The scalar wave equation on general asymptotically flat spacetimes: Stability and instability results

Georgios Moschidis

Princeton University
Université Pierre et Marie Curie
Paris, 30.01.2017

Structure of the talk

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.
- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^{d}: A$ result of Burq.

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.
- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^{d}: A$ result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.
- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^{d}: A$ result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.
- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^{d}: A$ result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
- Decay in the presence of an evanescent ergosurface.

Structure of the talk

- Introduction: $\square_{g} \psi=0$ on asymptotically flat backgrounds (\mathcal{M}, g) and decay properties on $\left(\mathbb{R}^{d+1}, \eta\right)$.
- Decay in the exterior of a smooth compact obstacle $\mathcal{O} \subset \mathbb{R}^{d}: A$ result of Burq.
- Decay on product Lorentzian manifolds: A result of Rodnianski-Tao.
- A decay result for general asymptotically flat black hole spacetimes with a small ergoregion.
- Decay in the presence of an evanescent ergosurface.
- Proof of Friedman's instability for spacetimes with an ergoregion and no event horizon.

Introduction: The wave equation on asymptotically flat backgrounds

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a $3+1$ dimensional model of our universe.

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a $3+1$ dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a $3+1$ dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

- The initial value problem with initial data on a Cauchy hypersurface Σ is well defined.

Introduction: The wave equation on asymptotically flat backgrounds

Scalar wave equation on $\left(\mathcal{M}^{d+1}, g\right)$:

$$
\square_{g} \varphi=\frac{1}{\sqrt{-g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{-g} \partial_{\nu} \varphi\right)=0
$$

Appears frequently in mathematical physics:

- Fluid mechanics: g is the acoustical metric of a fluid in motion
- General relativity: g is the spacetime metric of a $3+1$ dimensional model of our universe.

We will only consider backgrounds (\mathcal{M}, g) which are globally hyperbolic.

- The initial value problem with initial data on a Cauchy hypersurface Σ is well defined.

We will call (\mathcal{M}, g) asymptotically flat if g approaches the Minkwoski metric η asymptotically, where

$$
\eta=-d t^{2}+d x^{1}+\cdots+\left(d x^{d}\right)^{2}
$$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime $\left(\mathbb{R}^{d+1}, \eta\right)$. Wave equation:

$$
\square_{\eta} \varphi=-\partial_{t}^{2} \varphi+\partial_{x^{1}}^{2} \varphi+\ldots+\partial_{x^{d}}^{2} \varphi=0 .
$$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime $\left(\mathbb{R}^{d+1}, \eta\right)$. Wave equation:

$$
\square_{\eta} \varphi=-\partial_{t}^{2} \varphi+\partial_{x^{1}}^{2} \varphi+\ldots+\partial_{x^{\prime}}^{2} \varphi=0 .
$$

- Conservation of energy: For all $t \in \mathbb{R}$,

$$
\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^{d}}|\nabla \varphi(t, x)|^{2} d x=\mathcal{E}[\varphi](0)
$$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime $\left(\mathbb{R}^{d+1}, \eta\right)$. Wave equation:

$$
\square_{\eta} \varphi=-\partial_{t}^{2} \varphi+\partial_{x^{1}}^{2} \varphi+\ldots+\partial_{x^{\prime}}^{2} \varphi=0 .
$$

- Conservation of energy: For all $t \in \mathbb{R}$,

$$
\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^{d}}|\nabla \varphi(t, x)|^{2} d x=\mathcal{E}[\varphi](0)
$$

- Local energy decay:

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R}(1+t)^{-2} \int_{\{t=0\}} r_{+}^{2}|\nabla \varphi|^{2} d x
$$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime $\left(\mathbb{R}^{d+1}, \eta\right)$. Wave equation:

$$
\square_{\eta} \varphi=-\partial_{t}^{2} \varphi+\partial_{x^{1}}^{2} \varphi+\ldots+\partial_{x^{\prime}}^{2} \varphi=0 .
$$

- Conservation of energy: For all $t \in \mathbb{R}$,

$$
\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^{d}}|\nabla \varphi(t, x)|^{2} d x=\mathcal{E}[\varphi](0)
$$

- Local energy decay:

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R}(1+t)^{-2} \int_{\{t=0\}} r_{+}^{2}|\nabla \varphi|^{2} d x
$$

- Pointwise decay estimates:

$$
|\varphi| \leq C(1+|t-r|)^{-\frac{1}{2}}(1+t+r)^{-\frac{d-1}{2}}\left(\sum_{j=1}^{\left\lceil\frac{d+1}{2}\right\rceil} \int_{\{t=0\}} r_{+}^{2 j}\left|\nabla^{j} \varphi\right|^{2} d x\right)^{\frac{1}{2}} .
$$

The wave equation on $\left(\mathbb{R}^{d+1}, \eta\right)$

The simplest example of an asymptotically flat spacetime: Minkowski spacetime $\left(\mathbb{R}^{d+1}, \eta\right)$. Wave equation:

$$
\square_{\eta} \varphi=-\partial_{t}^{2} \varphi+\partial_{x^{1}}^{2} \varphi+\ldots+\partial_{x^{\prime}}^{2} \varphi=0 .
$$

- Conservation of energy: For all $t \in \mathbb{R}$,

$$
\mathcal{E}[\varphi](t) \doteq \int_{\mathbb{R}^{d}}|\nabla \varphi(t, x)|^{2} d x=\mathcal{E}[\varphi](0)
$$

- Local energy decay:

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R}(1+t)^{-2} \int_{\{t=0\}} r_{+}^{2}|\nabla \varphi|^{2} d x
$$

- Pointwise decay estimates:

$$
|\varphi| \leq C(1+|t-r|)^{-\frac{1}{2}}(1+t+r)^{-\frac{d-1}{2}}\left(\sum_{j=1}^{\left\lceil\frac{d+1}{2}\right\rceil} \int_{\{t=0\}} r_{+}^{2 j}\left|\nabla^{j} \varphi\right|^{2} d x\right)^{\frac{1}{2}}
$$

- Valid on small radiating perturbations of $\left(\mathbb{R}^{d+1}, \eta\right)$

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

Let \mathcal{O} be a compact open subset of \mathbb{R}^{d} with smooth boundary $\partial \mathcal{O}$. Equation $\square_{\eta} \varphi=0$ on $\mathcal{M}=\mathbb{R} \times\left(\mathbb{R}^{d} \backslash \mathcal{O}\right)$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

Let \mathcal{O} be a compact open subset of \mathbb{R}^{d} with smooth boundary $\partial \mathcal{O}$. Equation $\square_{\eta} \varphi=0$ on $\mathcal{M}=\mathbb{R} \times\left(\mathbb{R}^{d} \backslash \mathcal{O}\right)$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

- Conservation of the energy

$$
\mathcal{E}[\varphi](t)=\int_{\mathbb{R}^{d} \backslash \mathcal{O}}|\nabla \varphi(t, x)|^{2} d x,
$$

yields boundedness estimates for φ and its derivatives, as well as decay without a rate.

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

Let \mathcal{O} be a compact open subset of \mathbb{R}^{d} with smooth boundary $\partial \mathcal{O}$. Equation $\square_{\eta} \varphi=0$ on $\mathcal{M}=\mathbb{R} \times\left(\mathbb{R}^{d} \backslash \mathcal{O}\right)$ with Dirichlet or Neumann boundary conditions on $\partial \mathcal{O}$ has been extensively studied in the last 50 years.

- Conservation of the energy

$$
\mathcal{E}[\varphi](t)=\int_{\mathbb{R}^{d} \backslash \mathcal{O}}|\nabla \varphi(t, x)|^{2} d x,
$$

yields boundedness estimates for φ and its derivatives, as well as decay without a rate.

- Quantitative decay estimates: Trapping enters the picture.

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) d t \leq C_{R} \mathcal{E}[\varphi](0)
$$

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) d t \leq C_{R} \mathcal{E}[\varphi](0)
$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) d t \leq C_{R} \mathcal{E}[\varphi](0)
$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

- Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

The exterior of an obstacle \mathcal{O} in \mathbb{R}^{d}

In the absence of trapping: Morawetz, Ralston and Strauss (1977) showed that

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}[\varphi](t) d t \leq C_{R} \mathcal{E}[\varphi](0)
$$

In the presence of trapping: no quantitative energy decay estimate possible without loss of derivatives (Ralston, 1969).

- Generalisation to trapped null geodesics in Lorentzian manifolds: Sbierski, 2013.

What can be said for general \mathcal{O} independently of the nature of trapping?

A result of Burq for general \mathcal{O}

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O}, we have:

$$
\mathcal{E}_{R}[\varphi](t) \leq \frac{C}{(\log (2+t))^{2 m}} \mathcal{E}^{(m)}[\varphi](0) .
$$

A result of Burq for general \mathcal{O}

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O}, we have:

$$
\mathcal{E}_{R}[\varphi](t) \leq \frac{C}{(\log (2+t))^{2 m}} \mathcal{E}^{(m)}[\varphi](0) .
$$

- C depends on m, R and the size of the initial support of φ.

A result of Burq for general \mathcal{O}

Theorem (Burq, 1998)

Without any assumptions on the geometry of \mathcal{O}, we have:

$$
\mathcal{E}_{R}[\varphi](t) \leq \frac{C}{(\log (2+t))^{2 m}} \mathcal{E}^{(m)}[\varphi](0) .
$$

- C depends on m, R and the size of the initial support of φ.
- The result also holds for the wave equation $\square_{g} \varphi=0$ when $g=-d t^{2}+\bar{g}$, with \bar{g} being a compact perturbation of the Euclidean metric on \mathbb{R}^{d}.

Decay on general product spacetimes

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

- $\mathcal{E}[\varphi](\tau)=\int_{\overline{\mathcal{M}}}\left(\left|\partial_{t} \varphi\right|^{2}+|\bar{\nabla} \varphi|_{\bar{g}}^{2}\right) d \bar{g}$ is conserved for $\square_{g} \varphi=0$.

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

- $\mathcal{E}[\varphi](\tau)=\int_{\overline{\mathcal{M}}}\left(\left|\partial_{t} \varphi\right|^{2}+|\bar{\nabla} \varphi|_{\bar{g}}^{2}\right) d \bar{g}$ is conserved for $\square_{g} \varphi=0$.
- Trapped null geodesics act as an obstruction to decay.

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

- $\mathcal{E}[\varphi](\tau)=\int_{\overline{\mathcal{M}}}\left(\left|\partial_{t} \varphi\right|^{2}+|\bar{\nabla} \varphi|_{\bar{g}}^{2}\right) d \bar{g}$ is conserved for $\square_{g} \varphi=0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

- $\mathcal{E}[\varphi](\tau)=\int_{\overline{\mathcal{M}}}\left(\left|\partial_{t} \varphi\right|^{2}+|\bar{\nabla} \varphi|_{\bar{g}}^{2}\right) d \bar{g}$ is conserved for $\square_{g} \varphi=0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski-Tao, 2011)

On a general asymptotically conic Riemannian manifold $(\overline{\mathcal{M}}, \bar{g})$, the unique solution $u \in H^{2}(\mathcal{M})$ of $\Delta_{\bar{g}} u-(\omega+i \varepsilon)^{2} u=F$ satisfies:

$$
\int_{\overline{\mathcal{M}}} r_{+}^{-1-\eta}\left(|\nabla u|^{2}+\omega^{2}|u|^{2}\right) d \bar{g} \leq C e^{C|\omega|} \int_{\overline{\mathcal{M}}} r_{+}^{1+\eta}|F|^{2} d \bar{g}
$$

Decay on general product spacetimes

Simple non-trivial examples of asymptotically flat spacetimes: Product spacetimes $\left(\mathbb{R} \times \overline{\mathcal{M}},-d t^{2}+\bar{g}\right)$, where $(\overline{\mathcal{M}}, \bar{g})$ is a Riemannian manifold.

- $\mathcal{E}[\varphi](\tau)=\int_{\overline{\mathcal{M}}}\left(\left|\partial_{t} \varphi\right|^{2}+|\bar{\nabla} \varphi|_{\bar{g}}^{2}\right) d \bar{g}$ is conserved for $\square_{g} \varphi=0$.
- Trapped null geodesics act as an obstruction to decay.

Can the result of Burq be generalised in this setting?

Theorem (Rodnianski-Tao, 2011)

On a general asymptotically conic Riemannian manifold $(\overline{\mathcal{M}}, \bar{g})$, the unique solution $u \in H^{2}(\mathcal{M})$ of $\Delta_{\bar{g}} u-(\omega+i \varepsilon)^{2} u=F$ satisfies:

$$
\int_{\overline{\mathcal{M}}} r_{+}^{-1-\eta}\left(|\nabla u|^{2}+\omega^{2}|u|^{2}\right) d \bar{g} \leq C e^{C|\omega|} \int_{\overline{\mathcal{M}}} r_{+}^{1+\eta}|F|^{2} d \bar{g} .
$$

- Consequence: Solutions of $\square_{g} \varphi=0$ on the product spacetime $\left(\mathbb{R} \times \overline{\mathcal{M}}, g=-d t^{2}+\bar{g}\right)$ satisfy

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{m, R}(\log (2+t))^{-2 m} \mathcal{E}_{w}^{(m)}[\varphi](0)
$$

Going beyond product spacetimes

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interestng cases, \mathcal{H} is also a Killing horizon, with Killing generator V.

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interestng cases, \mathcal{H} is also a Killing horizon, with Killing generator V.
- $\left.d(g(V, V))\right|_{\mathcal{H}} \neq 0$: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interestng cases, \mathcal{H} is also a Killing horizon, with Killing generator V.
- $\left.d(g(V, V))\right|_{\mathcal{H}} \neq 0$: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).
- $\left.d(g(V, V))\right|_{\mathcal{H}}=0$: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis-Angelopoulos-Gajic).

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interestng cases, \mathcal{H} is also a Killing horizon, with Killing generator V.
- $\left.d(g(V, V))\right|_{\mathcal{H}} \neq 0$: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).
- $\left.d(g(V, V))\right|_{\mathcal{H}}=0$: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis-Angelopoulos-Gajic).
- Ergoregion:

$$
\mathscr{E} \doteq \overline{\left\{p \in \mathcal{M}: g\left(T_{p}, T_{p}\right)>0\right\}} \neq \emptyset .
$$

where T is the stationary Killing field.

Going beyond product spacetimes

In the general class of stationary and asymptotically flat spacetimes (\mathcal{M}, g), one encounters geometric features which are absent in the case of product spacetimes.

- Event horizon \mathcal{H} (black hole exterior spacetime). In many interestng cases, \mathcal{H} is also a Killing horizon, with Killing generator V.
- $\left.d(g(V, V))\right|_{\mathcal{H}} \neq 0$: Non-degenerate horizon, red-shift effect acts as a decay mechanism for scalar waves (Dafermos-Rodnianski).
- $\left.d(g(V, V))\right|_{\mathcal{H}}=0$: Degenerate (extremal) horizon, absence of red-shift leads to a mix of stability and instability mechanisms (Aretakis, Aretakis-Angelopoulos-Gajic).
- Ergoregion:

$$
\mathscr{E} \doteq \overline{\left\{p \in \mathcal{M}: g\left(T_{p}, T_{p}\right)>0\right\}} \neq \emptyset .
$$

where T is the stationary Killing field.

- Superradiance for scalar waves acts as an obstacle to stability.

Going beyond product spacetimes

Going beyond product spacetimes

Question: Do the decay results of Burq and Rodnianski-Tao extend to the case of general stationary and asymptotically flat spacetimes, possibly with a non-degenerate event horizon and a small ergoregion?

A decay result on general spacetimes with small ergoregion

Theorem (M., 2015)

Let $\left(\mathcal{M}^{d+1}, g\right), d \geq 3$, be a stationary and asymptotically flat spacetime, possibly possessing a non-degenerate event horizon \mathcal{H} and a small ergoregion \mathscr{E}. Assume that all solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\mathcal{E}[\varphi](\tau) \leq C \mathcal{E}[\varphi](0) .
$$

Then,

$$
\mathcal{E}_{\leq R}[\varphi](\tau) \leq C_{R m \varepsilon}(\log (\tau+2))^{-2 m} \mathcal{E}^{(m)}[\varphi](0)+C_{R \varepsilon} \tau^{-\varepsilon} \mathcal{E}_{\varepsilon}[\varphi](0),
$$

where

$$
\begin{aligned}
\mathcal{E}^{(m)}[\varphi](0) & =\sum_{j=0}^{m} \int_{\{t=0\}}\left|\nabla T^{j} \varphi\right|^{2} d g_{\Sigma}, \\
\mathcal{E}_{\varepsilon}[\varphi](0) & =\int_{\{t=0\}} r_{+}^{\varepsilon}\left|\nabla T^{j} \varphi\right|^{2} d g_{\Sigma} .
\end{aligned}
$$

A decay result on general spacetimes with small ergoregion

Remarks:

A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.

A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H}=\emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E}=\emptyset$ and T is everywhere timelike.

A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H}=\emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E}=\emptyset$ and T is everywhere timelike.
- In the case $\mathscr{E} \neq \emptyset$, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).

A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H}=\emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E}=\emptyset$ and T is everywhere timelike.
- In the case $\mathscr{E} \neq \emptyset$, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
- The local energy $\mathcal{E}_{\leq R}[\varphi](\tau)$ can be replaced by the energy flux of φ through a hyperboloidal foliation terminating at \mathcal{I}^{+}.

A decay result on general spacetimes with small ergoregion

Remarks:

- No assumption is imposed on the trapped set or the topology of the near region.
- In the case $\mathcal{H}=\emptyset$, the condition on the smallness of \mathscr{E} implies that $\mathscr{E}=\emptyset$ and T is everywhere timelike.
- In the case $\mathscr{E} \neq \emptyset$, the energy boundedness assumption can not be inferred from the rest of the assumptions: Counterexamples can be constructed by suitable deformations of the subextremal Kerr metric (M., 2016).
- The local energy $\mathcal{E}_{\leq R}[\varphi](\tau)$ can be replaced by the energy flux of φ through a hyperboloidal foliation terminating at \mathcal{I}^{+}.
- Pointwise estimates can also be obtained.

Sketch of the proof

Sketch of the proof

The proof is based on seperating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.

Sketch of the proof

The proof is based on seperating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.
Let $\omega_{+} \gg 1$. Splitting $\varphi=\varphi_{\leq \omega_{+}}+\varphi_{\geq \omega_{+}}$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t)+\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t)
$$

Sketch of the proof

The proof is based on seperating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.
Let $\omega_{+} \gg 1$. Splitting $\varphi=\varphi_{\leq \omega_{+}}+\varphi_{\geq \omega_{+}}$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t)+\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t)
$$

- Since $\varphi_{\geq \omega_{+}}$has frequency support in $\left\{\omega \gtrsim \omega_{+}\right\}$:

$$
\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t) \leq C_{R m} \omega_{+}^{-2 m} \sum_{j=0}^{m} \mathcal{E}\left[T^{j} \varphi\right](0)
$$

Sketch of the proof

The proof is based on seperating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.
Let $\omega_{+} \gg 1$. Splitting $\varphi=\varphi_{\leq \omega_{+}}+\varphi_{\geq \omega_{+}}$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t)+\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t)
$$

- Since $\varphi_{\geq \omega_{+}}$has frequency support in $\left\{\omega \gtrsim \omega_{+}\right\}$:

$$
\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t) \leq C_{R m} \omega_{+}^{-2 m} \sum_{j=0}^{m} \mathcal{E}\left[T^{j} \varphi\right](0) .
$$

- Assume that

$$
\mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) \leq C_{R \varepsilon} t^{-\varepsilon}\left(e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)+\mathcal{E}_{\varepsilon}[\varphi](0)\right) .
$$

Then choosing $\omega_{+} \sim \varepsilon C_{R}^{-1} \log t$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R m \varepsilon}(\log (t+2))^{-2 m} \mathcal{E}^{(m)}[\varphi](0)+C_{R \varepsilon} t^{-\varepsilon} \mathcal{E}_{\varepsilon}[\varphi](0) .
$$

Sketch of the proof

The proof is based on seperating φ into frequency decomposed components. The error terms from the cut-off procedure are controlled by the energy boundedness assumption.
Let $\omega_{+} \gg 1$. Splitting $\varphi=\varphi_{\leq \omega_{+}}+\varphi_{\geq \omega_{+}}$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \lesssim \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t)+\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t)
$$

- Since $\varphi_{\geq \omega_{+}}$has frequency support in $\left\{\omega \gtrsim \omega_{+}\right\}$:

$$
\mathcal{E}_{\leq R}\left[\varphi_{\geq \omega_{+}}\right](t) \leq C_{R m} \omega_{+}^{-2 m} \sum_{j=0}^{m} \mathcal{E}\left[T^{j} \varphi\right](0) .
$$

- Assume that

$$
\mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) \leq C_{R \varepsilon} t^{-\varepsilon}\left(e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)+\mathcal{E}_{\varepsilon}[\varphi](0)\right) .
$$

Then choosing $\omega_{+} \sim \varepsilon C_{R}^{-1} \log t$:

$$
\mathcal{E}_{\leq R}[\varphi](t) \leq C_{R m \varepsilon}(\log (t+2))^{-2 m} \mathcal{E}^{(m)}[\varphi](0)+C_{R \varepsilon} t^{-\varepsilon} \mathcal{E}_{\varepsilon}[\varphi](0) .
$$

- Decay on hyperboloids: By using the r^{P}-weighted energy method of Dafermos-Rodnianski (Dafermos-Rodnianski, 2009; M., 2015).

Sketch the proof

Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_{+}}$: It suffices to show:

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) d t \leq C_{R} e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)
$$

Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_{+}}$: It suffices to show:

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) d t \leq C_{R} e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)
$$

- Decompose $\varphi_{\leq \omega_{+}}$into components $\varphi_{k}, 0 \leq k \leq\left\lceil\log _{2}\left(\omega_{0}^{-1} \omega_{+}\right)\right\rceil$ with frequency support around $\omega_{k} \sim 2^{k} \omega_{0}$.

Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_{+}}$: It suffices to show:

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) d t \leq C_{R} e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)
$$

- Decompose $\varphi_{\leq \omega_{+}}$into components $\varphi_{k}, 0 \leq k \leq\left\lceil\log _{2}\left(\omega_{0}^{-1} \omega_{+}\right)\right\rceil$ with frequency support around $\omega_{k} \sim 2^{k} \omega_{0}$.
- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_{t} \varphi_{k} \sim i \omega_{k} \varphi_{k}$ (using ideas from Burq and Rodnianski-Tao).

Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_{+}}$: It suffices to show:

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) d t \leq C_{R} e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)
$$

- Decompose $\varphi_{\leq \omega_{+}}$into components $\varphi_{k}, 0 \leq k \leq\left\lceil\log _{2}\left(\omega_{0}^{-1} \omega_{+}\right)\right\rceil$ with frequency support around $\omega_{k} \sim 2^{k} \omega_{0}$.
- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_{t} \varphi_{k} \sim i \omega_{k} \varphi_{k}$ (using ideas from Burq and Rodnianski-Tao).
- For $k=0$: Separate argument.

Sketch the proof

In order to obtain a polynomial decay estimate for $\varphi_{\leq \omega_{+}}$: It suffices to show:

$$
\int_{0}^{+\infty} \mathcal{E}_{\leq R}\left[\varphi_{\leq \omega_{+}}\right](t) d t \leq C_{R} e^{C_{R} \omega_{+}} \mathcal{E}[\varphi](0)
$$

- Decompose $\varphi_{\leq \omega_{+}}$into components $\varphi_{k}, 0 \leq k \leq\left\lceil\log _{2}\left(\omega_{0}^{-1} \omega_{+}\right)\right\rceil$ with frequency support around $\omega_{k} \sim 2^{k} \omega_{0}$.
- For $k \geq 1$: Carleman-type estimates, using the fact that $\partial_{t} \varphi_{k} \sim i \omega_{k} \varphi_{k}$ (using ideas from Burq and Rodnianski-Tao).
- For $k=0$: Separate argument.

Remark. The energy boundedness assumption is used in a critical way in the proof of the Carleman estimates.

Spacetimes with an evanescent ergosurface

Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with $\mathcal{H}=\emptyset, \mathscr{E}=\emptyset$ possessing an evanescent ergosurface.

Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with $\mathcal{H}=\emptyset, \mathscr{E}=\emptyset$ possessing an evanescent ergosurface.

- Two charge supersymmetric geometries:

$$
\overline{\mathcal{E}}_{\leq R}[\varphi](\tau) \geq C_{m, R}\left(\frac{\log \log (\tau+2)}{\log (\tau+2)}\right)^{2 m} \overline{\mathcal{E}}_{w}^{(m)}[\varphi](0),
$$

for φ depending trivially on the compact directions.

Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with $\mathcal{H}=\emptyset, \mathscr{E}=\emptyset$ possessing an evanescent ergosurface.

- Two charge supersymmetric geometries:

$$
\overline{\mathcal{E}}_{\leq R}[\varphi](\tau) \geq C_{m, R}\left(\frac{\log \log (\tau+2)}{\log (\tau+2)}\right)^{2 m} \overline{\mathcal{E}}_{w}^{(m)}[\varphi](0),
$$

for φ depending trivially on the compact directions.

- Proof: Keir 2016, earlier numerics: Eperon-Reall-Santos (2016)

Spacetimes with an evanescent ergosurface

The inverse logaritmic decay rate does not persist for spacetimes with $\mathcal{H}=\emptyset, \mathscr{E}=\emptyset$ possessing an evanescent ergosurface.

- Two charge supersymmetric geometries:

$$
\overline{\mathcal{E}}_{\leq R}[\varphi](\tau) \geq C_{m, R}\left(\frac{\log \log (\tau+2)}{\log (\tau+2)}\right)^{2 m} \overline{\mathcal{E}}_{w}^{(m)}[\varphi](0),
$$

for φ depending trivially on the compact directions.

- Proof: Keir 2016, earlier numerics: Eperon-Reall-Santos (2016)

Question: What happens if $\mathcal{H}=\emptyset$ but $\mathscr{E} \neq \emptyset$?

Spacetimes with $\mathcal{H}=\emptyset, \mathscr{E} \neq \emptyset$

Spacetimes with $\mathcal{H}=\emptyset, \mathscr{E} \neq \emptyset$

Assume that (\mathcal{M}, g) :

Spacetimes with $\mathcal{H}=\emptyset, \mathscr{E} \neq \emptyset$

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- every point of \mathcal{M} communicates causaly with the asymptotically flat region

Spacetimes with $\mathcal{H}=\emptyset, \mathscr{E} \neq \emptyset$

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- every point of \mathcal{M} communicates causaly with the asymptotically flat region

Then there exist solutions φ to $\square_{g} \varphi=0$ such that

$$
\mathcal{E}[\varphi](0)=\int_{\{t=0\}} J_{\mu}^{T}(\varphi) n^{\mu}=-1 .
$$

Spacetimes with $\mathcal{H}=\emptyset, \mathscr{E} \neq \emptyset$

Assume that (\mathcal{M}, g) :

- is asymptotically flat
- is stationary, with stationary Killing field T
- has a non-empty ergoregion.
- every point of \mathcal{M} communicates causaly with the asymptotically flat region

Then there exist solutions φ to $\square_{g} \varphi=0$ such that

$$
\mathcal{E}[\varphi](0)=\int_{\{t=0\}} J_{\mu}^{T}(\varphi) n^{\mu}=-1 .
$$

For any such solution and any $\tau \geq 0$ (Friedman, 1978):

$$
\mathcal{E}_{\mathscr{E}}[\varphi](\tau)=\int_{\{t=\tau\} \cap \mathscr{E}} J_{\mu}^{T}(\varphi) n^{\mu} \leq-1 .
$$

Friedman's ergoregion instability

Conjecture (Friedman, 1978)
On such a spacetime (\mathcal{M}, g), there exist solutions φ to $\square_{g} \varphi=0$ such that the non-degenerate energy flux of φ through $\{t=\tau\}$ blows up as $\tau \rightarrow+\infty$.

Friedman's ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime (\mathcal{M}, g), there exist solutions φ to $\square_{g} \varphi=0$ such that the non-degenerate energy flux of φ through $\{t=\tau\}$ blows up as $\tau \rightarrow+\infty$.

- Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)

Friedman's ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime (\mathcal{M}, g), there exist solutions φ to $\square_{g} \varphi=0$ such that the non-degenerate energy flux of φ through $\{t=\tau\}$ blows up as $\tau \rightarrow+\infty$.

- Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)
- Numerical investigation: Comins-Schutz, Yoshida-Eriguchi,...

Friedman's ergoregion instability

Conjecture (Friedman, 1978)

On such a spacetime (\mathcal{M}, g), there exist solutions φ to $\square_{g} \varphi=0$ such that the non-degenerate energy flux of φ through $\{t=\tau\}$ blows up as $\tau \rightarrow+\infty$.

- Heuristic justification: Friedman (assuming that (\mathcal{M}, g) is globally real analytic)
- Numerical investigation: Comins-Schutz, Yoshida-Eriguchi,...
- Rigorous proof?

Friedman's ergoregion instability

Theorem (M., 2016)

Suppose that $\left(\mathcal{M}^{d+1}, g\right), d \geq 2$, is as above, satisfying in addition the following unique continuation condition:

UC condition: There exists a point $p \in \partial \mathscr{E}$ and an open neighborhood \mathcal{U} of p in \mathcal{M} such that, for any $H_{\text {loc }}^{1}$ solution $\tilde{\psi}$ to $\square_{g} \tilde{\psi}=0$ on \mathcal{M} with $\tilde{\psi} \equiv 0$ on $\mathcal{M} \backslash \mathscr{E}$, we have $\tilde{\psi}=0$ on $\mathscr{E} \cap \mathcal{U}$.
Then, there exists a smooth φ solving $\square_{g} \varphi=0$ with compactly supported initial data, such that

$$
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}=+\infty
$$

Friedman's ergoregion instability

Remarks:

Friedman's ergoregion instability

Remarks:

- No assumption on (\mathcal{M}, g) being real analytic is necessary.

Friedman's ergoregion instability

Remarks:

- No assumption on (\mathcal{M}, g) being real analytic is necessary.
- The proof also applies in the case when (\mathcal{M}, g) has a non-empty future event horizon \mathcal{H}^{+}with positive surface gravity, such that $\mathcal{H}^{+} \cap \mathscr{E}=\emptyset$.

Friedman's ergoregion instability

Remarks:

- No assumption on (\mathcal{M}, g) being real analytic is necessary.
- The proof also applies in the case when (\mathcal{M}, g) has a non-empty future event horizon \mathcal{H}^{+}with positive surface gravity, such that $\mathcal{H}^{+} \cap \mathscr{E}=\emptyset$.
- Examples of spacetimes where the unique continuation condition holds:
- Axisymmetric spacetimes with axisymmetric Killing field Φ, such that $[T, \Phi]=0$ and the span of T, Φ is timelike on $\partial \mathscr{E}$
- Spacetimes which are real analytic in a neighborhood of $\partial \mathscr{E}$.

Friedman's ergoregion instability

Remarks:

- No assumption on (\mathcal{M}, g) being real analytic is necessary.
- The proof also applies in the case when (\mathcal{M}, g) has a non-empty future event horizon \mathcal{H}^{+}with positive surface gravity, such that $\mathcal{H}^{+} \cap \mathscr{E}=\emptyset$.
- Examples of spacetimes where the unique continuation condition holds:
- Axisymmetric spacetimes with axisymmetric Killing field Φ, such that $[T, \Phi]=0$ and the span of T, Φ is timelike on $\partial \mathscr{E}$
- Spacetimes which are real analytic in a neighborhood of $\partial \mathscr{E}$.
- There exist spacetimes violating the unique continuation condition.

Applications

Applications

Applications:

Applications

Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth-Ipser).

Applications

Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth-Ipser).
- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
- Example (Cardoso-Crispino-Oliveira): The hydrodynamic vortex $\left(\mathbb{R} \times\left(\mathbb{R}^{2} \backslash 0\right), g_{h y d}\right):$

$$
g_{\text {hyd }}=-\left(1-\frac{C^{2}}{r^{2}}\right) d t^{2}+d r^{2}-2 C d t d \theta+r^{2} d \theta^{2} .
$$

Applications

Applications:

- General relativity: Scalar wave equation on rapidly rotating self-gravitating dense fluids (Butterworth-Ipser).
- Fluid mechanics: Acoustic wave equation on a steady irrotational flow with a supersonic region and no acoustic horizon.
- Example (Cardoso-Crispino-Oliveira): The hydrodynamic vortex $\left(\mathbb{R} \times\left(\mathbb{R}^{2} \backslash 0\right), g_{h y d}\right):$

$$
g_{\text {hyd }}=-\left(1-\frac{C^{2}}{r^{2}}\right) d t^{2}+d r^{2}-2 C d t d \theta+r^{2} d \theta^{2} .
$$

Sketch of the proof

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}<+\infty . \tag{1}
\end{equation*}
$$

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}<+\infty . \tag{1}
\end{equation*}
$$

Let $\psi=T \varphi$, for a solution φ of $\square_{g} \varphi=0$ with compactly supported initial data to be chosen later.

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}<+\infty . \tag{1}
\end{equation*}
$$

Let $\psi=T \varphi$, for a solution φ of $\square_{g} \varphi=0$ with compactly supported initial data to be chosen later.
Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon>0$, any $R, T, \tau_{0} \gg 1$ and any $0<\delta<1$, there exists a $\tau_{*} \geq \tau_{0}$ such that:

$$
\begin{equation*}
\int_{\left\{\tau_{*}-T \leq t \leq \tau_{*}+T\right\} \cap\{r \leq R\} \backslash \mathscr{E}_{\delta}}\left(|\nabla \psi|^{2}+|\psi|^{2}\right)<\varepsilon . \tag{2}
\end{equation*}
$$

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}<+\infty . \tag{1}
\end{equation*}
$$

Let $\psi=T \varphi$, for a solution φ of $\square_{g} \varphi=0$ with compactly supported initial data to be chosen later.
Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon>0$, any $R, T, \tau_{0} \gg 1$ and any $0<\delta<1$, there exists a $\tau_{*} \geq \tau_{0}$ such that:

$$
\begin{equation*}
\int_{\left\{\tau_{*}-T \leq t \leq \tau_{*}+T\right\} \cap\{r \leq R\} \backslash \mathscr{E}_{8}}\left(|\nabla \psi|^{2}+|\psi|^{2}\right)<\varepsilon . \tag{2}
\end{equation*}
$$

(1), $(2) \Longrightarrow$ There exists a function $\tilde{\psi} \in H_{l o c}^{1}(\mathcal{M})$ such that:

- $\psi\left(t+\tau_{n}, x\right) \rightarrow \tilde{\psi}(t, x)$ and $T \psi\left(t+\tau_{n}, x\right) \rightarrow T \tilde{\psi}(t, x)$ weakly in ${ }_{\tilde{L}}^{10 c}(\mathcal{M})$ and strongly in $L_{\text {loc }}^{2}(\mathcal{M})$, for a sequence $\tau_{n} \rightarrow+\infty$.
- $\tilde{\psi} \equiv 0$ on $\mathcal{M} \backslash \mathscr{E}$
- $\square_{g} \tilde{\psi}=0$

Sketch of the proof

The proof proceeds by contradiction, assuming that all smooth solutions φ to $\square_{g} \varphi=0$ satisfy

$$
\begin{equation*}
\limsup _{\tau \rightarrow+\infty} \int_{\{t=\tau\}}|\nabla \varphi|^{2}<+\infty . \tag{1}
\end{equation*}
$$

Let $\psi=T \varphi$, for a solution φ of $\square_{g} \varphi=0$ with compactly supported initial data to be chosen later.
Using the methods of the logarithmic decay result, (1) implies that for any $\varepsilon>0$, any $R, T, \tau_{0} \gg 1$ and any $0<\delta<1$, there exists a $\tau_{*} \geq \tau_{0}$ such that:

$$
\begin{equation*}
\int_{\left\{\tau_{*}-T \leq t \leq \tau_{*}+T\right\} \cap\{r \leq R\} \backslash \mathscr{E}_{\delta}}\left(|\nabla \psi|^{2}+|\psi|^{2}\right)<\varepsilon . \tag{2}
\end{equation*}
$$

(1), $(2) \Longrightarrow$ There exists a function $\tilde{\psi} \in H_{l o c}^{1}(\mathcal{M})$ such that:

- $\psi\left(t+\tau_{n}, x\right) \rightarrow \tilde{\psi}(t, x)$ and $T \psi\left(t+\tau_{n}, x\right) \rightarrow T \tilde{\psi}(t, x)$ weakly in ${\underset{\sim}{l o c}}_{1}^{(\mathcal{M})}$ and strongly in $L_{\text {loc }}^{2}(\mathcal{M})$, for a sequence $\tau_{n} \rightarrow+\infty$.
- $\tilde{\psi} \equiv 0$ on $\mathcal{M} \backslash \mathscr{E}$
- $\square_{g} \tilde{\psi}=0$

Unique continuation condition $\Longrightarrow \tilde{\psi} \equiv 0$ in \mathcal{U}

Sketch of the proof

Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi=T \varphi$) on $\{t=0\}$ so that:

- $\left.(\psi, T \psi)\right|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$
- $\int_{\{t=0\}} J_{\mu}^{T}(\psi) n^{\mu}=-1$

Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi=T \varphi$) on $\{t=0\}$ so that:

- $\left.(\psi, T \psi)\right|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$
- $\int_{\{t=0\}} J_{\mu}^{T}(\psi) n^{\mu}=-1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$
\int_{\{t=\tau\} \cap \mathscr{E}} J_{\mu}^{T}(\psi) n^{\mu} \leq-1 .
$$

Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi=T \varphi$) on $\{t=0\}$ so that:

- $\left.(\psi, T \psi)\right|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$
- $\int_{\{t=0\}} J_{\mu}^{T}(\psi) n^{\mu}=-1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$
\int_{\{t=\tau\} \cap \mathscr{E}} J_{\mu}^{T}(\psi) n^{\mu} \leq-1 .
$$

Alternative formula for energy:

$$
\int_{\{t=\tau\}} J_{\mu}^{T}(\psi) n^{\mu}=\int_{\{t=\tau\}} \operatorname{Re}\{T \psi \cdot n \bar{\psi}-\psi \cdot n(T \bar{\psi})\} .
$$

Sketch of the proof

It is possible to choose the initial data for φ (and thus for $\psi=T \varphi$) on $\{t=0\}$ so that:

- $\left.(\psi, T \psi)\right|_{t=0}$ is supported in $\mathcal{U} \cap \mathscr{E}$
- $\int_{\{t=0\}} J_{\mu}^{T}(\psi) n^{\mu}=-1$

Conservation of the T-energy flux: For all $\tau \geq 0$

$$
\int_{\{t=\tau\} \cap \mathscr{E}} J_{\mu}^{T}(\psi) n^{\mu} \leq-1 .
$$

Alternative formula for energy:

$$
\int_{\{t=\tau\}} J_{\mu}^{T}(\psi) n^{\mu}=\int_{\{t=\tau\}} \operatorname{Re}\{T \psi \cdot n \bar{\psi}-\psi \cdot n(T \bar{\psi})\} .
$$

So:

$$
\begin{equation*}
\int_{\{t=0\}} J_{\mu}^{T}(\tilde{\psi}) n^{\mu} \leq-1 \tag{3}
\end{equation*}
$$

Sketch of the proof

Sketch of the proof

Indefinite inner product associated to the T-energy:

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\} .
$$

Sketch of the proof

Indefinite inner product associated to the T-energy:
$\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\}$.

- For all $\tau \geq 0:\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, 0}=0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x)=\tilde{\psi}(t-\tau, x)$.

Sketch of the proof

Indefinite inner product associated to the T-energy:

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\} .
$$

- For all $\tau \geq 0:\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, 0}=0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x)=\tilde{\psi}(t-\tau, x)$.
- Conservation of the inner product: $\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, \tau}=0$.

Sketch of the proof

Indefinite inner product associated to the T-energy:

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\} .
$$

- For all $\tau \geq 0:\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, 0}=0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x)=\tilde{\psi}(t-\tau, x)$.
- Conservation of the inner product: $\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, \tau}=0$.
- Equivalently: $\left\langle\mathcal{F}_{\tau} \psi, \tilde{\psi}\right\rangle_{T, 0}=0$.

Sketch of the proof

Indefinite inner product associated to the T-energy:

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\} .
$$

- For all $\tau \geq 0:\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, 0}=0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x)=\tilde{\psi}(t-\tau, x)$.
- Conservation of the inner product: $\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, \tau}=0$.
- Equivalently: $\left\langle\mathcal{F}_{\tau} \psi, \tilde{\psi}\right\rangle_{T, 0}=0$.
- Therefore, for $\tau=\tau_{n} \rightarrow+\infty$:

$$
\begin{equation*}
\int_{\{t=0\}} J_{\mu}^{T}(\tilde{\psi}) n^{\mu}=\langle\tilde{\psi}, \tilde{\psi}\rangle_{T, 0}=0 \tag{4}
\end{equation*}
$$

Sketch of the proof

Indefinite inner product associated to the T-energy:

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{T, \tau}=\int_{\{t=\tau\}} \frac{1}{2} \operatorname{Re}\left\{T \varphi_{1} n \bar{\varphi}_{2}+n \varphi_{1} T \bar{\varphi}_{2}-g(T, n) \partial^{\alpha} \varphi_{1} \partial_{\alpha} \bar{\varphi}_{2}\right\} .
$$

- For all $\tau \geq 0:\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, 0}=0$, where $\mathcal{F}_{-\tau} \tilde{\psi}(t, x)=\tilde{\psi}(t-\tau, x)$.
- Conservation of the inner product: $\left\langle\psi, \mathcal{F}_{-\tau} \tilde{\psi}\right\rangle_{T, \tau}=0$.
- Equivalently: $\left\langle\mathcal{F}_{\tau} \psi, \tilde{\psi}\right\rangle_{T, 0}=0$.
- Therefore, for $\tau=\tau_{n} \rightarrow+\infty$:

$$
\begin{equation*}
\int_{\{t=0\}} J_{\mu}^{T}(\tilde{\psi}) n^{\mu}=\langle\tilde{\psi}, \tilde{\psi}\rangle_{T, 0}=0 . \tag{4}
\end{equation*}
$$

(3) \& (4): Contradiction!

Thank you for your attention！

