The scalar wave equation on general asymptotically flat spacetimes: Stability and instability results

Georgios Moschidis

Princeton University

Université Pierre et Marie Curie Paris, 30.01.2017

Structure of the talk

• Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .
- Decay in the exterior of a smooth compact obstacle O ⊂ ℝ^d: A result of Burq.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .
- Decay in the exterior of a smooth compact obstacle *O* ⊂ ℝ^d: A result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .
- Decay in the exterior of a smooth compact obstacle *O* ⊂ ℝ^d: A result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .
- Decay in the exterior of a smooth compact obstacle *O* ⊂ ℝ^d: A result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.

• Decay in the presence of an evanescent ergosurface.

- Introduction: $\Box_g \psi = 0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on (\mathbb{R}^{d+1}, η) .
- Decay in the exterior of a smooth compact obstacle O ⊂ ℝ^d: A result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
- Decay in the presence of an evanescent ergosurface.
- Proof of Friedman's instability for spacetimes with an ergoregion and no event horizon.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \varphi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \varphi ig) = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

Scalar wave equation on (\mathcal{M}^{d+1},g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

• Fluid mechanics: g is the acoustical metric of a fluid in motion

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a 3 + 1 dimensional model of our universe.

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

• The initial value problem with initial data on a Cauchy hypersurface Σ is well defined.

Scalar wave equation on (\mathcal{M}^{d+1}, g) :

$$\Box_g \phi = rac{1}{\sqrt{-g}} \partial_\mu ig(g^{\mu
u} \sqrt{-g} \partial_
u \phi ig) = 0.$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a 3 + 1 dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

• The initial value problem with initial data on a Cauchy hypersurface $\boldsymbol{\Sigma}$ is well defined.

We will call (\mathcal{M}, g) asymptotically flat if g approaches the Minkwoski metric η asymptotically, where

$$\eta = -dt^2 + dx^1 + \dots + (dx^d)^2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \phi = -\partial_t^2 \phi + \partial_{x^1}^2 \phi + \ldots + \partial_{x^d}^2 \phi = 0$$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \varphi = -\partial_t^2 \varphi + \partial_{x^1}^2 \varphi + \ldots + \partial_{x^d}^2 \varphi = 0.$$

• Conservation of energy: For all $t \in \mathbb{R}$,

$$\mathcal{E}[arphi](t)\doteq\int_{\mathbb{R}^d}\left|
abla arphi(t,x)
ight|^2 dx=\mathcal{E}[arphi](0).$$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \varphi = -\partial_t^2 \varphi + \partial_{x^1}^2 \varphi + \ldots + \partial_{x^d}^2 \varphi = 0.$$

• Conservation of energy: For all $t \in \mathbb{R}$,

$$\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^d} \left|
abla \varphi(t, x) \right|^2 dx = \mathcal{E}[\varphi](0).$$

Local energy decay:

$$\mathcal{E}_{\leq R}[arphi](t) \leq C_R(1+t)^{-2}\int_{\{t=0\}}r_+^2 \left|
abla arphi\right|^2 dx.$$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \varphi = -\partial_t^2 \varphi + \partial_{x^1}^2 \varphi + \ldots + \partial_{x^d}^2 \varphi = 0.$$

• Conservation of energy: For all $t \in \mathbb{R}$,

$$\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^d} \left|
abla \varphi(t, x) \right|^2 dx = \mathcal{E}[\varphi](0).$$

Local energy decay:

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_R(1+t)^{-2} \int_{\{t=0\}} r_+^2 \left| \nabla \varphi \right|^2 dx.$$

• Pointwise decay estimates:

$$|\varphi| \leq C \big(1 + |t - r|\big)^{-\frac{1}{2}} \big(1 + t + r\big)^{-\frac{d-1}{2}} \Big(\sum_{j=1}^{\lceil \frac{d+1}{2} \rceil} \int_{\{t=0\}} r_+^{2j} |\nabla^j \varphi|^2 \, dx\Big)^{\frac{1}{2}}$$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime (\mathbb{R}^{d+1}, η). Wave equation:

$$\Box_{\eta} \varphi = -\partial_t^2 \varphi + \partial_{x^1}^2 \varphi + \ldots + \partial_{x^d}^2 \varphi = 0.$$

• Conservation of energy: For all $t \in \mathbb{R}$,

$$\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^d} \left|
abla \varphi(t, x) \right|^2 dx = \mathcal{E}[\varphi](0).$$

Local energy decay:

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_R(1+t)^{-2} \int_{\{t=0\}} r_+^2 \left| \nabla \varphi \right|^2 dx.$$

• Pointwise decay estimates:

$$|arphi| \leq Cig(1+|t-r|ig)^{-rac{1}{2}}ig(1+t+rig)^{-rac{d-1}{2}}\Big(\sum_{j=1}^{\lceilrac{d+1}{2}
ceil}\int_{\{t=0\}}r_+^{2j}|
abla^jarphi|^2\,dx\Big)^{rac{1}{2}}.$$

• Valid on small radiating perturbations of $(\mathbb{R}^{d+1}, \eta)_{\mathcal{O}}$, where \mathfrak{P}

The exterior of an obstacle \mathcal{O} in \mathbb{R}^d

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - の��

Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial \mathcal{O}$. Equation $\Box_\eta \phi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial \mathcal{O}$. Equation $\Box_\eta \phi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

Conservation of the energy

$$\mathcal{E}[\varphi](t) = \int_{\mathbb{R}^d \setminus \mathcal{O}} \left| \nabla \varphi(t, x) \right|^2 dx,$$

yields boundedness estimates for ϕ and its derivatives, as well as decay without a rate.

Let \mathcal{O} be a compact open subset of \mathbb{R}^d with smooth boundary $\partial \mathcal{O}$. Equation $\Box_\eta \phi = 0$ on $\mathcal{M} = \mathbb{R} \times (\mathbb{R}^d \setminus \mathcal{O})$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

Conservation of the energy

$$\mathcal{E}[\varphi](t) = \int_{\mathbb{R}^d \setminus \mathcal{O}} \left| \nabla \varphi(t, x) \right|^2 dx,$$

yields boundedness estimates for $\boldsymbol{\phi}$ and its derivatives, as well as decay without a rate.

• Quantitative decay estimates: Trapping enters the picture.

The exterior of an obstacle \mathcal{O} in \mathbb{R}^d

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - の��

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\int_{0}^{+\infty}\mathcal{E}_{\leq R}[arphi](t)\,dt\leq C_{R}\mathcal{E}[arphi](0).$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0).$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

• Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) \, dt \leq C_R \mathcal{E}[\varphi](0).$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

• Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

What can be said for general \mathcal{O} independently of the nature of trapping?

A result of Burq for general ${\cal O}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Burq, 1998)

Without any assumptions on the geometry of $\mathcal{O},$ we have:

$$\mathcal{E}_R[arphi](t) \leq rac{\mathcal{C}}{ig(\log(2+t)ig)^{2m}}\mathcal{E}^{(m)}[arphi](0).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O} , we have:

$$\mathcal{E}_R[arphi](t) \leq rac{\mathcal{C}}{ig(\log(2+t)ig)^{2m}}\mathcal{E}^{(m)}[arphi](0).$$

• C depends on m, R and the size of the initial support of φ .

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O} , we have:

$$\mathcal{E}_R[arphi](t) \leq rac{\mathcal{C}}{ig(\log(2+t)ig)^{2m}}\mathcal{E}^{(m)}[arphi](0).$$

- C depends on m, R and the size of the initial support of φ .
- The result also holds for the wave equation $\Box_g \varphi = 0$ when $g = -dt^2 + \bar{g}$, with \bar{g} being a compact perturbation of the Euclidean metric on \mathbb{R}^d .

Decay on general product spacetimes
Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

• $\mathcal{E}[\phi](\tau) = \int_{\overline{\mathcal{M}}} \left(\left| \partial_t \phi \right|^2 + \left| \bar{\nabla} \phi \right|_{\bar{g}}^2 \right) d\bar{g}$ is conserved for $\Box_g \phi = 0$.

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

- $\mathcal{E}[\phi](\tau) = \int_{\overline{\mathcal{M}}} \left(\left| \partial_t \phi \right|^2 + \left| \bar{\nabla} \phi \right|_{\bar{g}}^2 \right) d\bar{g}$ is conserved for $\Box_g \phi = 0$.
- Trapped null geodesics act as an obstruction to decay.

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

- $\mathcal{E}[\phi](\tau) = \int_{\overline{\mathcal{M}}} \left(\left| \partial_t \phi \right|^2 + \left| \bar{\nabla} \phi \right|_{\bar{g}}^2 \right) d\bar{g}$ is conserved for $\Box_g \phi = 0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

- $\mathcal{E}[\phi](\tau) = \int_{\overline{\mathcal{M}}} \left(\left| \partial_t \phi \right|^2 + \left| \bar{\nabla} \phi \right|_{\bar{g}}^2 \right) d\bar{g}$ is conserved for $\Box_g \phi = 0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski-Tao, 2011)

On a general asymptotically conic Riemannian manifold $(\overline{\mathcal{M}}, \overline{g})$, the unique solution $u \in H^2(\mathcal{M})$ of $\Delta_{\overline{g}}u - (\omega + i\varepsilon)^2 u = F$ satisfies:

$$\int_{\overline{\mathcal{M}}} r_+^{-1-\eta} \big(|\nabla u|^2 + \omega^2 |u|^2 \big) \, d\bar{g} \leq C e^{C|\omega|} \int_{\overline{\mathcal{M}}} r_+^{1+\eta} |F|^2 \, d\bar{g}.$$

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $(\mathbb{R} \times \overline{\mathcal{M}}, -dt^2 + \overline{g})$, where $(\overline{\mathcal{M}}, \overline{g})$ is a Riemannian manifold.

- $\mathcal{E}[\phi](\tau) = \int_{\overline{\mathcal{M}}} \left(\left| \partial_t \phi \right|^2 + \left| \bar{\nabla} \phi \right|_{\bar{g}}^2 \right) d\bar{g}$ is conserved for $\Box_g \phi = 0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski–Tao, 2011)

On a general asymptotically conic Riemannian manifold $(\overline{\mathcal{M}}, \overline{g})$, the unique solution $u \in H^2(\mathcal{M})$ of $\Delta_{\overline{g}}u - (\omega + i\varepsilon)^2 u = F$ satisfies:

$$\int_{\overline{\mathcal{M}}} r_+^{-1-\eta} \left(|\nabla u|^2 + \omega^2 |u|^2 \right) d\bar{g} \leq C e^{C|\omega|} \int_{\overline{\mathcal{M}}} r_+^{1+\eta} |F|^2 d\bar{g}.$$

• Consequence: Solutions of $\Box_g \varphi = 0$ on the product spacetime $(\mathbb{R} \times \overline{\mathcal{M}}, g = -dt^2 + \overline{g})$ satisfy

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_{m,R} \big(\log(2+t) \big)^{-2m} \mathcal{E}_w^{(m)}[\varphi](0).$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

• *Event horizon* \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

- *Event horizon* \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.
 - d(g(V, V))|_H ≠ 0: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos–Rodnianski).

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

- *Event horizon* \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.
 - d(g(V, V))|_H ≠ 0: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).

 d(g(V, V))|_H = 0: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.
 - d(g(V, V))|_H ≠ 0: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).
 - d(g(V, V))|_H = 0: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).

• Ergoregion:

$$\mathscr{E} \doteq \overline{\left\{ p \in \mathcal{M} : g(T_p, T_p) > 0 \right\}} \neq \emptyset.$$

where T is the stationary Killing field.

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g) , one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interesting cases, \mathcal{H} is also a *Killing* horizon, with Killing generator V.
 - d(g(V, V))|_H ≠ 0: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).
 - d(g(V, V))|_H = 0: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis–Angelopoulos–Gajic).

• Ergoregion:

$$\mathscr{E} \doteq \overline{\left\{ p \in \mathcal{M} : g(T_p, T_p) > 0 \right\}} \neq \emptyset.$$

where T is the stationary Killing field.

• Superradiance for scalar waves acts as an obstacle to stability.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Question: Do the decay results of Burq and Rodnianski–Tao extend to the case of general stationary and asymptotically flat spacetimes, possibly with a non-degenerate event horizon and a small ergoregion?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A decay result on general spacetimes with small ergoregion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Theorem (M., 2015)

Let (\mathcal{M}^{d+1}, g) , $d \geq 3$, be a stationary and asymptotically flat spacetime, possibly possessing a non-degenerate event horizon \mathcal{H} and a small ergoregion \mathscr{E} . Assume that all solutions φ to $\Box_g \varphi = 0$ satisfy

 $\mathcal{E}[\phi](\tau) \leq \mathcal{C}\mathcal{E}[\phi](0).$

Then,

$$\mathcal{E}_{\leq R}[\phi](au) \leq C_{Rm\epsilon} ig(\log(au+2)ig)^{-2m} \mathcal{E}^{(m)}[\phi](0) + C_{R\epsilon} au^{-\epsilon} \mathcal{E}_{\epsilon}[\phi](0),$$

where

$$\mathcal{E}^{(m)}[arphi](0) = \sum_{j=0}^{m} \int_{\{t=0\}} \left|
abla T^{j} \varphi \right|^{2} dg_{\Sigma},$$
 $\mathcal{E}_{\varepsilon}[arphi](0) = \int_{\{t=0\}} r_{+}^{\varepsilon} \left|
abla T^{j} \varphi \right|^{2} dg_{\Sigma}.$

A decay result on general spacetimes with small ergoregion

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

A decay result on general spacetimes with small ergoregion

Remarks:

• No assumption is imposed on the trapped set or the topology of the near region.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E} = \emptyset$ and \mathcal{T} is everywhere timelike.

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E} = \emptyset$ and T is everywhere timelike.
- In the case & ≠ Ø, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E} = \emptyset$ and T is everywhere timelike.
- In the case $\mathscr{E} \neq \emptyset$, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
- The local energy $\mathcal{E}_{\leq R}[\phi](\tau)$ can be replaced by the energy flux of ϕ through a hyperboloidal foliation terminating at \mathcal{I}^+ .

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H} = \emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E} = \emptyset$ and T is everywhere timelike.
- In the case & ≠ Ø, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
- The local energy $\mathcal{E}_{\leq R}[\phi](\tau)$ can be replaced by the energy flux of ϕ through a hyperboloidal foliation terminating at \mathcal{I}^+ .

• Pointwise estimates can also be obtained.

The proof is based on seperating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proof is based on seperating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\phi = \phi_{\leq \omega_+} + \phi_{\geq \omega_+}$:

 $\mathcal{E}_{\leq R}[\phi](t) \lesssim \mathcal{E}_{\leq R}[\phi_{\leq \omega_{+}}](t) + \mathcal{E}_{\leq R}[\phi_{\geq \omega_{+}}](t)$

The proof is based on seperating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\phi = \phi_{\leq \omega_+} + \phi_{\geq \omega_+}$:

 $\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}[\varphi_{\leq \omega_{+}}](t) + \mathcal{E}_{\leq R}[\varphi_{\geq \omega_{+}}](t)$

• Since $\phi_{\geq \omega_+}$ has frequency support in $\{\omega\gtrsim \omega_+\}$:

$$\mathcal{E}_{\leq R}[arphi_{\geq \omega_+}](t) \leq C_{Rm} \omega_+^{-2m} \sum_{j=0}^m \mathcal{E}[T^j arphi](0).$$

The proof is based on seperating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+}$:

$$\mathcal{E}_{\leq R}[arphi](t) \lesssim \mathcal{E}_{\leq R}[arphi_{\leq \omega_+}](t) + \mathcal{E}_{\leq R}[arphi_{\geq \omega_+}](t)$$

• Since $\phi_{\geq \omega_+}$ has frequency support in $\{\omega\gtrsim \omega_+\}$:

$$\mathcal{E}_{\leq R}[\varphi_{\geq \omega_{+}}](t) \leq C_{Rm}\omega_{+}^{-2m}\sum_{j=0}^{m}\mathcal{E}[T^{j}\varphi](0).$$

Assume that

$$\mathcal{E}_{\leq R}[\varphi_{\leq \omega_{+}}](t) \leq C_{R\epsilon}t^{-\epsilon}\Big(e^{C_{R}\omega_{+}}\mathcal{E}[\varphi](0) + \mathcal{E}_{\epsilon}[\varphi](0)\Big).$$

Then choosing $\omega_+ \sim \epsilon C_R^{-1} \log t$:

 $\mathcal{E}_{\leq R}[\varphi](t) \leq C_{Rm\epsilon} \big(\log(t+2)\big)^{-2m} \mathcal{E}^{(m)}[\varphi](0) + C_{R\epsilon} t^{-\epsilon} \mathcal{E}_{\epsilon}[\varphi](0).$

The proof is based on seperating ϕ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Let $\omega_+ \gg 1$. Splitting $\varphi = \varphi_{\leq \omega_+} + \varphi_{\geq \omega_+}$:

$$\mathcal{E}_{\leq R}[arphi](t) \lesssim \mathcal{E}_{\leq R}[arphi_{\leq \omega_+}](t) + \mathcal{E}_{\leq R}[arphi_{\geq \omega_+}](t)$$

• Since $\phi_{\geq \omega_+}$ has frequency support in $\{\omega\gtrsim \omega_+\}$:

$$\mathcal{E}_{\leq R}[\varphi_{\geq \omega_{+}}](t) \leq C_{Rm}\omega_{+}^{-2m}\sum_{j=0}^{m}\mathcal{E}[T^{j}\varphi](0).$$

Assume that

$$\mathcal{E}_{\leq R}[arphi_{\leq \omega_{+}}](t) \leq C_{R\epsilon}t^{-\epsilon}\Big(e^{C_{R}\omega_{+}}\mathcal{E}[arphi](0) + \mathcal{E}_{\epsilon}[arphi](0)\Big).$$

Then choosing $\omega_+ \sim \epsilon C_R^{-1} \log t$:

$$\mathcal{E}_{\leq R}[\varphi](t) \leq C_{Rm\epsilon} \big(\log(t+2)\big)^{-2m} \mathcal{E}^{(m)}[\varphi](0) + C_{R\epsilon} t^{-\epsilon} \mathcal{E}_{\epsilon}[\varphi](0)$$

 Decay on hyperboloids: By using the r^p-weighted energy method of Dafermos-Rodnianski (Dafermos-Rodnianski, 2009; M., 2015).

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

Decompose φ_{≤ω₊} into components φ_k, 0 ≤ k ≤ ⌈log₂(ω₀⁻¹ω₊)⌉ with frequency support around ω_k ~ 2^kω₀.

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

Decompose φ_{≤ω₊} into components φ_k, 0 ≤ k ≤ ⌈log₂(ω₀⁻¹ω₊)⌉ with frequency support around ω_k ~ 2^kω₀.

• For $k \ge 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

Decompose φ_{≤ω₊} into components φ_k, 0 ≤ k ≤ ⌈log₂(ω₀⁻¹ω₊)⌉ with frequency support around ω_k ~ 2^kω₀.

- For $k \ge 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).
- For k = 0: Separate argument.

$$\int_0^{+\infty} \mathcal{E}_{\leq R}[\varphi_{\leq \omega_+}](t) \, dt \leq C_R e^{C_R \omega_+} \mathcal{E}[\varphi](0).$$

- Decompose φ_{≤ω₊} into components φ_k, 0 ≤ k ≤ ⌈log₂(ω₀⁻¹ω₊)⌉ with frequency support around ω_k ~ 2^kω₀.
- For $k \ge 1$: Carleman-type estimates, using the fact that $\partial_t \varphi_k \sim i \omega_k \varphi_k$ (using ideas from Burq and Rodnianski–Tao).
- For k = 0: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.
Spacetimes with an evanescent ergosurface

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Two charge supersymmetric geometries:

$$\bar{\mathcal{E}}_{\leq R}[\phi](\tau) \geq C_{m,R} \Big(\frac{\log\log(\tau+2)}{\log(\tau+2)} \Big)^{2m} \bar{\mathcal{E}}_w^{(m)}[\phi](0),$$

for φ depending trivially on the compact directions.

• Two charge supersymmetric geometries:

$$\bar{\mathcal{E}}_{\leq R}[\phi](\tau) \geq C_{m,R} \Big(\frac{\log\log(\tau+2)}{\log(\tau+2)} \Big)^{2m} \bar{\mathcal{E}}_w^{(m)}[\phi](0),$$

for φ depending trivially on the compact directions.

• Proof: Keir 2016, earlier numerics: Eperon-Reall-Santos (2016)

Two charge supersymmetric geometries:

$$\bar{\mathcal{E}}_{\leq R}[\phi](\tau) \geq C_{m,R} \Big(\frac{\log\log(\tau+2)}{\log(\tau+2)} \Big)^{2m} \bar{\mathcal{E}}_w^{(m)}[\phi](0),$$

for φ depending trivially on the compact directions.

• Proof: Keir 2016, earlier numerics: Eperon-Reall-Santos (2016)

Question: What happens if $\mathcal{H} = \emptyset$ but $\mathscr{E} \neq \emptyset$?

Assume that (\mathcal{M}, g) :

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- ullet is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- \bullet every point of ${\mathcal M}$ communicates causaly with the asymptotically flat region

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- ullet is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- \bullet every point of ${\mathcal M}$ communicates causaly with the asymptotically flat region

Then there exist solutions ϕ to $\Box_g \phi = 0$ such that

$$\mathcal{E}[\varphi](0) = \int_{\{t=0\}} J^{\mathsf{T}}_{\mu}(\varphi) n^{\mu} = -1.$$

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- \bullet is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- \bullet every point of ${\mathcal M}$ communicates causaly with the asymptotically flat region

Then there exist solutions ϕ to $\Box_g \phi = 0$ such that

$$\mathcal{E}[\varphi](0) = \int_{\{t=0\}} J^{\mathcal{T}}_{\mu}(\varphi) n^{\mu} = -1.$$

For any such solution and any $\tau \ge 0$ (Friedman, 1978):

$$\mathcal{E}_{\mathscr{E}}[\phi](\tau) = \int_{\{t=\tau\}\cap \mathscr{E}} J^{\mathcal{T}}_{\mu}(\phi) n^{\mu} \leq -1.$$

On such a spacetime (\mathcal{M}, g) , there exist solutions φ to $\Box_g \varphi = 0$ such that the non-degenerate energy flux of φ through $\{t = \tau\}$ blows up as $\tau \to +\infty$.

On such a spacetime (\mathcal{M}, g) , there exist solutions φ to $\Box_g \varphi = 0$ such that the non-degenerate energy flux of φ through $\{t = \tau\}$ blows up as $\tau \to +\infty$.

• Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

On such a spacetime (\mathcal{M}, g) , there exist solutions φ to $\Box_g \varphi = 0$ such that the non-degenerate energy flux of φ through $\{t = \tau\}$ blows up as $\tau \to +\infty$.

• Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)

• Numerical investigation: Comins-Schutz, Yoshida-Eriguchi,...

On such a spacetime (\mathcal{M}, g) , there exist solutions φ to $\Box_g \varphi = 0$ such that the non-degenerate energy flux of φ through $\{t = \tau\}$ blows up as $\tau \to +\infty$.

• Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)

- Numerical investigation: Comins-Schutz, Yoshida-Eriguchi,...
- Rigorous proof?

Theorem (M., 2016)

Suppose that (\mathcal{M}^{d+1}, g) , $d \ge 2$, is as above, satisfying in addition the following unique continuation condition:

UC condition: There exists a point $p \in \partial \mathscr{E}$ and an open neighborhood \mathcal{U} of p in \mathcal{M} such that, for any H^1_{loc} solution $\tilde{\Psi}$ to $\Box_g \tilde{\Psi} = 0$ on \mathcal{M} with $\tilde{\Psi} \equiv 0$ on $\mathcal{M} \setminus \mathscr{E}$, we have $\tilde{\Psi} = 0$ on $\mathscr{E} \cap \mathcal{U}$.

Then, there exists a smooth ϕ solving $\Box_g \phi = 0$ with compactly supported initial data , such that

$$\limsup_{\tau\to+\infty}\int_{\{t=\tau\}}|\nabla \varphi|^2=+\infty.$$

Friedman's ergoregion instability

Remarks:

• No assumption on (\mathcal{M},g) being real analytic is necessary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- No assumption on (\mathcal{M},g) being real analytic is necessary.
- The proof also applies in the case when (M, g) has a non-empty future event horizon H⁺ with positive surface gravity, such that H⁺ ∩ E = Ø.

- No assumption on (\mathcal{M},g) being real analytic is necessary.
- The proof also applies in the case when (M, g) has a non-empty future event horizon H⁺ with positive surface gravity, such that H⁺ ∩ E = Ø.
- Examples of spacetimes where the unique continuation condition holds:
 - Axisymmetric spacetimes with axisymmetric Killing field Φ , such that $[\mathcal{T}, \Phi] = 0$ and the span of \mathcal{T}, Φ is timelike on $\partial \mathscr{E}$

Spacetimes which are real analytic in a neighborhood of ∂𝔅.

- No assumption on (\mathcal{M}, g) being real analytic is necessary.
- The proof also applies in the case when (M, g) has a non-empty future event horizon H⁺ with positive surface gravity, such that H⁺ ∩ E = Ø.
- Examples of spacetimes where the unique continuation condition holds:
 - Axisymmetric spacetimes with axisymmetric Killing field Φ , such that $[\mathcal{T}, \Phi] = 0$ and the span of \mathcal{T}, Φ is timelike on $\partial \mathscr{E}$
 - Spacetimes which are real analytic in a neighborhood of ∂𝔅.
- There exist spacetimes violating the unique continuation condition.

<□ > < @ > < E > < E > E のQ @

• General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).
- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
 - Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex $(\mathbb{R} \times (\mathbb{R}^2 \setminus 0), g_{hyd})$:

$$g_{hyd}=-ig(1-rac{C^2}{r^2}ig)dt^2+dr^2-2Cdtd heta+r^2d heta^2.$$

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth–Ipser).
- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
 - Example (Cardoso–Crispino–Oliveira): The hydrodynamic vortex $(\mathbb{R} \times (\mathbb{R}^2 \setminus 0), g_{hyd})$:

$$g_{hyd}=-ig(1-rac{C^2}{r^2}ig)dt^2+dr^2-2Cdtd heta+r^2d heta^2.$$

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty.$$
(1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty.$$
 (1)

Let $\psi = T \phi$, for a solution ϕ of $\Box_g \phi = 0$ with compactly supported initial data to be chosen later.

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty.$$
 (1)

Let $\psi = T\phi$, for a solution ϕ of $\Box_g \phi = 0$ with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any $\epsilon > 0$, any $R, T, \tau_0 \gg 1$ and any $0 < \delta < 1$, there exists a $\tau_* \geq \tau_0$ such that:

$$\int_{\{\tau_* - T \le t \le \tau_* + T\} \cap \{r \le R\} \setminus \mathscr{E}_{\delta}} \left(|\nabla \psi|^2 + |\psi|^2 \right) < \varepsilon.$$
(2)

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty.$$
 (1)

(日) (同) (三) (三) (三) (○) (○)

Let $\psi = T \phi$, for a solution ϕ of $\Box_g \phi = 0$ with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon > 0$, any $R, T, \tau_0 \gg 1$ and any $0 < \delta < 1$, there exists a $\tau_* \ge \tau_0$ such that:

$$\int_{\{\tau_* - T \le t \le \tau_* + T\} \cap \{r \le R\} \setminus \mathscr{E}_{\delta}} \left(|\nabla \psi|^2 + |\psi|^2 \right) < \varepsilon.$$
(2)

(1), (2) \Longrightarrow There exists a function $\tilde{\psi} \in H^1_{loc}(\mathcal{M})$ such that:

• $\psi(t + \tau_n, x) \rightarrow \tilde{\psi}(t, x)$ and $T\psi(t + \tau_n, x) \rightarrow T\tilde{\psi}(t, x)$ weakly in $H^1_{loc}(\mathcal{M})$ and strongly in $L^2_{loc}(\mathcal{M})$, for a sequence $\tau_n \rightarrow +\infty$. • $\tilde{\psi} \equiv 0$ on $\mathcal{M} \setminus \mathscr{E}$ • $\Box_g \tilde{\psi} = 0$

The proof proceeds by contradiction, assuming that all smooth solutions ϕ to $\Box_g \phi = 0$ satisfy

$$\limsup_{\tau \to +\infty} \int_{\{t=\tau\}} |\nabla \varphi|^2 < +\infty.$$
 (1)

Let $\psi = T\phi$, for a solution ϕ of $\Box_g \phi = 0$ with compactly supported initial data to be chosen later.

Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon > 0$, any $R, T, \tau_0 \gg 1$ and any $0 < \delta < 1$, there exists a $\tau_* \ge \tau_0$ such that:

$$\int_{\{\tau_* - T \le t \le \tau_* + T\} \cap \{r \le R\} \setminus \mathscr{E}_{\delta}} \left(|\nabla \psi|^2 + |\psi|^2 \right) < \varepsilon.$$
(2)

(1), (2) \Longrightarrow There exists a function $\tilde{\psi} \in H^1_{loc}(\mathcal{M})$ such that:

- $\psi(t + \tau_n, x) \to \tilde{\psi}(t, x)$ and $T\psi(t + \tau_n, x) \to T\tilde{\psi}(t, x)$ weakly in $H^1_{loc}(\mathcal{M})$ and strongly in $L^2_{loc}(\mathcal{M})$, for a sequence $\tau_n \to +\infty$.
- $\tilde{\psi} \equiv 0$ on $\mathcal{M} \setminus \mathscr{E}$

•
$$\Box_g \tilde{\Psi} = 0$$

Unique continuation condition $\Longrightarrow \tilde{\psi} \equiv 0$ in $\mathcal{U} \longrightarrow \mathbb{C}$ is the set of $\psi = 0$ of $\mathcal{U} \longrightarrow \mathbb{C}$

It is possible to choose the initial data for ϕ (and thus for $\psi=\mathcal{T}\phi)$ on $\{t=0\}$ so that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• $(\psi, T\psi)|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$

•
$$\int_{\{t=0\}} J^T_{\mu}(\psi) n^{\mu} = -1$$

It is possible to choose the initial data for ϕ (and thus for $\psi=\mathcal{T}\phi)$ on $\{t=0\}$ so that:

• $(\psi, T\psi)|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$

•
$$\int_{\{t=0\}} J^T_{\mu}(\psi) n^{\mu} = -1$$

Conservation of the ${\it T}\mbox{-energy}$ flux: For all $\tau\geq 0$

$$\int_{\{t=\tau\}\cap\mathscr{E}}J^{T}_{\mu}(\psi)n^{\mu}\leq -1.$$

It is possible to choose the initial data for ϕ (and thus for $\psi=\mathcal{T}\phi)$ on $\{t=0\}$ so that:

• $(\psi, T\psi)|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$

•
$$\int_{\{t=0\}} J^T_{\mu}(\psi) n^{\mu} = -1$$

Conservation of the ${\it T}\mbox{-energy}$ flux: For all $\tau\geq 0$

$$\int_{\{t=\tau\}\cap\mathscr{E}}J^{T}_{\mu}(\psi)n^{\mu}\leq -1.$$

Alternative formula for energy:

$$\int_{\{t=\tau\}} J^{T}_{\mu}(\psi) n^{\mu} = \int_{\{t=\tau\}} Re\Big\{ T\psi \cdot n\bar{\psi} - \psi \cdot n(T\bar{\psi}) \Big\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is possible to choose the initial data for ϕ (and thus for $\psi=\mathcal{T}\phi)$ on $\{t=0\}$ so that:

• $(\psi, T\psi)|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$

•
$$\int_{\{t=0\}} J^T_{\mu}(\psi) n^{\mu} = -1$$

Conservation of the ${\it T}\mbox{-energy}$ flux: For all $\tau\geq 0$

$$\int_{\{t=\tau\}\cap\mathscr{E}}J^{T}_{\mu}(\psi)n^{\mu}\leq -1.$$

Alternative formula for energy:

$$\int_{\{t=\tau\}} J^{\mathcal{T}}_{\mu}(\psi) n^{\mu} = \int_{\{t=\tau\}} Re\Big\{ T\psi \cdot n\bar{\psi} - \psi \cdot n(T\bar{\psi}) \Big\}.$$

So:

$$\int_{\{t=0\}} J^T_{\mu}(\tilde{\psi}) n^{\mu} \leq -1.$$
(3)
Indefinite inner product associated to the *T*-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{\mathcal{T}, \tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ \mathcal{T} \varphi_1 n \bar{\varphi}_2 + n \varphi_1 \mathcal{T} \bar{\varphi}_2 - g(\mathcal{T}, n) \partial^{\alpha} \varphi_1 \partial_{\alpha} \bar{\varphi}_2 \Big\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Indefinite inner product associated to the *T*-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ T \varphi_1 n \bar{\varphi}_2 + n \varphi_1 T \bar{\varphi}_2 - g(T, n) \partial^{\alpha} \varphi_1 \partial_{\alpha} \bar{\varphi}_2 \Big\}.$$

• For all
$$\tau \geq 0$$
: $\left\langle \Psi, \mathcal{F}_{-\tau} \tilde{\Psi} \right\rangle_{\mathcal{T},0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\Psi}(t,x) = \tilde{\Psi}(t-\tau,x)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Indefinite inner product associated to the *T*-energy:

$$\langle \phi_1, \phi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ T \phi_1 n \bar{\phi}_2 + n \phi_1 T \bar{\phi}_2 - g(T, n) \partial^{\alpha} \phi_1 \partial_{\alpha} \bar{\phi}_2 \Big\}.$$

• For all
$$\tau \geq 0$$
: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t,x) = \tilde{\psi}(t-\tau,x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Conservation of the inner product: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},\tau} = 0.$

Indefinite inner product associated to the *T*-energy:

$$\langle \phi_1, \phi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ T \phi_1 n \bar{\phi}_2 + n \phi_1 T \bar{\phi}_2 - g(T, n) \partial^{\alpha} \phi_1 \partial_{\alpha} \bar{\phi}_2 \Big\}.$$

• For all
$$\tau \geq 0$$
: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t,x) = \tilde{\psi}(t-\tau,x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Conservation of the inner product: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},\tau} = 0.$

• Equivalently:
$$\left< \mathcal{F}_{\tau} \psi, \tilde{\psi} \right>_{\mathcal{T},0} = 0.$$

Indefinite inner product associated to the *T*-energy:

$$\langle \varphi_1, \varphi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ T \varphi_1 n \bar{\varphi}_2 + n \varphi_1 T \bar{\varphi}_2 - g(T, n) \partial^{\alpha} \varphi_1 \partial_{\alpha} \bar{\varphi}_2 \Big\}.$$

• For all
$$\tau \geq 0$$
: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t,x) = \tilde{\psi}(t-\tau,x)$.

• Conservation of the inner product: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},\tau} = 0.$

• Equivalently:
$$\left< \mathcal{F}_{\tau} \psi, \tilde{\psi} \right>_{\mathcal{T},0} = 0$$

• Therefore, for
$$\tau = \tau_n \rightarrow +\infty$$
:

$$\int_{\{t=0\}} J^{T}_{\mu}(\tilde{\Psi}) n^{\mu} = \left\langle \tilde{\Psi}, \tilde{\Psi} \right\rangle_{T,0} = 0.$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Indefinite inner product associated to the *T*-energy:

$$\langle \phi_1, \phi_2 \rangle_{T,\tau} = \int_{\{t=\tau\}} \frac{1}{2} Re \Big\{ T \phi_1 n \bar{\phi}_2 + n \phi_1 T \bar{\phi}_2 - g(T, n) \partial^{\alpha} \phi_1 \partial_{\alpha} \bar{\phi}_2 \Big\}.$$

• For all
$$\tau \geq 0$$
: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},0} = 0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t,x) = \tilde{\psi}(t-\tau,x)$.

• Conservation of the inner product: $\left\langle \psi, \mathcal{F}_{-\tau} \tilde{\psi} \right\rangle_{\mathcal{T},\tau} = 0.$

• Equivalently:
$$\left< \mathcal{F}_{\tau} \psi, \tilde{\psi} \right>_{\mathcal{T},0} = 0.$$

• Therefore, for
$$\tau = \tau_n \rightarrow +\infty$$
:

$$\int_{\{t=0\}} J^{\mathcal{T}}_{\mu}(\tilde{\Psi}) n^{\mu} = \left\langle \tilde{\Psi}, \tilde{\Psi} \right\rangle_{\mathcal{T},0} = 0.$$
(4)

(3) & (4): Contradiction!

Thank you for your attention!

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで