : Convergence for the Godunov and Lax-Friedrichs scheme
GODLEWSKI, RAVIART '04 : for monotone and E-schemes
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e Interfacial coupling in a conservative or nonconservative framework
Discontinuous flux conservation laws (large litterature, ...)
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LERoux 79 : Convergence for the Godunov and Lax-Friedrichs scheme
GODLEWSKI, RAVIART '04 : for monotone and E-schemes

e Interfacial coupling in a conservative or nonconservative framework
Discontinuous flux conservation laws (large litterature, ...)
Coupling through admissible trace sets CHaLoNs, RAVIART & al.
L'-dissipative germs ANDREIANOV, KARLSEN & RISEBRO

e Shocks or transitions
Singularities in source terms, LAGOUTIERE, SEGUIN, TAKAHASHI, & AGUILLON
Discrete shock profiles SErRE & al.
Undercompressive shock profiles (from visco-dispersive approx.) and
travelling wave analysis
Nonclassical shocks and controled entropy dissipation
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Stability theory for the continuous IBVP

Non-characteristic linear hyperbolic IBVP
o+ Adyu = F(x,t), (x,t)eRy xRy
Bu(0,t) = g(1), teRy
u(x,0) = f(x), xeR,

Definition (Strong stability for the BVP)
For f = 0,

1
_ _ _ 2 _
Yle R, . +lle” tux—ol’, < C|=lle” FIZ, . +lle gl ).
t X t Y t=x t

(Fourier-Laplace transform and normal mode analysis, see e.g.
[BENZONI-GAVAGE & SERRE])

Strong stability is equivalent to the uniform Kreiss-Lopatinskii condition.
onedimensional case : RN = KerB& E, (A).
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Stability theory for the continuous IBVP

Non-characteristic linear hyperbolic IBVP

o+ Adu= F(x,t), (x,t)eRy xRy
Bu(0,t) = g(1), teRy
u(x,0) = f(x), x€eR,

Strong stability implies semigroup stability (multidimensional case) :

o RAUCH '72 for symmetrizable or strictly hyperbolic systems
e AUDIARD '11 for systems with constant multiplicities
o METIVIER '14 for a more general class

Thenforally > 0:
&7 T, Taqgry + Y167 Uleggigoryy + 167 tmoliZogo

1 - —Yy
< O IMlzqeey + e Flleiom + 167 Gl
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Stability theory for the discrete IBVP
GUSTAFSSON, KREISS & SUNDSTROM '72
Definition (Strong/GKS stability £ ¢2)

DAt AR + ) Ate2r A

n>0 n>0

1 At
<[ LS N At S ET 4 Are A g

n>k n>k

1 —|—yAt

Strong stability equivalent to an algebraic condition (UKLC)
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Stability theory for the discrete IBVP
GUSTAFSSON, KREISS & SUNDSTROM '72
Definition (Strong/GKS stability £ ¢2)

DAt AR + ) Ate2r A

n>0 n>0

14y At
<o |12t Z Ate 27" IFNE 4 Z Ate 27| g"|2

n>k n>k

1 —|—yAt

Strong stability equivalent to an algebraic condition (UKLC)

From the discrete Cauchy stability to the strong stability

e GOLDBERG & TADMOR ’81. In the scalar case, considering the Dirichlet
boundary condition: the stability for the discrete Cauchy problem implies
its strong stability.

e MICHELSON ’83. Multidimensional case, dissipative schemes only.
How to include nonzero initial data ?
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Discrete semigroup stability results

Cauchy stability + GKS stability = semigroup stability

e Wu ’95. For scalar equations or for one-dimensional systems, for
one-step difference schemes.
Tool: by a superposition argument, design auxiliary strictly dissipative boundary
conditions, and use the Goldberg-Tadmor result to connect with Dirichlet
boundary condition.

e COULOMBEL & GLORIA '11. Extension for systems with several space
dimensions and variable coefficients. For one-step difference schemes.
Tool: energy method and another auxiliary dissipative boundary conditions,
without using the GKS stability result.

e COULOMBEL ’15. Multistep multidimensional systems. + simple roots in
the von Neumann Cauchy stability
Tool: Leray-Garding multipliers, auxiliary strictly dissipative boundary condition.
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Our setting: multistep MOL schemes

Scalar one-dimensional transport equation (a # 0)

ou ou

— =0, ,1) e RT xRT
at T %x (1) €T x
u(x,0) = f(x), x eRT
u(0,t) = 0 (weak), teRT

Multistep "Method Of Lines" finite difference schemes
ujf’ =~ u(jAx, nAt), CFL parameter 1 = At/Ax

k
Z a(ruj”+" Z Bo Z a ]”ﬁ;’ = r<j 0<n
o=0

o=0 {=-r
n __ g .__ 1 e n H
uj—l;.—B i f(x — at") dx 0<j 0<n<k-1
J
=0 0</<r—-1 k<n

/36
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Numerical stencil and notations

Boundary layer expansion and semigroup estimate
000000000000 000000

k
Z alru/”‘r Zﬁrr Z ar u”*‘r =0, r<j, 0<n
o=0 (7‘ 0
n
A
\
u].” =0 L e
re1+p
k
n __ §n
u = fl
0
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Reminder of the pure discrete Cauchy problem

k At k=1 p
Z VA — Z,BJZ au™’ =0, jeZ
/ AX j+t
o=0 o=0 {=—r

Fourier multiplier of the space discretization (von Neumann analysis):
Az) =3P  azf, z+#0

T Hl=—r

10/36



Boundary layer expansion and semigroup estimate
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Reminder of the pure discrete Cauchy problem

k k-1 p

Z atru/“" + % Zﬁgz a{u”“r =0, jeZ

o=0 o=0 {=—r

Fourier multiplier of the space discretization (von Neumann analysis):

A(z) =30 ,az', z#0

Linear recurrence relation of the time discretization:
Characteristic polynomial: P.(X) = p(X) — uo(X), neC

with the Dahlquist’s generating polynomials:
p(X) = Zg:o ag X7, o(X) = 20‘ 0BaX”

10/36
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Reminder of the pure discrete Cauchy problem

o=0 t=—r

Zkl a/cru;’“’ ZB‘TZ a(u”+‘r =0, jeZ
o=0

Fourier multiplier of the space discretization (von Neumann analysis):
A(z) =30 ,az', z#0

Linear recurrence relation of the time discretization:
Characteristic polynomial: P.(X) = p(X) — uo(X), ueC
with the Dahlquist’s generating polynomials

p(X) = Yoo OUO'XO a(X) = ﬁioﬁaX"

Consistency of the numerical scheme

A1) =0, A(1)=a
p(1)=0, p'(1)=0c(1) (=1).

10/36
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Semigroup stability for the discrete Cauchy problem
The discrete Cauchy problem is supposed to be semigroup stable :

k
AC > 0, VAt € (0.1), V(I )ozock-1 € (E2(2))
k-1

sup lu”llzzy < € ) NI llee
Sup U7l z) ; i lle@)

11/36
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Semigroup stability for the discrete Cauchy problem
The discrete Cauchy problem is supposed to be semigroup stable :

K
AC > 0, VAt € (0.1), V(I )ozock-1 € (E2(2))
k-1
sup llu”llz(zy < C ) 11 llee
nzg’ #(2) Z;) j e2(z)
Power boundedness of the companion matrices in the time recurrence
relation — Stability region:

|z] <1, or
S=1:ueC, P(z)=0= .

|z| = 1 and z is simple

Common theorem:

The (semigroup) stability for the Cauchy problem is equivalent to:

VEER, —AA(e%) € S.

[HAIRER, N@RSETT & WANNER] '93, [HAIRER & WANNER] '96

11/36
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Selected examples (1)

The everyday ones:

Time discretization: one-step explicit Euler method
Pu(X)=X-1-p.
S={ueC N+u<t}=D(-1,1).

Space discretization:
e upwind A(S") = dD(1, |al). Stability under CFL condition |1a] < 1.
e downwind A(S') = dD(-1,|al). Instability.
o two-points centered A(S") = ia[—1, 1]. Instability.

12/236
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Selected examples (2)

Boundary layer expansion and semigroup estimate
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A third order explicit scheme : AB3 - 5pts (fo be continued)

Time discr.: 3rd order explicit Adams-Bashforth

Space discr.: centered 5pts approximation of the flux term plus a fourth order
stabilizing dissipative term

23 16 5
n+1 n n n1 Vi 2
u' —”,_/1(_ - — + —v )
J 1 12 / 12 / 12/

N —ul, +8uly, —8ul +ul, —ul,+4u’ —6u’+4u’, —ul
=a -
i 12 24
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Selected examples (2)

A third order explicit scheme : AB3 - 5pts (fo be continued)

Time discr.: 3rd order explicit Adams-Bashforth

Space discr.: centered 5pts approximation of the flux term plus a fourth order
stabilizing dissipative term

un+1:u(1_/l(§n 16n1+£ n2)

I J 127 7124 12
Ve g —ul, +8ul  —8ul +ul, ~ —ul, +4ul —6ul +4u’ —ul,
T 12 24

16 5
Pu(X) = X% - X? - ( X2 - —X —)
u(X) 12 12" " 12
a

1
A(z) = 12( 7z +8z-87" +z‘2)—a(—zz+4z—6+42_1—2‘2)

13/36



Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate
OOO000000e000 000000000000 000000

Selected examples (2)

Stability assumption: (CFL parameter 4 = 0.4)

1
----- AB3 stability domain
Space discretization 0.8
-

N

4).;"
i

0.2

0.1 0.2

0.4

LY
0.8

14/36
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Discrete semigroup estimate for the IBVP

k
Z ot 4 Z Bo Z a7 =0, uf =0 (boundary), o =1 (initial).
o=0

l=-r

Theorem (B. & COULOMBEL)
Consider an initial data f € H?(R™) satisfying the compatibility conditions
f(0) = 0, ifa<o0,
f(0) =0, ifa>D0.

Suppose the above scheme (with zero source data and zero boundary data)
to be consistent, Cauchy stable, and "dissipative" (see further).

sup > Axu? < C(IE . ) + A ¥TA 2, . ), pel01/8].

n<Nt =0

15/36
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Numerical experiment

Test case: (AB3 - 5pts scheme)

U _9u_ 4 e 1] t=0

at  ox T

u(x,0) = f(x) = 100057 x ¢ 0,1],
Solution computed at time T = 0.4 with different Ax

numerical solution 16 cells

ujAn
— )
14
0.8

0.6
0.4 4
0.2

0 T T T T T d

0 0.1 0.2 0.3 0.4 0.5 0.6

[KI<IIRIT] =]+
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Strategy

Find an expansion u = U/}’ — ¢; , such that

u”‘pp is a sufficiently accurate description of u? including the boundary layer

e,,,,, the residual error terms, solves the dlscrete IBVP with zero initial data
and small boundary terms and small source terms.

Z Qg €jnto + a4 Zﬁo— Z ar €jttnto = Até/ nt-k

o=0 {=-r
en=1n (0<j<r—1)

go=""=6k1=0,(j20)
. app 31’1’
& : a + 4 B a
J.n+k Z o Uinio Z o Z Ui nto
where we set At =0 =
PP
Njn = Uj,n

17/36
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Strategy
. Find an expansion v/ = u — ;5 such that
. u”‘pp is a sufficiently accurate description of u including the boundary layer

. e,,,,, the residual error terms, solves the dlscrete IBVP with zero initial data
and small boundary terms and small source terms.

Z Qg €jnto + a4 Zﬁo— Z ar €jttnto = Até/ nt-k

o=0 {=-r
en=1n (0<j<r—1)

go=""=6k1=0,(j>0)
. app E‘PP
& = a + 4 B a
J.n+k Z o Uinio Z o Z Ui nto
where we set Af = A
. PP
Mjn = U/n

2. Goldberg-Tadmor lemma applied to e; , gives GKS strong estimate
3. + Error estimates for &; ,« and 77; , = semigroup estimate for e;
4. Semigroup estimate on uapID

17/36
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Heuristics
At the discrete level, two scales
" x and Ax.
0c] ~ ,APP __ jint bl -
ul = Uy = um O, ) + ut (4, 17)
02] Ubl(j, tn) _ Ub]’o(j, tn) + Ax Ubl'l(j, tn)

e u"(x, t) corresponds to the smooth part of the solution

o u"(j, t) is the sawtoothed pattern localized in the very first cells near the
boundary

19/326 o=
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© Far from the boundary: u™
1 K k=1 p
Ejntk = Kt Z Ay uﬁrr);l—)}—(r +4 Zﬁo’ Z ag u?—?;,n—}—(r
o=0 o=0 (=-r

Fix x € Ri and let At, Ax — 0.
Then for x; = x, j — oo so that u!(j, t") tends to 0.
Thus

1 K k-1 p
~ int int
Gtk = Ap Z ¥ Uinte 4 Zﬁf’ Z A lUiinio

o=0 o=0 {=-r
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0000000000000

© Far from the boundary: u™

Context and related works

1 K k=1 o
) . app app
Ejntk -= At Z Yo Ujnio +4 Zﬁ‘f Z aliirnie
o=0

o=0 l=—r

Fix x € Ri and let At, Ax — 0.
Then for x; = x, j — oo so that u!(j, t") tends to 0.

Thus

1 K k-1 o
~ int int
Ejntk = N, Z U Ui+ 4 Zﬁcf Z aUiinio

o=0 o=0 {=-r

« Set u™"(x, t) as the solution of the unbounded domain problem:

ou+adwu=0, xeR, t>0
U(X,O) = f(X)TI]E_ +0Xx g

20/36
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@ Leading boundary layer profile: '

o app PP
Ejntk == At Za” Uinto T4 ZB‘T Z it nto

o=0 t=-r

Fix now j € Z and let At, Ax — 0.
U™ (X, tTFT) = U(0, ") 4+ O(Ax) 4 O(At)
Suppose moreover some time-regularity in the boundary layer
WP, 1) = WP, t7) + O(At),
then

k=1
1
Ejntk = A7 [Zﬁa] Z ar U0 + £, 87F) + O(1).

l=—r

21/36
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@ Leading boundary layer profile: '

o app PP
Ejntk == At Zaf’ Uinto T4 Zﬁ‘f Z it nto

o=0 t=-r

Fix now j € Z and let At, Ax — 0.
U™ (X, tTFT) = U(0, ") 4+ O(Ax) 4 O(At)
Suppose moreover some time-regularity in the boundary layer
WP, 1) = WP, t7) + O(At),
then

k=1
1
Ejntk = A [Zﬁa] Z a U0 (j+ €, 1) + 0(1).

{=-r

& Set (u"0(j, t)); a solution of X7 a, u™°(j + ¢, t) = 0, together with the
boundary conditions u®0(j, t) = —u"(0,t), 0 <j<r -1, and the limiting
behavior lim; . u™(j, 1) = 0.

21/36
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@ Leading boundary layer profile: '

Definition
Being given u € R, a sequence (Vv;)jex is said to be a stable boundary layer
profile associated with u if:

1. ==V =—-U,
2. Yy &V =0forallj>0,
3. limje v, = 0.

Denote Chum the set of all u such that a stable boundary layer exists.

Identify the set Cphum ?
Being given u € Cuum, is there a unique associated stable boundary layer
profile ?

e DuBOIS & LEFLOCH 88 - admissible entropy boundary data
e GISCLON & SERRE '97 - residual boundary conditions for the Godunov scheme

o CHAINAIS-HILLAIRET & GRENIER '01 - conservative schemes

29/26
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Technical "dissipativity" assumption

Stable boundary layers are obtained by considering roots of (A, with |z| < 1.

Assumption (H)
z = 1is the unique root of A on S’

Lemma
Under the Cauchy stability assumption and the above assumption (H),
A(z) = 0 admits exactly R roots (with multiplicity) in {z €eC,0<|zl < 1}

r ifa<o,

where R = :
r—1, ifa>0.

23/36
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Proof of the Lemma

e
2/7r

= #{ zeros} ##{poles},

0 is pole of order r
1is zero of order 1 : A(1) =0, A'(1) =a#0
e does not vanish on I, 1, therefore' A(z) ¢ R* / use log_

aA(z) ¢ Ry for z € [, (€ being sufficiently small):

- casea<0:A(z)¢R_forzel ,/uselog_:R=r
-casea>0:A(z)gRyforzel.,/uselog, : R=r—1.

The stability region S contains no positive real number

24/36
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Example for selected schemes

Assumption (H)

z = 1 is the unique root of A on S'

* Explicit Euler time discretization: P,(X) =X -1—-p
A" =0 1-21A(") =1
e Any dissipative scheme satifies (H):
dc >0, AMeN*, Vg <, |1 — AA(eM) < 1 - cf?™.

e Some other usual non-dissipative schemes also satisfy (H).
The Lax- Friedrichs scheme'

n+1 = ( Uity 'Jjn—1) ( uly —uly s

1- /L?((e’”) = cosn— //lasm n.
* The AB3 - 5pts scheme satisfies also (H)
. 2 n
RA(e") = = sin* (—),
(") =3 >

25/36
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Example for selected schemes (2)

* The leap frog scheme as a (well-known) counterexample (N = 300)

u™t -yt u? . —ul
At oAr =0 1<iSN-1 g =up=0.

Tine0

(K<< =]+

26/36
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Example for selected schemes (2)

* The leap frog scheme as a (well-known) counterexample (N = 300)

urtt — ur - ul
AT AT =0 1SjSN-1 = ui=0.
§
;
" P.(X) = 5(X2 —1)—uX

——— S —————— 2 z
01 02 03 04 05 06 07 08 09 1
02
o A1) =A(-1)=0
06
8 bounded oscillating pattern:

— (1)t
1 ujn_( 1)/ n

(K<< =]+

26/36
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Back to @ Leading boundary layer profile: u®-°

Consequently, comparing the number of (independant) generators for the
boundary layer to the number of Dirichlet boundary datas :

Lemma
e jfa> 0, then Cyum = {0} and the unique boundary layer profile
associated with u = 0 is the zero sequence

e jfa<0, thenCym = R and for any u € R there is a unique
stable boundary layer profile (v;);en associated with u, that
decreases exponentially fast at infinity.

vi=uw, j=0,

where (w;)jen denotes the (canonical) boundary layer profile
associated with u = 1.

bLO _ i
uy = u™ (0, t")w;.

27/36
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® First boundary layer corrector: u°!

. PP app
Ejntk = At [Z Ao U j.n+o +4 ZB‘T Z a[u+fn+a']

o=0 o=0 {=-r

Remainder terms (up to every previous approximation) are

Ejnik = At Za(’ bl()( thrO' Z'B” Z a[ubll j+€ tn)

o=0 {=—r

28/36
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® First boundary layer corrector: u°!

- PP app
Ejntk = At [Z Ao U j.n+o +4 Zﬁ‘f Z afu+fn+a']

o=0 {=-r

Remainder terms (up to every previous approximation) are

Ejmik = — At Za ubIOI tn+o‘ Z'B”) Z afubll j+€ tn)

o=0 {=-r
To be solved :

P
w,-+2azwj+r:0,j2r,

{=—r
WOZ"':Wr_1:0, I|m%:0

j—oo

28/36



Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate
0000000000000 0000000000 OOOO0O0

® First boundary layer corrector: u°!

. 4P app
Ejntk = At [Z R Zﬁff Z afu+fn+a]

o=0 {=-r

Remainder terms (up to every previous approximation) are

Ejmik = — At Za ubIOI tn+o‘ Z'B”) Z afubll j+€ tn)

o=0 {=-r
To be solved :
P
w; + Zaf@+(:0712f,
{=—r
Wo="+=W_1 =0, /ILngo'vV/:O.
Lemma

In the case a < 0, there exists a unique solution (W;)jex and this
solution decays exponentially fast at infinity.
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Numerical experiment around the boundary layer expansion
Comparisons
Test case: (AB3 - 5pts scheme)
du_u_ 4 xepo1] t>0,
ot ox
u(x,0) = f(x) = "0 x [0, 1],
Rootof Ain{zeC, 0<|z] <1}: zy ¥ —0.6595 and z, ~ 0.0809

n . ,@P ._ int bl,0 bl,1
U =y =Un + Uin + Ax Un

1q 0.2+
uwirn u_jAn-uAint(j tn) \ —— uJAn-uAint- ublo - dxublL
u(x,) 0.8 + + + +ubl0 + dx*ubll 0.14 A\
2 B\ 6 A8 Al 12 14 16
06 o1 PN SAT A AR ALY
1 0.4-] [\
-0.14 [V
o L, L S S |
TV sl
-0.2 .
‘e 0.4
0.4 0.4
06 o5 |
0.2 |
0.8 061\
o T T T T T 1 -1- -0.7-
0 01 02 03 04 05 06

(KI<[<PI>]] [= ]t +]
Solution computed at time T = 0.4 with different Ax
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Numerical experiment around the boundary layer expansion

Rate of convergence (2
)1 /2

. ) 2\1/2
Eint .= (ZjN:o Ax |uf = u™(x;, t") ) R (Z/ o Ax |uf — U™P(x;, t")

21
—4
-6
-8
-10
~124
-144 +— + +E_app
164 4 +E_int
Slope 3
-184 Slope 2
Slope 1
-20 T T T T T T 1
-9 -8 -7 -6 -5 -4 -3 -2

At time T=0.125 : no significant boundary layer at x = 0.

EM = 0(Ax%), EP = 0(Ax®)
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Numerical experiment around the boundary layer expansion

Rate of convergence (2
2)1/2

Context and related works

2\!/2 app N
) , E ::(ijoAx

= (. 7)

u]n _ Llim()(/‘, t")

Eint .= (Z,-NZQ Ax

At time T=0.4 : a boundary layer.

EM = O(Ax"?), EP = O(Ax*/?)
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Numerical experiment around the boundary layer expansion

Rate of convergence £

Ei" .= maxo<jen |uf — u™(x, 1)), ESP := maxogjen |uf = u*PP(x;, 7).

0~
24
-4+
-6
-84
-10
-124
-14 4 +—+ +E_app
+—+—+E_int
-16 4 Slope 3
_184 Slope 2
Slope 1
-20 T T T T T T 1
-9 -8 -7 -6 -5 -4 -3 -2

At time T=0.125 : no significant boundary layer at x = 0.

EM = O(AX®), EXP = 0(Ax%)
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Numerical experiment around the boundary layer expansion

Rate of convergence £

Ei" .= maxo<jen |uf — u™(x, 1)), ESP := maxogjen |uf = u*PP(x;, 7).

124
10 A
8
6
4
2
07 E
bbb g A+ B app
_2 4 +—+—+E_int
Slope 3
44 Slope 2
Slope 1
-6 T T T T T T 1
-9 -8 -7 -6 -5 -4 -3 -2

At time T=0.4 : a boundary layer.

EM = O(AX°), EXP =0(Ax")
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"GKS estimate" for the error terms

P P
Ej.n+k Z asr U + A Zﬁ(r Z au
Recall we set ( bt e

=0 (=-r
N = u

Then, 3C >0, YAte (0,1], Yy >0, Vfe H3(R') :

Z ZAtAx e2"Al g < C (1 + 7) AL gy »

n>k j>r

r—1

D0 Ate Ay P < CARIE, 5 -

n>k j=0
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"GKS estimate" for the error terms
i+ s U+ A . app
Recall we set K (Z Yo Yinto Z;)ﬁ [Z‘,a[ ]+€n+o']
Njn = uj,n

Then, 3C >0, YAte (0,1], Yy >0, Vfe H3(R') :

Z ZAtAx e2"Al g < C (1 + 7) AL gy »

n>k j>r

r—1

> ZAte‘zV"A’In,nlz < CALIFIE g+ )-

n>k j=

Some ingredients:
e Consistency of the interior scheme
o Compatibility condition : homogeneous Dirichlet/initial data
e Exponential decrease in space of the boundary layer
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Semigroup estimate for the error term

GOLDBERG AND TADMOR ’81: For homogeneous Dirichlet conditions and
under the discrete Cauchy stability assumption, one has the GKS estimate

iC >0, YAte (0,1], Yy >0:

1 +7At D, D AtAxe A g+ Z Ate 27 g2

n>0 ;>0 n>0 j=0

LY Y ArAxe A g 1 3 ZA“" e

nzk j>r n>k j=
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Semigroup estimate for the error term

GOLDBERG AND TADMOR ’81: For homogeneous Dirichlet conditions and
under the discrete Cauchy stability assumption, one has the GKS estimate

iC >0, YAte (0,1], Yy >0:

1 +7At D, D AtAxe A g+ Z Ate 27 g2

n>0 ;>0 n>0 j=0
1 At
+')’ ZZAtAxe 2n'yAt|8 |2+Z ZAI‘G 2n)/AI|77 |2]
nzk j>r n>k j=

1+ yAt 1
< C AP e (Ty (1 - ;)+ 1) :
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Semigroup estimate for the error term

GOLDBERG AND TADMOR ’81: For homogeneous Dirichlet conditions and
under the discrete Cauchy stability assumption, one has the GKS estimate

iC >0, YAte (0,1], Yy >0:

1 +7At D, D AtAxe A g+ Z Ate 27 g2

n>0 ;>0 n>0 j=0
1 +7’At 2ny At | n2 2ny At n2
<c >0 Atnxe el +ZZAte I’
nzk j>r n>k j=

1+ yAt 1
< C AP e (Ty (1 - ;)+ 1) :

To make it readable, choose y = 1, we easily get:

n>0 >0

sup [ L Z AXle |2] < CAt||f||H2(R+ I
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Semigroup estimate for the numerical solution

From the previous semigroup estimate for the error terms:

sup [ )" AxlefP| < C ARy -

n>0 >0

and from an direct semigroup estimate concerning the boundary layer

expansion:
aJ 2
D AxIUEP < ClifiE gy
=0
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Semigroup estimate for the numerical solution

24/36

From the previous semigroup estimate for the error terms:

sup[ 20 % Axle |2]< C At -

n>0 >0

and from an direct semigroup estimate concerning the boundary layer
expansion:

D Ax U < Clifl e

jz0

Finally, using a triangular inequality (u = U’ — /), we get :

D AxIuf? < C (I gey + At e 1l 5).

>0

Remark:
without the corrector u}jlr;', the last estimate would lose the At factor.
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Conclusions and perspectives
o Main result: close to optimal semigroup stability estimate for the discrete
IBVP, compatible in the limit with the continuous one:
SupIIU( D2y < KIUCS O

e The two-scale asymptotic boundary layer expansion allows the
treatment of MOL multistep schemes.

e The discrete boundary layer structure is not directly related to the
equivalent equation of the scheme.

25/36



Context and related works Stability theory for (continuous and discrete) linear IBVP Boundary layer expansion and semigroup estimate

0000000000000 0O00000000000000e0

Conclusions and perspectives
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o Main result: close to optimal semigroup stability estimate for the discrete

IBVP, compatible in the limit with the continuous one:
SupIIU( D2y < KIUCS O

The two-scale asymptotic boundary layer expansion allows the
treatment of MOL multistep schemes.

The discrete boundary layer structure is not directly related to the
equivalent equation of the scheme.

Up to now, the approach is restricted to Dirichlet boundary conditions,
for which the strong GKS stability estimate is known to hold under the
discrete Cauchy stability.

Explore higher order boundary layer expansions (up to the order of
accuracy of the numerical scheme), and initial layers as well.

* Weaken the (H) assumption on the spatial discretization.

Export the tool to the multidimensional situations.
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