Conformal Scattering

for Maxwell Fields on the Reissner-Nordstrøm-de Sitter Manifold

Mokdad Mokdad

University of Brest (UBO)
Department of Mathematics (LMBA)

Paris 6, February 27, 2017

Einstein-Maxwell System

Reissner-Nordstrøm-de Sitter (RNdS) Solution

- The general theory of relativity:
 - Spacetime (\mathcal{M}, g) .
 - Einstein's field equations: $\mathbf{G}_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4} \mathbf{T}_{ab}$.
- Classical electromagnetism:
 - Maxwell's equations: $\nabla^a F_{ab} = 0$; $\nabla_{[a} F_{bc]} = 0$.
 - Maxwell energy-momentum tensor: $\mathbf{T}_{ab} = \frac{1}{4}g_{ab}F^{cd}F_{cd} F_{ac}F_{b}^{c}$.
- Einstein-Maxwell coupled system:
 - Coupled equations:

$$\begin{cases} \mathbf{G}_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4} \left(\frac{1}{4} g_{ab} F^{cd} F_{cd} - F_{ac} F_b{}^c \right); \\ \nabla^a F_{ab} = 0 \quad ; \quad \nabla_{[a} F_{bc]} = 0 \end{cases}$$

A spherically symmetric solution: RNdS black hole spacetime,
 M = ℝ_t×|0, +∞[_r×S²_{θ,ω}

$$\begin{split} g &= f(r)\mathrm{d}t^2 - \frac{1}{f(r)}\mathrm{d}r^2 - r^2\left(\mathrm{d}\theta^2 + \sin(\theta)^2\mathrm{d}\varphi^2\right)\;,\\ f(r) &= 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \Lambda r^2\;. \end{split}$$

Decay & Conformal Scattering: Elements of the Problems

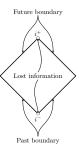
Decoupled System: Wave as test field on fixed background.

- Conformal Scattering: The asymptotic behaviour of the wave in the distant future and past.
 - Conformal compactification and rescaling: "make infinity finite", rescale the test field. → asymptotic profile
 - Scattering operator: Associate the past asymptotic profile to the future asymptotic profile and vice versa.

Major Obstacles Information loss

For conformal scattering:

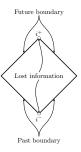
• Uniform decay: make sure that no information is lost at i^{\pm} .



Major Obstacles Information loss

For conformal scattering:

• Uniform decay: make sure that no information is lost at i^{\pm} .

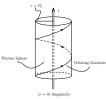


Information is encoded in the energy. We need some decay of energy i^{\pm} (uniform decay).

Major Obstacles Trapping of light

For decay:

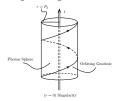
• Trapping effect: orbiting null geodesics (photon sphere).



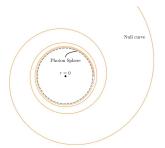
Major Obstacles Trapping of light

For decay:

• Trapping effect: orbiting null geodesics (photon sphere).



The photon sphere slows down the decay.



Motivation

Conformal Scattering:

- Scattering:
 - Asymptotic influence of the geometry on fields.
 - Description of phenomena in black holes spacetimes.
- General non-stationary situations.

- Conformal rescaling: (\mathcal{M}, g) and an equation (E_g) on \mathcal{M} .
 - There is $(\hat{\mathcal{M}}, \hat{g})$, such that:
 - $\hat{g} = \Omega^2 g.$
 - $\partial \hat{\mathcal{M}} = \mathcal{I}$ infinity of (\mathcal{M}, g) .
 - $\Omega|_{\mathscr{I}} = 0$ and $d\Omega|_{\mathscr{I}} \neq 0$.
 - $\inf \hat{\mathcal{M}} = \mathcal{M}$.
 - (E_g) is conformally invariant: If Φ solution to (E_g) then $\hat{\Phi} = \Omega^s \Phi$ is solution to $(E_{\hat{q}})$.

- Conformal rescaling: (\mathcal{M}, g) and an equation (E_g) on \mathcal{M} .
 - There is $(\hat{\mathcal{M}}, \hat{g})$, such that:
 - $\hat{g} = \Omega^2 g$.
 - $\partial \hat{\mathcal{M}} = \mathcal{I}$ infinity of (\mathcal{M}, g) .
 - $\Omega|_{\mathscr{I}} = 0$ and $d\Omega|_{\mathscr{I}} \neq 0$.
 - $\inf \hat{\mathcal{M}} = \mathcal{M}$.
 - (E_g) is conformally invariant: If Φ solution to (E_g) then $\hat{\Phi} = \Omega^s \Phi$ is solution to $(E_{\hat{q}})$.
- Cauchy problem: Defining the trace operators.

- Conformal rescaling: (\mathcal{M}, g) and an equation (E_g) on \mathcal{M} .
 - There is $(\hat{\mathcal{M}}, \hat{g})$, such that:
 - $\hat{g} = \Omega^2 g.$
 - $\partial \hat{\mathcal{M}} = \mathcal{I}$ infinity of (\mathcal{M}, g) .
 - $\Omega|_{\mathscr{I}} = 0$ and $d\Omega|_{\mathscr{I}} \neq 0$.
 - $\inf \hat{\mathcal{M}} = \mathcal{M}$.
 - (E_g) is conformally invariant: If Φ solution to (E_g) then $\hat{\Phi} = \Omega^s \Phi$ is solution to $(E_{\hat{q}})$.
- Cauchy problem: Defining the trace operators.

• Energy estimates: The trace operators are one-to-one.

- Conformal rescaling: (\mathcal{M}, g) and an equation (E_g) on \mathcal{M} .
 - There is $(\hat{\mathcal{M}}, \hat{g})$, such that:
 - $\hat{g} = \Omega^2 g.$
 - $\partial \hat{\mathcal{M}} = \mathcal{I}$ infinity of (\mathcal{M}, g) .
 - $\Omega|_{\mathscr{I}} = 0$ and $d\Omega|_{\mathscr{I}} \neq 0$.
 - $\inf \hat{\mathcal{M}} = \mathcal{M}$.
 - (E_g) is conformally invariant: If Φ solution to (E_g) then $\hat{\Phi} = \Omega^s \Phi$ is solution to $(E_{\hat{g}})$.
- Cauchy problem: Defining the trace operators.

• Energy estimates: The trace operators are one-to-one.

- Goursat problem: The trace operators are onto.
- Scattering operator: Isometry using the trace operators.

• 1960 F.G. Friedlander: introduces the radiation fields.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.
- 1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea further but exclusively on static backgrounds.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.
- 1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea further but exclusively on static backgrounds.
- 1990 *L. Hörmander*: solved the Goursat problem for a wave equation on generic null hypersurfaces in a spatially compact spacetime.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.
- 1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea further but exclusively on static backgrounds.
- 1990 *L. Hörmander*: solved the Goursat problem for a wave equation on generic null hypersurfaces in a spatially compact spacetime.
- 2004 L. Mason and J.P. Nicolas: scalar waves, Dirac, and Maxwell on generically non-stationary asymptotically simple spacetimes.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.
- 1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea further but exclusively on static backgrounds.
- 1990 *L. Hörmander*: solved the Goursat problem for a wave equation on generic null hypersurfaces in a spatially compact spacetime.
- 2004 L. Mason and J.P. Nicolas: scalar waves, Dirac, and Maxwell on generically non-stationary asymptotically simple spacetimes.
- 2012 J. Joudioux: conformal scattering theory for a non-linear wave equation on non-stationary backgrounds.

- 1960 F.G. Friedlander: introduces the radiation fields.
- 1964 R. Penrose: conformal compactification, points at infinity.
- 1967 P.D. Lax and S.R. Phillips: Lax-Phillips scattering theory.
- 1980 F.G. Friedlander: "Radiation fields and hyperbolic scattering theory", Goursat problem.
- 1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea further but exclusively on static backgrounds.
- 1990 *L. Hörmander*: solved the Goursat problem for a wave equation on generic null hypersurfaces in a spatially compact spacetime.
- 2004 L. Mason and J.P. Nicolas: scalar waves, Dirac, and Maxwell on generically non-stationary asymptotically simple spacetimes.
- 2012 J. Joudioux: conformal scattering theory for a non-linear wave equation on non-stationary backgrounds.
- 2013 J.P. Nicolas: conformal scattering theory for the wave equation on Schwarzschild black holes.

New Results

- Photon Sphere: Finding the necessary and sufficient conditions on the parameters of the RNdS metric to have three horizons, and locating the photon sphere.
- **Decay:** Proving pointwise decay in time and uniform decay of the energy flux across achronal hypersurfaces for Maxwell fields on the static exterior region of the RNdS black hole.
- Onformal Scattering: Solving the Goursat Problem and constructing a conformal scattering theory for the Maxwell fields on the static exterior region of the RNdS black hole.

The decay and scattering results hold true for a larger class of spherically symmetric spacetimes.

RNdS spacetime: $\mathcal{M} = \mathbb{R}_t \times]0, +\infty[_r \times \mathcal{S}^2_\omega,$

$$g = f(r)dt^2 - \frac{1}{f(r)}dr^2 - r^2d\omega^2$$
 ; $f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \Lambda r^2$.

Assuming that f has 3 distinct simple positive zeros, we have three horizons at $r_1 < r_2 < r_3$. $(f(r_i) = 0)$

- f > 0 on $]0, r_1[$: static interior region.
- f < 0 on $]r_1, r_2[$: dynamic interior region.
- f > 0 on $]r_2, r_3[$: static exterior region.
- f < 0 on $]r_3, +\infty[$: dynamic exterior region.

Regions of RNdS in the case of three horizons

RNdS spacetime: $\mathcal{M} = \mathbb{R}_t \times]0, +\infty[_r \times \mathcal{S}^2_\omega,$

$$g = f(r)dt^2 - \frac{1}{f(r)}dr^2 - r^2d\omega^2 \quad ; \quad f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - \Lambda r^2.$$

Assuming that f has 3 distinct simple positive zeros, we have three horizons at $r_1 < r_2 < r_3$. $(f(r_i) = 0)$

- f > 0 on $]0, r_1[$: static interior region.
- f < 0 on $[r_1, r_2]$: dynamic interior region.
- f > 0 on r_2, r_3 : static exterior region. (Photon sphere)
- f < 0 on $]r_3, +\infty[$: dynamic exterior region.

$$\mathcal{N} = \mathbb{R}_t \times]r_2, r_3[_r \times \mathcal{S}_\omega^2]$$

One Photon Sphere

Set,

$$R = \frac{1}{\sqrt{6\Lambda}} \quad ; \quad \Delta = 1 - 12Q^2\Lambda$$

$$m_1 = R\sqrt{1 - \sqrt{\Delta}} \quad ; \quad m_2 = R\sqrt{1 + \sqrt{\Delta}}$$

$$M_1 = m_1 - 2\Lambda m_1^3 \quad ; \quad M_2 = m_2 - 2\Lambda m_2^3 \; .$$

Proposition (Three Positive Zeros and One Photon Sphere)

The horizon function f has exactly three positive distinct simple zeros if and only if

$$Q
eq 0 \quad and \quad 0 < \Lambda < rac{1}{12O^2} \quad and \quad M_1 < M < M_2 \; .$$

In this case, there is exactly one photon sphere, and it is located between the two largest zeros of f.

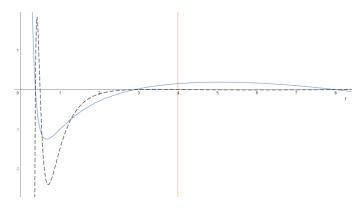


Figure: $Q=1,\ M=1.5,\ \Lambda=0.01.$ The function f is the continuous curve and the radial acceleration $f(2^{-1}f'-r^{-1}f)$ is the doted curve. The vertical line (r=4) is the photon sphere.

Photon Sphere

Numerical example

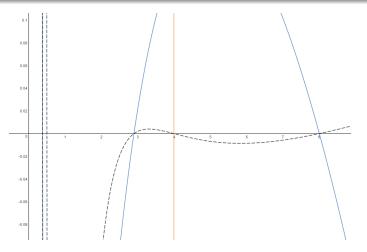


Figure: $Q=1,\ M=1.5,\ \Lambda=0.01.$ The function f is the continuous curve and the radial acceleration $f(2^{-1}f'-r^{-1}f)$ is the doted curve. The vertical line (r=4) is the photon sphere.

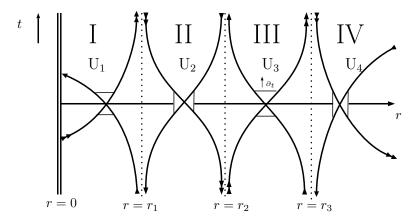


Figure: The RNdS manifold with the radial null geodesics (integral curves of $Y^{\mp} = f^{-1}\partial_t \pm \partial_r$). It admits 16 time-orientations.

Regge-Wheeler Coordinate: r_* -coordinate

$$\frac{\mathrm{d}r}{\mathrm{d}r_*} = f(r)$$

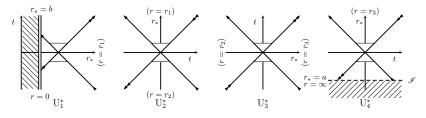


Figure: The hypersurfaces $r = r_i$ (indicated in parenthesis) are off the chart since they are at infinity in r_* .

Eddington-Finkelstein Extensions

Advanced and retarded time coordinate

The Eddington-Finkelstein coordinates $u_{\pm} = t \pm r_*$. The metric in these coordinates:

$$g = f(r)du_{\pm}^{2} \mp 2du_{\pm}dr - r^{2}d\omega^{2}$$

When ∂_r is future-oriented we denote it by \mathcal{M}_F^{\pm} , and \mathcal{M}_P^{\pm} in the other case.

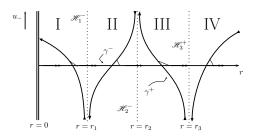


Figure: \mathcal{M}_F^- and the integral curves of Y^{\mp} .

Eddington-Finkelstein Extensions

Double null coordinates

Using both u_{\pm} , the metric is: $g = f(r) du_{-} du_{+} - r^{2} d\omega^{2}$.

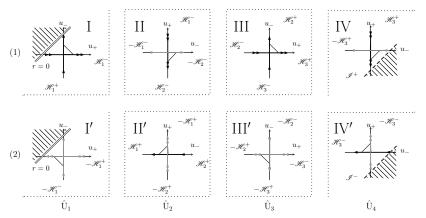
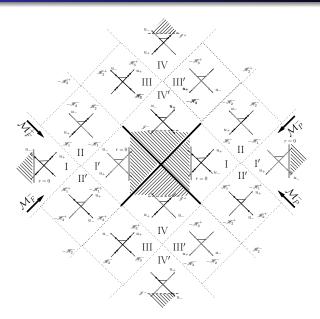


Figure: In (1), we have time-orientation given by ∂_t and ∂_r , while in (2) by $-\partial_t$ and $-\partial_r$. Incoming and outgoing radial null geodesics are integral curves of $Y^{\mp} = 2f^{-1}\partial_{u_{\pm}}$ and of $-Y^{\mp}$ (shown in gray). The horizons $\pm \mathscr{H}_i^{\pm}$ (dotted lines) are asymptotic to the charts.

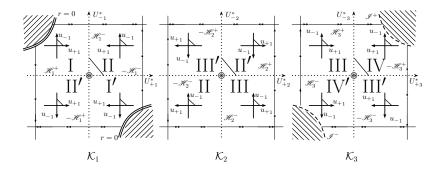
Eddington-Finkelstein Extensions Double null coordinates

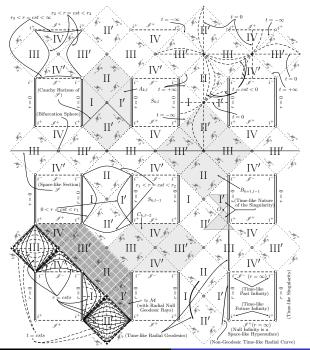


Kruskal-Szekeres Extensions Bifuraction spheres

A natural choice of coordinates to glue the charts is the Kruskal-Szekeres coordinates of the form:

$$U_{\pm} = \beta_{\pm} e^{\alpha_{\pm} u_{\pm}} .$$





Tetrad Formalism

Maxwell Compacted Equations

• Null tetrad on \mathcal{N} : "Stationary tetrad"

$$L = \partial_t + \partial_{r_*}; \quad N = \partial_t - \partial_{r_*}; \quad M = \partial_\theta + \frac{i}{\sin(\theta)} \partial_\varphi; \quad \bar{M}$$

 \bullet Spin-components of F on the stationary tetrad:

$$\begin{split} &\Phi_1 = F\left(L,M\right) \;; \\ &\Phi_0 = \frac{1}{2} \left(V^{-1} F(L,N) + F\left(\bar{M},M\right)\right) \;; \qquad \left(V = \frac{f}{r^2}\right) \\ &\Phi_{-1} = F\left(N,\bar{M}\right) \end{split}$$

⁴Maxwell Compacted Equations

$$N\Phi_{1} = VM\Phi_{0},$$
 $N\Phi_{0} = -M_{1}\Phi_{-1},$ $L\Phi_{-1} = -V\bar{M}\Phi_{0},$

where $M_1 = M + \cot(\theta)$ and \bar{M}_1 is its conjugate.

Energies of the Maxwell Field

• Divergence theorem:

$$\int_{\partial \mathcal{U}} (X \, \boldsymbol{\perp} \, \mathbf{T})^{\sharp} \, \boldsymbol{\perp} \, \mathrm{d}^4 x = \frac{1}{2} \int_{\mathcal{U}} (\nabla_a X_b - \nabla_b X_a) \mathbf{T}^{ab} \mathrm{d}^4 x \; .$$

• Energy flux across a hypersurface S:

$$E_X[F](S) = \int_S (X \, \mathsf{J} \, \mathbf{T})^{\sharp} \, \mathsf{J} \, \mathrm{d}^4 x = \int_S \mathbf{T}_{ab} X^b \eta_S^a(\tau_S \, \mathsf{J} \, \mathrm{d}^4 x) .$$

 η_S normal to S, τ_S is transverse to S, such that $g(\eta_S, \tau_S) = 1$.

Energies of the Maxwell Field

• Divergence theorem:

$$\int_{\partial \mathcal{U}} (X \, \lrcorner \, \mathbf{T})^{\sharp} \, \lrcorner \, \mathrm{d}^4 x = \frac{1}{2} \int_{\mathcal{U}} (\nabla_a X_b - \nabla_b X_a) \mathbf{T}^{ab} \mathrm{d}^4 x \; .$$

• Energy flux across a hypersurface S:

$$E_X[F](S) = \int_S (X \, \mathsf{J} \, \mathbf{T})^{\sharp} \, \mathsf{J} \, \mathrm{d}^4 x = \int_S \mathbf{T}_{ab} X^b \eta_S^a(\tau_S \, \mathsf{J} \, \mathrm{d}^4 x) .$$

• Energy: for $X = T := \partial_t$ and $S = \Sigma_t := \{t\} \times \mathbb{R}_{r_*} \times \mathcal{S}^2_{\omega}$,

$$E_T[F](t) := E_T[F](\Sigma_t) = \frac{1}{4} \int_{\Sigma_t} |\Phi_1|^2 + \frac{2f}{r^2} |\Phi_0|^2 + |\Phi_{-1}|^2 dr_* d^2 \omega.$$

• Conformal energy: for $X = K := (t^2 + r_*^2)\partial_t + 2tr_*\partial_{r_*}$,

$$E_K[F](t) = \frac{1}{4} \int_{\Sigma_+} u_+^2 |\Phi_1|^2 + (u_+^2 + u_-^2) \frac{f}{r^2} |\Phi_0|^2 + u_-^2 |\Phi_{-1}|^2 dr_* d^2 \omega .$$

Decay

Theorem (Uniform Decay)

Let $t_0 \geq 0$ be a real parameter. Let S be any achronal future oriented smooth hypersurface, such that its union with $\Sigma_0 = \{0\} \times \mathbb{R} \times S^2$ is the boundary of an open submanifold of \mathcal{N} , and such that on S, $t \geq |r_*| + t_0$. Then there is a constant C > 0 independent of t_0 , F, (t, r_*, ω) , and S, such that

$$E_T[F](S) \le t_0^{-2} C \left(\sum_{k=0}^1 E_K[\mathcal{L}_{\mathbb{O}}^k F](0) + \sum_{k=0}^5 E_T[\mathcal{L}_{\mathbb{O}}^k F](0) \right) .$$

Maxwell Field on the Closure of ${\mathcal N}$

Adapted tetrads: Outgoin and incoming tetrads

• $\bar{\mathcal{N}}$ the closure of the static exterior region \mathcal{N} in \mathcal{M}^* .

- Stationary tetrad: $\{L, N, M, \overline{M}\}$ can be extended to $\overline{\mathcal{N}}$ but it will be singular (basis) on the horizons.
- Outgoing tetrad: $\{\hat{L} = f^{-1}L = \partial_r, N = 2\partial_{u_-} f\partial_r, M, \bar{M}\}$ is a regular basis on \mathcal{M}_F^- (but not on \mathcal{H}_3^- and \mathcal{H}_2^+).
- Incoming tetrad: $\{L, \hat{N} = f^{-1}N, M, \bar{M}\}$ is a basis on \mathcal{M}_F^+ .

Maxwell Field on the Closure of $\mathcal N$

• Spin components of F in the outgoing tetrad:

$$\begin{split} &\hat{\Phi}_1 &= F\left(\hat{L},M\right) \\ &\Phi_0 &= \frac{1}{2}\left(\hat{V}^{-1}F(\hat{L},N) + F\left(\bar{M},M\right)\right) \\ &\Phi_{-1} &= F\left(N,\bar{M}\right) \end{split}$$

where $\hat{V} = f^{-1}V = r^{-2}$.

 Maxwell compacted equations in the outgoing tetrad take the following form:

$$\begin{array}{rcl} N\hat{\Phi}_1 & = & \hat{V}M\Phi_0 + f'\hat{\Phi}_1, \\ \hat{L}\Phi_0 & = & \bar{M}_1\hat{\Phi}_1, \\ N\Phi_0 & = & -M_1\Phi_{-1}, \\ \hat{L}\Phi_{-1} & = & -\hat{V}\bar{M}\Phi_0. \end{array}$$

• Similarly for the incoming tetrad.

Function Spaces

• The energy flux across the horizons:

$$E_T[F](\mathscr{H}_3^+) = \frac{1}{4} \int_{\mathscr{H}_3^+} \mathbf{T}_{ab} N^a N^b (\hat{L} \, \rfloor \, \mathrm{d}^4 x) = \frac{1}{4} \int_{\mathbb{R}_{u_-} \times \mathcal{S}^2} |\Phi_{-1}|^2 \mathrm{d}u_- \mathrm{d}^2 \omega .$$

$$E_T[F](\mathscr{H}_2^+) = \frac{1}{4} \int_{\mathscr{H}_2^+} \mathbf{T}_{ab} L^a L^b(\hat{N} \perp d^4 x) = \frac{1}{4} \int_{\mathbb{R}_{u_+} \times \mathcal{S}^2} |\Phi_1|^2 du_+ d^2 \omega ,$$

• The energy spaces on \mathscr{H}_i^{\pm} : the completions of $\mathcal{C}_0^{\infty}(\mathscr{H}_i^{\pm})$ for

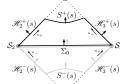
$$\|\phi\|_{\mathcal{H}_{2}^{\pm}}^{2} = \pm \frac{1}{4} \int_{\mathcal{H}_{2}^{\pm}} |\phi|^{2} du_{\pm} \wedge d^{2}\omega \; ; \; \|\phi\|_{\mathcal{H}_{3}^{\pm}}^{2} = \mp \frac{1}{4} \int_{\mathcal{H}_{3}^{\pm}} |\phi|^{2} du_{\mp} \wedge d^{2}\omega$$

• On $\mathscr{H}^{\pm} := \mathscr{H}_2^{\pm} \cup \mathscr{H}_3^{\pm}$: \mathscr{H}^{\pm} the completions of $C_0^{\infty}(\mathscr{H}_2^{\pm}) \times C_0^{\infty}(\mathscr{H}_3^{\pm})$ for $\|(\phi_{\pm}, \phi_{\mp})\|_{\mathscr{H}^{\pm}}^2 = \|\phi_{\pm}\|_{\mathscr{H}_3^{\pm}}^2 + \|\phi_{\mp}\|_{\mathscr{H}_3^{\pm}}^2.$

Energy Identity up to i^{\pm}

• Consider

$$S^{\pm}(s) = \{(t, r_*, \omega) \in \mathbb{R} \times \mathbb{R} \times \mathcal{S}^2_{\frac{t^*}{s}}; \ t = \pm \sqrt{1 + r_*^2} + s \ ; \ \pm s \ge 0\}.$$



• By the divergence theorem,

$$E_T[F](\Sigma_0) = E_T[F](\mathscr{H}_2^+(s)) + E_T[F](\mathscr{H}_3^+(s)) + E_T[F](S^+(s)).$$

• Thanks to the uniform decay,

$$\lim_{s \to +\infty} E_T[F](S^+(s)) = 0,$$

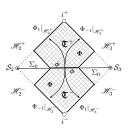
and

$$E_T[F](\Sigma_0) = E_T[F](\mathscr{H}_2^{\pm}) + E_T[F](\mathscr{H}_3^{\pm}).$$

Trace Operators

• The future and past trace operators:

$${\bf T}^{\pm}: {\cal U} \longrightarrow {\cal H}^{\pm}$$



$$\mathfrak{T}^{\pm}(\phi) = (\Phi_{\pm 1}|_{\mathscr{H}_{2}^{\pm}}, \Phi_{\mp 1}|_{\mathscr{H}_{3}^{\pm}}),$$

• By the energy identity,

$$\|\phi\|_{\mathcal{H}} = \|\mathfrak{T}^{\pm}(\phi)\|_{\mathcal{H}^{\pm}},$$

 \Rightarrow \mathfrak{T}^{\pm} injective and have closed ranges.

Goursat Problem

Set-up, simplifications, and strategy

• The Problem: Prove dense range. For $(\phi_+, \phi_-) \in \mathcal{C}_0^{\infty}\left(\mathscr{H}_2^{\pm}\right) \times \mathcal{C}_0^{\infty}\left(\mathscr{H}_3^{\pm}\right)$ find $\Phi \in \mathcal{C}(\mathbb{R}_t; \mathcal{H})$ such that

$$(\Phi_{\pm 1}|_{\mathscr{H}_2^{\pm}}, \Phi_{\mp 1}|_{\mathscr{H}_3^{\pm}}) = (\phi_{\pm}, \phi_{\mp}).$$

Goursat Problem

Set-up, simplifications, and strategy

• The Problem: Prove dense range. For $(\phi_+, \phi_-) \in \mathcal{C}_0^{\infty}\left(\mathscr{H}_2^{\pm}\right) \times \mathcal{C}_0^{\infty}\left(\mathscr{H}_3^{\pm}\right)$ find $\Phi \in \mathcal{C}(\mathbb{R}_t; \mathcal{H})$ such that

$$(\Phi_{\pm 1}|_{\mathscr{H}_2^{\pm}}, \Phi_{\mp 1}|_{\mathscr{H}_3^{\pm}}) = (\phi_{\pm}, \phi_{\mp}) .$$

- Simplifications:
 - Future and past are analogous.
 - By linearity and analogy of structure: $(0, \phi_-) \in \mathcal{C}_0^{\infty} (\mathcal{H}_2^+) \times \mathcal{C}_0^{\infty} (\mathcal{H}_2^+).$

Goursat Problem

Set-up, simplifications, and strategy

• The Problem: Prove dense range. For $(\phi_+, \phi_-) \in \mathcal{C}_0^{\infty}\left(\mathscr{H}_2^{\pm}\right) \times \mathcal{C}_0^{\infty}\left(\mathscr{H}_3^{\pm}\right)$ find $\Phi \in \mathcal{C}(\mathbb{R}_t; \mathcal{H})$ such that

$$(\Phi_{\pm 1}|_{\mathscr{H}_2^{\pm}}, \Phi_{\mp 1}|_{\mathscr{H}_3^{\pm}}) = (\phi_{\pm}, \phi_{\mp}) .$$

- Simplifications:
 - Future and past are analogous.
 - By linearity and analogy of structure: $(0, \phi_-) \in \mathcal{C}_0^{\infty} (\mathcal{H}_2^+) \times \mathcal{C}_0^{\infty} (\mathcal{H}_2^+).$
- The strategy: use Hörmander's results about the characteristic Cauchy problem:
 - Convert the initial-value problem from Maxwell's equations to wave equations.
 - Put the problem in a framework for which Hörmander's results apply.
 - Reinterpret the solution of the wave equations as a Maxwell field.

Solving the Goursat Problem

Theorem (Goursat Problem)

For $\phi_{-} \in \mathcal{C}_{0}^{\infty}\left(\mathscr{H}_{3}^{+}\right)$ there is a unique smooth, finite energy, Maxwell field F defined on $\overline{\mathcal{N}}$, with $\mathbf{\Phi}=(\Phi_{1},\Phi_{0},\Phi_{-1})$ its spin components in the stationary tetrad, such that

$$(\Phi_1|_{\mathcal{H}_2^+}, \Phi_{-1}|_{\mathcal{H}_3^+}) = (0, \phi_-).$$

↑The Scattering Operator

$$\mathfrak{S} = \mathfrak{C}^+ \circ (\mathfrak{C}^-)^{-1} : \mathcal{H}^- \longrightarrow \mathcal{H}^+$$

Wave equations Goursat Problem

Wave equations

Let $\hat{\Phi} = (\hat{\Phi}_1, \Phi_0, \Phi_{-1})$ be the spin components of a smooth Maxwell field in the outgoing tetrad, then

$$\hat{W} \hat{\Phi} = \left(\begin{array}{ccc} \hat{W}_{11} & -\hat{V}'M & 0 \\ 0 & \hat{W}_{00} & 0 \\ 0 & -V'\bar{M} & \hat{W}_{0-1} \end{array} \right) \left(\begin{array}{c} \hat{\Phi}_1 \\ \Phi_0 \\ \Phi_{-1} \end{array} \right) = 0,$$

where the diagonal entries are $\hat{W}_{11} := \hat{L}N_1 - \hat{V}M\bar{M}_1$, $\hat{W}_{00} := \hat{L}N - \hat{V}M_1\bar{M}$, $\hat{W}_{0-1} := \hat{L}N - \hat{V}\bar{M}M_1$, and $N_1 = N - f'$.

The indices of \hat{W}_{ij} indicate their expressions: $\hat{W}_{ij} = \hat{L} I - \hat{V} J$ with

$$i = \begin{cases} 0 & \text{if } I = N \ ; \\ 1 & \text{if } I = N_1 \ , \end{cases} \qquad j = \begin{cases} 1 & \text{if } J = M\bar{M}_1 \ ; \\ 0 & \text{if } J = M_1\bar{M} = \bar{M}_1M \ ; \\ -1 & \text{if } J = \bar{M}M_1 \ . \end{cases}$$

Wave equations Goursat Problem

Wave equations

Let $\hat{\Phi} = (\hat{\Phi}_1, \Phi_0, \Phi_{-1})$ be the spin components of a smooth Maxwell field in the outgoing tetrad, then

$$\hat{W} \hat{\pmb{\Phi}} = \left(\begin{array}{ccc} \hat{W}_{11} & -\hat{V}'M & 0 \\ 0 & \hat{W}_{00} & 0 \\ 0 & -V'\bar{M} & \hat{W}_{0-1} \end{array} \right) \left(\begin{array}{c} \hat{\Phi}_1 \\ \Phi_0 \\ \Phi_{-1} \end{array} \right) = 0.$$

$$\begin{array}{|c|c|}
\hline
 \mathbf{Proof} \\
N_1\hat{\Phi}_1 - \hat{V}M\Phi_0 =: E_1; \\
\hat{L}\Phi_0 - \bar{M}_1\hat{\Phi}_1 =: E_2; \\
N\Phi_0 + M_1\Phi_{-1} =: E_3; \\
\hat{L}\Phi_{-1} + \hat{V}\bar{M}\Phi_0 =: E_4;
\end{array}$$

Wave equations Goursat Problem

✓ Wave equations

Let $\hat{\Phi} = (\hat{\Phi}_1, \Phi_0, \Phi_{-1})$ be the spin components of a smooth Maxwell field in the outgoing tetrad, then

$$\hat{W} \hat{\Phi} = \left(\begin{array}{ccc} \hat{W}_{11} & -\hat{V}'M & 0 \\ 0 & \hat{W}_{00} & 0 \\ 0 & -V'\bar{M} & \hat{W}_{0-1} \end{array} \right) \left(\begin{array}{c} \hat{\Phi}_1 \\ \Phi_0 \\ \Phi_{-1} \end{array} \right) = 0.$$

$\begin{array}{|c|c|c|c|} \hline & \mathbf{Proof} \\ & N_1\hat{\Phi}_1 - \hat{V}M\Phi_0 =: E_1 \; ; & \hat{L}E_1 + \hat{V}ME_2 = \hat{W}_{11}\hat{\Phi}_1 - \hat{V}'M\Phi_0 \; ; \\ & \hat{L}\Phi_0 - \bar{M}_1\hat{\Phi}_1 =: E_2 \; ; & N_1E_2 + \bar{M}_1E_1 = \hat{W}_{00}\Phi_0 \; ; \\ & N\Phi_0 + M_1\Phi_{-1} =: E_3 \; ; & \hat{L}E_3 - M_1E_4 = \hat{W}_{00}\Phi_0 \; ; \\ & \hat{L}\Phi_{-1} + \hat{V}\bar{M}\Phi_0 =: E_4 \; ; & N_1E_4 - \hat{V}\bar{M}E_3 = \hat{W}_{0-1}\Phi_{-1} - V'\bar{M}\Phi_0 \; . \end{array}$

Rienterpreting the solution as a Maxwell field

Let
$$\hat{W}\hat{\Phi} = (\hat{\Omega}_1, \Omega_0, \Omega_{-1})$$
:
$$N_1\hat{\Omega}_1 - \hat{V}M\Omega_0 = \hat{W}_{01}E_1 + f\hat{V}'ME_2 ;$$

$$\hat{L}\Omega_0 - \hat{V}\bar{M}_1\hat{\Omega}_1 = \hat{W}_{10}E_2 ;$$

$$N_1\Omega_0 + M_1\Omega_{-1} = \hat{W}_{00}E_3 ;$$

$$\hat{L}\Omega_{-1} + \hat{V}\bar{M}\Omega_0 = \hat{W}_{1-1}E_4 - \hat{V}'ME_3 .$$

where

$$\begin{split} \hat{W}_{01} &= \hat{L}N - \hat{V}M\bar{M}_1 \; ; \\ \hat{W}_{10} &= \hat{L}N_1 - \hat{V}M_1\bar{M} \; ; \\ \hat{W}_{1-1} &= \hat{L}N_1 - \hat{V}\bar{M}_1M \; . \end{split}$$

Goursat Data for the Wave System The Constraints

Since N is tangent to \mathcal{H}_3^+ , equations $E_1 = 0$ and $E_2 = 0$ are constraint equations on the null horizon:

$$\begin{split} N_1|_{\mathscr{H}_3^+} \hat{\Phi}_1|_{\mathscr{H}_3^+} - \hat{V}(r_3) M \Phi_0|_{\mathscr{H}_3^+} &= 0 , \\ N|_{\mathscr{H}_3^+} \Phi_0|_{\mathscr{H}_3^+} + M_1 \Phi_{-1}|_{\mathscr{H}_3^+} &= 0 . \end{split}$$

Therefore, for $\phi_{-} \in \mathcal{C}_{0}^{\infty}\left(\mathscr{H}_{3}^{+}\right)$ we define $\phi_{0}, \hat{\phi}_{+} \in \mathcal{C}^{\infty}\left(\mathscr{H}_{3}^{+}\right)$ consecutively by the constraints initial-value problems in \mathscr{H}_{3}^{+} :

$$\begin{cases} 2\partial_{u_{-}}\phi_{0} = M_{1}\phi_{-} \\ \phi_{0}|_{\mathcal{S}_{p}} = 0 \end{cases} ; \qquad \begin{cases} (2\partial_{u_{-}} - f'(r_{3}))\hat{\phi}_{+} = \hat{V}(r_{3})M\phi_{0} \\ \hat{\phi}_{+}|_{\mathcal{S}_{p}} = 0 \end{cases}$$

where S_p is any sphere of \mathscr{H}_3^+ in the future of the support of ϕ_- .

The triplet $\hat{\boldsymbol{\phi}} = (\hat{\phi}_+, \phi_0, \phi_-)$ is the Goursat data for the wave equations. Note that $\hat{\boldsymbol{\phi}}$ vanishes between i^+ and the support of ϕ_- .

Thank you

Transferring to Hörmander's Framework

