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Splash Singularity

Introduction This definition appeared in 2011 in a paper on 2-D Water
Waves of

Angel Castro, Diego Cordoba, Charles Fefferman, Francisco
Gancedo, Javier Gémez-Serrano

They exhibit smooth initial data for the 2D water wave
equation for which the smoothness of the interface breaks down
in finite time.

Moreover, by a stability result together with numerics they
found solutions that starting from a graph, turn over and
collapse in a splash singularity (self intersecting curve in
one point) in finite time.
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Linear Viscoleastic and Maxwell Material

Viscoelastic behavior has elastic and viscous components
Introduction modeled as linear combinations of springs and dashpots.
Purely Viscous materials respond to a tangential stress with
behavior consistent with Newton's law (tangential force equal
to the product of the shear rate and the viscosity)

Purely Elastic materials respond to a normal stress
manifesting a coherent behavior with Hooke's law

Let 7, €, n E stress, strain, viscosity and Young modulus
de

Telastic = E €, Tviscous = 11—
dt
Maxwell model for Viscoelastic materials
de _ deyiscous + d€elastic _ T 1dr

- dt dt n Edt
~E. Dilorio, P. Marcati, S. spirito [HRNRP




Upper Convective Maxwell and Oldroyd-B model

For large deformations consider the convective derivative and
Introduction the streching terms

Let 7,v, A\, 1o, D stress tensor, fluid velocity, relaxation time,
the material viscosity, the deformation rate (the rate of strain)
tensor.

Upper - Convective Time Derivative

Ut = 9yt + (v- V)1 — (Vv) 7 4+ 7(Vv)
Upper Convective Maxwell model

T4 AT = 2D, 2D = (Vv) 4 (Vv) "
Oldroyd-B model

T+ A% T = 25(D + AsD) A = 7777—')\
0



Modelling of polymeric fluids

Viscoelastic fluids, like all fluids, are governed by the
momentum equation

Introduction

Oru+u-Vu+Vp=dvr,

divu=0

e u(X,t) Eulerian velocity,

e p(X,t) pressure,
e 7(X,t) stress tensor.

o Newtonian viscous fluids: 7 = v(Vu+VuT'),
o Polymeric fluids: 7= v(Vu+ VuT) + 7,.



Equation for the extra-stress 7, (Oldroyd-B)

The polymers extra-stress 7, satisfies

Introduction

1
Ty = 370+ %(VU +vu'),

@ v, polymeric viscosity

@ ) relaxation time
o 7 is the shear rate Yot ~ 4—1

distance
We ~ viscous forces
elastic forces

Weissenberg number = % =AY,
o We< 1= 7, ~v,(Vu+VuT)
@ We > 1 = formation of geometrical singularities.
when We > 1 (we approximate with the limit We — o)
O¢rp + (u- V)1 — (Vu)1p — TP(VU)T =0.



Introduction Lemma

Let F(«,t) = —— the deformation tensor, then we have (in

Eulerian coordinates)
OtF +u-VF =VuF.
Let the initial condition T(c,0) = 19(«) be positive definite,

m(a,t) = FroF .

is positive definite too and 7 satisfies

O¢rp + (u- V)1 — (Vu)mp — TP(VU)T =0.

<




CHESH| \iscoelastic High Weissenberg number system (no

free boundary)

otreduction The viscoelastic fluid system for high Weissenberg number is

O+F +u-VF =VuF
Oru+u-Vu—pAu+Vp=div(FFT) in R3 x (0, T)
divu=0,divF =0

e Fang-Hua Lin, Chun Liu & Ping Zhang, On Hydrodynamics
of Viscoelastic Fluids CPAM 2005.

e Li Xu, Ping Zhang & Zhifei Zhang, Global solvability of a
free boundary three-dimensional incompressible Viscoelastic
Fluid System with surface tension ARMA 2013.



Free boundary problem for the High Weissenberg

number system

Introduction ( atF +u-VF=VuF in Q(t)
Ot 4 u-Vu—Au+Vp=div(FFT)

divu=0,divF =0

(—pZ + (Vu+Vu" )+ (FFT —I))n=0 on 09(t)
u(t)jt=o0 = uo, F(t);e=0 = Fo in Q.

The boundary condition states the equilibrium of the force fields
acting on the interface.

Equation for the flux

X(a, t) = u(X(a, t), t)
X(a,0) =a, aecQ

Q(r)




Evolution of the domain

Introduction
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Arc-Cord condition and Splash Curves

Definition (Arc-Cord condition)

Introduction

z : R/277Z — R2 smooth simple closed curve Arc-Cord
condition if there exists K > 0

|z(a) — z(’)| > Kdist(a, @) for a, o’ € R/27Z.

Definition (splash curve)

Q zi(«a), z2(«) are smooth and 27-periodic.
@ z(«) satisfies the Arc-Cord condition at every point but
a1 and ag, with a; < ap, z(a1) = z(az) and dz a’ # 0.

© z(«) separates the complex plane into a connected fluid

region and a vacuum region (not necessarily connected).

The normal vector n = (*8“2‘39(0‘2)(’2‘;‘21(‘“)) points to the

vacuum region. The interface is part of the fluid region.

<




Conformal map

Introduction

Consider a conformal map P from the complex plane to an

half plane (e.g. P(z) =+/z)
Conformal image of a splash curve
Let z be a splash curve and a branch of the function P on the

fluid region, the curve Z(a) = (Z1(«), Z2(a)) = P(z(«))
satisfies:

Q Zi(«) and Z(«) are smooth and 27-periodic.

@ Zis a closed contour.

© Z satisfies the Arc-Cord condition.



|dea for proving the existence of splash singularity

Let P a conformal map P : Q — (), where P(z), z€ C, is a
Introduction branCh O'F \/E

@ The initial domain Qg could be
“ nonregular, for instance a splash
domain (b), however mapping by

o a0 P leads to a regular. g

1
(6)
i
P00 ()
w Qj
()

@ Since {Qo, do, Fo} are regular in
the conformal coordinates local
existence of smooth solution

® The strategy is take initial
domain P~1(08) already in
splash perturb it and use stability

9

P(A(r)




Choose suitable initial domain and perturb it to get
existence

Introduction

@ Choose in a right way the initial velocity, s.t.
lo(z1,s) - n>0 (z,s)-n>0, hence there exists
T >0,st. PY0(T)) self-intersects (c).

o Take a one-parameter family {£2.(0), (0), F-(0 )} such
that .(0) = Qo + eb, with |b| = 1, s.t. P~1(9.(0)) is
regular and there exists a local in time smooth solution



Domains local stability in time is needed

o (stability) let {Q.(t), dc(-, ), pe(-, t), Fo(-, t)} the
perturbed solution, then

10Q:(T) — 0Q(T)|| ~ O(e)
in a suitable norm, hence

P~H00Q(T)) ~ P~HOQ(T))

and so P~1(8Q.(T)) self-intersects.
@ By continuity we have
o for t =0, P~1(€.(0)) is regular like (a)
o for t =T, P~Y(Q.(T)) is self-intersecting like (c)
= define t* € [0, T] in the following way

t* =inf{t. € [0, T]: P~1(8Q.(t)) is splash}.

@ By stability 0 < t* < T hence (£, ue, Fe, pc) exists on
[0, t*] and form a splash singulatity in t = t*

Introduction



Choice of the initial data {ug, Fo}

Introduction

The initial data {up, Fo} must satisfy the compatibility
condition
t(Vuo + Vud )n= —7(FoFy —I)n (1)

@ Let U a neighborhood 09 given by the parametrization
x(s,A) = z(s) + Az(s), where z(s) is the parametrization
09 and |zs(s)| = 1.

e Construct a stream function on U as follows
D(x(s,A)) = (s, A) = tho(s) + Ap(s) + 3X%4a(s).

@ Define uy = V14, then divug = 0.



Introduction

o Extend t,n:

{ T(s,)\) = xs(5, \) = zs(s) + Az (s) = (1 — Mk(s))zs(s)

@ By the LHS of (1) in A =0
2¢0(s) — v2(s) = T(FoFg —I)N (2)

@ up - n = Js1ho(s) independent from Fy (depends only on
1), then for all Fy we can choose 1(s) and 12(s) by (2).

@ Moreover, we can choose ug - n > 0.



Existence of splash singularity for the free boundary
problem for the Navier-Stokes equations

Introduction

@ For the local existence we use a technique introduced by T.
Beale in The initial value problem for the Navier-Stokes
equations with a free surface, CPAM 1981.

@ The analysis of the self intersection via conformal maps is
a somehow very classical idea resumed recently (for Navier
Stokes) by A.Castro, D. Cordoba, C.Fefferman, F.Gancedo
J. Gomez-Serrano, arXiv: 1504.02775

@ Other Methods on Navier Stokes D. Coutand, S. Shkoller,
arXiv: 1505.01929v1.



Conformal Transformation

We define

Conformal o A conformal map P : Q — ), where P(z), z€ C, as a
T branch of /z,
fons e the conformal velocity (X (o, t), t) =
u(P~H(X(a, t),t) = u(X(a, t), t) = G(P(X(a, t), t)),
e the conformal deformation tensor is F( ~(a t),t) =
F(PH(X(a,t),t) = F(X(a, 1), t) = F(P(X(a, 1), 1)),

@ for the derivatives we will use
1 ~
(axju,') oP = AkJ-@;(k uj,

where Ay = Ox. Py o p-1



Conformally transformed system

The transformed system in €(t)

Co;\‘ormal ( at‘ﬁl_j + (Ark[ikar)ﬁl_] = 8I‘L71/4I‘kﬁk_]
Lagrangian atai + (Ark[jk . 8,)L7,- — Qzﬁﬁi + Ariarﬁ = (Arkﬁk/ar)ifi/

transforma-
Tr(ViA) =0

(=BT + (ViA+ (ViA) ) + (FFT —I)A ti=0
Gje=o(t) = o, Fle=o(t) = Fo.

2
where Q% = ‘% o P7H"
The transformed flux equation

dt

{ 9 R t) = (Ao K)(@oK)  in (t)
X(a,0) = a in Q(0)



Lagrangian Transformation

To have a fixed boundary problem, we transform in Lagrangian
coordinates:

Conformal
and
Lagrangian
transforma-
tions

and differentiating )
%, b = GO,

where f/j is the /j-th element of (Va;()_l and 0; = 0,.



Lagrangian system in the conformal domain

The Conformal Lagrangian system is

Conf« | ~ = ~
d [ 0:Gjj = Axj 0 X(srOs i Gyj

and
Lagrangian

o 0e7 — Q% 0 X(or05((jr0j7) + A 0 X054 =
= Ark 0 XGy(sr0s Gy
Tr(Vav(VaX) tAoX) =0
(=G + (Vo (VaX)PA0 X) + (Vai(VaX)TA0 X) T+
+(GGT —T)A 1o XV Xiig =0
(a,0) = V() = do(a), G(a,0) = Go(a) = Fo(a).

o

where VX = —JVXJ, with J = ( _01> this is due to the

fact that i1 = _JA|afz(t)J”'

1



lteration scheme- fluid part

We observed that it is possible to separate the equation for
from the equation for G.
at";(n-‘rl) _ Q2A\7(n+l) + ATVd(n+l) _ f(n)

Local
e of Tr(VirA) = g
solutions (—f](n+1)I + ((V\7(n+1)A) + (VV(n+1)A)T))A_1 ﬁO) _ i’,(n)

\7(0&, 0) = \70.
where £(M (" (" contain all th(i missing terms in the
previous time step, for instance in #(" and in (" there are
G(" terms.



lteration for the Conformal Lagrangian deformation

9.6 = Ay o XN, 055" G

I

{ G(Oé, 0) = Go.

This implies
Local
existence of

st Er D (a, 1) = Gy + / (Ao XMENTH G (a,7) dr.
For the flux we get
~ t V
X("‘H)(a, t) =+ / (Ao X \7(”))(&, T)dT
0

Assuming the convergence as n — oo, in the limit we find the
solution of the system.



Function spaces

These are the spaces where we will use for the estimates:
HP# ([0, T1; 2) = L2([0, T]; H*(Q)) N H3 ([0, T]; L3(2)).

Har ([0, T1:Q) = {q € L([0, T} H'()) -

o Vg e H'sY([0, T]; ), g € H"~3([0, T]; 0Q)},
SRRl AM((0, T Q) = L3([0, T]; HE(Q) N HF ([0, T]; HY(Q),
FE([0, T): Q) = L3°([0, T]; HTH(Q)) N HA([0, T] HY()),

smooth
solutions

fors—1—e<vy<s—1,
F*([0, T]; Q) = L([0, T]; H3(Q)) N H>([0, T]; H~1(Q)),
4
fors—2—e<y—-1<s—2.

_1
[fllge = sup t™2|f(¢)]
z te[0,T]



|dea for solving the linear system for ¥

This theory was developed by T. Beale. The idea is to start
with the homogeneous system

Ov — Q®PAv+ATvVg ="
i Tr(VvA) = 0

existence of
smooth

solutions T
(—qZ + (VVA) + (VVA)T)—n =0
v(a,0) = vp.

@ Weak formulation of the problem
@ Projection R on H? = {v € H' : Tr(VvA) = 0}



@ The main result

Let f € H"s=1 2 < s < 3 such that Rf(0) = 0. Then

Local

existence of VIl ppes + 1V allpes—r +llall jpesy < CllEllpgaea—r,

Hht’s_Z

smooth
solutions

with C indipendent on T.

Write the linear problem as 0;u + Sau = Rf
Prove the thm by using the following results:

Q (IS5 Fllwes < ClIFl|pse-s,
@ (A + Sa)2RF s < € (IIRF s + A= Rz )
where 1 <s <3, A€ Cand ®(\) > 0.




Inhomogeneous linear problem

For the inhomogeneous problem

Ov — QPAv+ATvVg="f

Tr(VVvA) =g
t;’;flnhce of (—=qZ + (VVvA) + (VVA) A I h = h
solutions V(Oé, 0) =V

Let's introduce the compatibility conditions for the initial data:

{ Tr(VwA) = g(0) G)
(A7) S (VwA + (VwA) A n = h(0)(A~1n)*



For this system we define spaces X space of solutions and Y
space of data.

X = {(v, q):vEe Hhts+L g e H[,’,t’s}
Local Y — {(f,g, h, VO) . f' c Hht,sf:l,g c ’:Iht,57

existence of
smooth

solutions h c Hht,sf%(aﬂ X [O’ T])’ Vo € HS(Q) and (3) are Sa,tiSﬁed}

Let2 <s < % Then L : X — Y has a bounded inverse:

1(v; @)llx < CII(f, g, h,vo)llv




In order to have the constant C independent of the time we
define

o] Xo = {(v,q) € X :v(0) =0,0:v(0) =0, q(0) = 0}
SRS v = [(f, g, h,0) € Y : f(0) =0,g(0) = 0,8:g(0) = 0, h(0) = 0}

smooth
solutions

LY is

L: Xy — Yg is invertible for 2 < s < g Moreover,
bounded uniformly if T is bounded above.




Navier Stokes iteration

In order to apply the previous Theorem, we take an
approximation ¢ = ¥ + texp(—t2)(Q?Avy — ATVE/¢), a new
function w(" = (") — ¢ and the new system is
(0w — QRAw"D + ATVEY = F) — 90
e +Q2A¢p — ATV,
Tr(Vw () A) = (" — Tr(VpA)
[~ ~(n+1 T4 ((VVT/(n-i-l)A) + (v~(n+1)A)T)]A—1 ~
= h") 4+ G§,A g — (VHA) + (VoA T)A

~(n+1)
|t 0 =0

solutions

where (M z( k(" contain all the missing terms.



Flux and deformation gradient iteration

The flux and the deformation gradient
EO ) (o, 1) = o + / (Ao KON EMY(a, 7) dr

smooth

i n / (Ao XMENTEEMY (@, 1) dr,

existence of

solutions

t
K0 (at) = a+ [ (A0 XM (a,7) dr
0

/Ot(A o XMg)(a,7)dr



Results for the Navier-Stokes part

Theorem (Estimate for the flux (Part 1))
Let X(") —a e Ft1, #(n e Hhts+1 and such that

t
Local OX(n)—OzG{X—OtEFS'HHX—a—/ Ad)dTHFerIS
0

existence of
smooth

solutions t
<|| [ Addriems) = Bao
0
o || yhesss < N

Then, for small enough T > 0, depending only on N, V%,

)?('H_l) — o€ BA¢.




Theorem (Estimate for the flux (Part 2))

Let X(") — o, X(=1) ¢ Fst1 with @M w(1—1) ¢ Hhtst1 5pd
such that

o ||vf")

<M,

Local Hhtstl —

existence of
smooth
solutions [ ]

<M, Hv"v(”_l)’

Hht,s+1

X _ o <M

Fst+1 -

<M,

X(=1) _ a‘

Fs+1
for some M > 0. Then

||)'“<(n+1) _ x(n)HFS“ < CT5(||)~<(’7) _ )N(("—l)”l,__s+1

+ 1@ — G| yhtssn )

For a small enough §.

v




Estimates for G

Theorem (Estimates for G (Partl))
Let G(M — Gy e Fs, X(") — o € Fs*1, and w(") e Hht:s+L apd
such that

oca ~ ~ ~ ~ ~ ~ t ~
Ie_xistlnce of [ ] G(n) - GO 6 {G — G() E FS . ”G — G() - / AV(,ZSGO dTHFS S
0

smooth
solutions

t
< H/ AV¢Gy dT|Fs} =B,
0
o || W(M)|| yhesia < N.

Then, for T > 0 small enough , depending only N, ¥y, Go.

G+t _ Gy e B.

V.




~

Estimates for G (Part 2)

Let G — Gy, GV — Gy € F5, with
X — o X(0=1) _ o € Fstl and @) 7(n=1) ¢ Hhtstl gpd
such that

oxence of o ||| yhesiz < M, WD yresia < M,
smooth

solutions ° H)N((n) — aH,_-erl S M’ H)?(n_l) — a”F5+1 S M
o |G — Golles < M, |GV — Gollps < M,

for some M > 0. Then

|G+ = EO)|pe < CTO(I6) - G ot
D = D + R = KO o)

For a small enough 9.




Theorem (Estimates for 7, § (Part 1))
Let X — o € F1, G4 € HiES and w(n) € HAts T and
such that

Ie_:i(s::lnce of L] ||)?(n) - a||FS+1 S N, ||G(n) - @OHFS S N,
smooth

solutions ° (W(n)’ d\(ﬂf)) c {(W, a) c Hht,S-i—l X Hgfvs : W|t:0 — 0,
8tV’."/|t:0 — 07 ||(W, E’) - L_l(f¢7g¢7 h¢)||Hhtvs+1><H;,’f’s <
< LM (Fp, 8o Bo)ll st X Hpr™} = Bioar, 5. hoy-

Then

~(n ~(n+1
(W( +1)’q‘("’ )) e Bl—*l(@nédw’;as)'




Theorem (Estimates for 7, § (Part 2))

Let X(M —a, X(=1) ¢ Fs+1 G — Gy, G("=Y) — Gy € F3,

W™, (1) e Hhts L with &0 = w(" D = o,

o Dei"y = 0ew " =0, 6,65V € Hp* and such that all
existence of these function are bounded, in their norm, by a constant
solutions M > O Then
it t) — ">HHm e+ [0 — || e
pr
< CTO(IXM — KO- oy + W — WD || o+

+ 1165 — 4%~ ’u s+ 160 = GO )

For a small enough 6.

4




Local Existence Theorem

Putting together all the results above and applying the
Contraction Mapping Principle we get

Local
existence of

smooth For2 <s<25,1<~<s—1andforT sufficiently small we
have that {W(M}22 o {G{7}50 0, {G(M}22  and {X(M}  are

Cauchy sequences respectively in H"+1([0, T, Q0),

HpE* ([0, T1,Q0), F([0, T],Q0) and F51([0, T], Q).

The limit of the sequence is the desired solution.



Stability estimates

We pick Q.(0) = Qo + eb, with |b| = 1, for instance b = —ey,
such that P~1(.(0)) is a regular domain. We take the
difference between (w, §, X, G) and (W, §-, Xz, G:) and we get

i Tr(V(W — Ww:)A) = K-
estimates [—(qw qw,s)I + V(W — VT/e)A + (V(W - W, )A)T]Aflno = H,
wo =0,

where F., K., H. contain all the other terms.



t . -

—b€+/ (AoX\“/—Ang\"/s> dr,
Ot

N_G“g_—be—l—/ (Ao X(ViG — Ao X.C.Vi.G.) dr.
0

- For 0 small enough and 2 < s < 2.5, similar estimates as those
s for the local existence lead to the following results:

o||G — Gellpoons + |G — Gellpzpr—1 < Cet
+ CTO(||W — vie|| yresr + || G — Gel|oos + || G — Gel| g2
+ | X = Xell oo st + [| X — Xel| g2 )



o||Ww — W ||ghestr + || Gw — éw,aHH’i;rt,s < C(H,:_ | gpt.s—1 + ||RE||I:Iht,s
A 3,
o[ Fell pmes—r 4 [[Kell goes + 1 Hl jpes—3 <

< Ce+ CTO(|W — e || poessr + || Gw — G,

Stability

estimates + ||é - G&‘HLOOHS + ”é - égHHsz—l‘f—

+ 1X = Xell oo pn + 1K = Xell i),
o| X = Xoll oo + |1 X = Xell i <
< Ce+ CTO(||W — Wi gasssn + || X — X[ oo pyssn
+[1X = Xell o)



Main result

Putting together these results we get that for 0 < T < W

o[ W = e[ gpeser + |Gw = Gwe | yoes + IX = Xl oo gy

+ X = Xellpern +11G = Gellmors + 116 — Gell i1 < 3Ce

j ~ ~
|IX — Xl oo pstr < 3Ce, (4)

Stability
estimates

this means that the two fluxes are close enough and so that the
domains are close:

X(ﬁo, t) ~ )?5((2075, t).

= The domains are close enough so we can apply the idea of
existence of splash singularity described in the Introduction.



Thank You !!!
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