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Einstein-Maxwell System

Reissner-Nordstrgm-de Sitter (RNdS) Solution

@ The general theory of relativity:

e Spacetime (M, g).

o Einstein’s field equations: Gab + Agap = ZE Ty .
o Classical electromagnetism:

o Maxwell’s equations: V*Fy =0 ; V[Fpg =0.

o Maxwell energy-momentum tensor: Ty = %gabFCchd — FooFy©.
o Einstein-Maxwell coupled system:

e Coupled equations:

Gab + Agab = 8:4G (%gabFCchd - Fa(;Fbc) 3
VFu =0 ; VieFpg=0

o A spherically symmetric solution: RNdS black hole spacetime,
M =R x]0, 00 xS7 ,

g = f(r)dt* — f(lr) dr? — r? (dé?2 + sin(9)2dg02) ,
oM Q?

2
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Decay & Conformal Scattering:

Elements of the Problems

Decoupled System: Wave as test field on fixed background.

o Conformal Scattering: The asymptotic behaviour of the wave
in the distant future and past.
o Conformal compactification and rescaling: “make infinity finite”,
rescale the test field.— asymptotic profile
o Scattering operator: Associate the past asymptotic profile to the
future asymptotic profile and vice versa.
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Major Obstacles

Information loss

For conformal scattering:

e Uniform decay: make sure that no information is lost at i*.

Future boundary

Past boundary
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Major Obstacles

Information loss

For conformal scattering:

e Uniform decay: make sure that no information is lost at i*.

Future boundary

Past boundary

Information is encoded in the energy. We need some decay of energy
i* (uniform decay).
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r Obstacles

Trapping of light

For decay:
e Trapping effect: orbiting null geodesics (photon sphere).

(r = 0) Singularity
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Major Obstacles

Trapping of light

For decay:
e Trapping effect: orbiting null geodesics (photon sphere).

(r = 0) Singularity

The photon sphere slows down the decay.
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Conformal Scattering:

@ Scattering:

o Asymptotic influence of the geometry on fields.
o Description of phenomena in black holes spacetimes.

@ General non-stationary situations.
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Conformal Scattering: Main Ingredients

o Conformal rescaling: (.#,g) and an equation (E,) on /.

o There is (//Z, §), such that:
e g :AQ2g.
o O/ = .7 infinity of (A, g).
o Q‘y :0anddQ|y #0.
o int.d = .M.

o (E,) is conformally invariant: If ® solution to (E,) then & = Q°®

is solution to (Ey).
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Conformal Scattering: Main Ingredients

o Conformal rescaling: (.#,g) and an equation (E,) on /.
o There is (//Z, §), such that:
e g :Aﬂ2g.
o O/ = .7 infinity of (A, g).
° Q‘y :0anddQ|y #0.
o int.d = .M.
o (Ey) is conformally invariant: If ® solution to (E,) then ® = Q°®
is solution to (Ey).
e Cauchy problem: Defining the trace operators.

o Energy estimates: The trace operators are one-to-one.
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Conformal Scattering: Main Ingredients

o Conformal rescaling: (.#,g) and an equation (E,) on /.
o There is (//Z, §), such that:
e g :Aﬂ2g.
o O/ = .7 infinity of (A, g).
° Q‘y :0anddQ|y #0.
o int.d = .M.
o (Ey) is conformally invariant: If ® solution to (E,) then ® = Q°®
is solution to (Ey).
Cauchy problem: Defining the trace operators.

o Energy estimates: The trace operators are one-to-one.

Se
X I

Goursat problem: The trace operators are onto.
Scattering operator: Isometry using the trace operators.
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A Bit of History

Conformal Scattering

e 1960 F.G. Friedlander: introduces the radiation fields.
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A Bit of History

Conformal Scattering

1960 F.G. Friedlander: introduces the radiation fields.
1964 R. Penrose: conformal compactification, points at infinity.
1967 P.D. Laz and S.R. Phillips: Lax-Phillips scattering theory.

1980 F.G. Friedlander: “Radiation fields and hyperbolic
scattering theory”, Goursat problem.

® 6 o6 o
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Conformal Scattering

1960 F.G. Friedlander: introduces the radiation fields.
1964 R. Penrose: conformal compactification, points at infinity.
1967 P.D. Laz and S.R. Phillips: Lax-Phillips scattering theory.

1980 F.G. Friedlander: “Radiation fields and hyperbolic
scattering theory”, Goursat problem.

1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea
further but exclusively on static backgrounds.

® 6 o6 o
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1960 F.G. Friedlander: introduces the radiation fields.
1964 R. Penrose: conformal compactification, points at infinity.
1967 P.D. Laz and S.R. Phillips: Lax-Phillips scattering theory.

1980 F.G. Friedlander: “Radiation fields and hyperbolic
scattering theory”, Goursat problem.

1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea
further but exclusively on static backgrounds.

1990 L. Hérmander: solved the Goursat problem for a wave
equation on generic null hypersurfaces in a spatially compact
spacetime.
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A Bit of History

Conformal Scattering

® 6 o6 o

1960 F.G. Friedlander: introduces the radiation fields.

1964 R. Penrose: conformal compactification, points at infinity.
1967 P.D. Laz and S.R. Phillips: Lax-Phillips scattering theory.
1980 F.G. Friedlander: “Radiation fields and hyperbolic
scattering theory”, Goursat problem.

1989-1990 J.C. Baez, I.E. Segal, Zhou Z.F: Pushed the idea
further but exclusively on static backgrounds.

1990 L. Hérmander: solved the Goursat problem for a wave
equation on generic null hypersurfaces in a spatially compact
spacetime.

2004 L. Mason and J.P. Nicolas: scalar waves, Dirac, and
Maxwell on generically non-stationary asymptotically simple
spacetimes.

2012 J. Joudioux: conformal scattering theory for a non-linear
wave equation on non-stationary backgrounds.

2013 J.P. Nicolas: conformal scattering theory for the wave
equation on Schwarzschild black holes.
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New Results

o

Photon Sphere: Finding the necessary and sufficient conditions
on the parameters of the RNdS metric to have three horizons,
and locating the photon sphere.

Decay: Proving pointwise decay in time and uniform decay of
the energy flux across achronal hypersurfaces for Maxwell fields
on the static exterior region of the RNdS black hole.

Conformal Scattering: Solving the Goursat Problem and
constructing a conformal scattering theory for the Maxwell fields
on the static exterior region of the RNdS black hole.

The decay and scattering results hold true for a larger class of
spherically symmetric spacetimes.
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Regions of RNdS

in the case of three horizons

RNdS spacetime: M = R;x]0, +00[, xS2,

1 2 .27 2 §
—r*dw® ; f —1—7+——Ar.
7 ===
Assuming that f has 3 distinct simple positive zeros, we have three
horizons at 1 < re < rs. (f(r;) =0)
e f>0o0n]0,r;

g = f(r)dt* —

] [ static interior region.
e f < 0on |ry,ryf: dynamic interior region.
e f >0 on |re,rs: static exterior region.
]

e f <0 on |rs,4oo[: dynamic exterior region.
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Regions of RNdS

in the case of three horizons

RNdS spacetime: M = R;x]0, +00[, xS2,

1 2 232 | 2M  Q? 2
mdr —ridw® f(r)zl—T—l—ﬁ—Ar.
Assuming that f has 3 distinct simple positive zeros, we have three
horizons at 7 < re < r3. (f(r;) =0)

g = f(r)dt* —

@ f>0on|0,r[: static interior region.

e f <0on |ry,ry[: dynamic interior region.

° [ f >0 on |re,rs] : static exterior region. ] (Photon sphere)

e f < 0on |rs,+oo[: dynamic exterior region.

N = Rt X]’I‘g, 7“3[7-><83,
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One Photon Sphere

Set,
R=— : A=1-12Q%\

mi=R\J1-VA ; my=RJy1+VA

M1:m1—2Am% ; M2:m2—2Amg.

o
-

Proposition (Three Positive Zeros and One Photon Sphere)

The horizon function f has exactly three positive distinct simple zeros
if and only if

Q#£0 and O<A<12Q2 and M, < M < M, .

In this case, there is exactly one photon sphere, and it is located
between the two largest zeros of f.
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Photon Sphere

Numerical example

Figure: @ =1, M = 1.5, A =0.01. The function f is the continuous curve

and the radial acceleration f(27'f' — =1 f) is the doted curve. The vertical
line (r=4) is the photon sphere.
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Photon Sphere

Numerical example
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Figure: @ =1, M = 1.5, A =0.01. The function f is the continuous curve
and the radial acceleration f(27 f — 71 f) is the doted curve. The vertical
line (r=4) is the photon sphere.

ng for Maxwell Fields on RNdS

Mokdad




RNdS manifold

in (t,7,w)-coordinates

S I O O L O O O O
U /i U /i\ U Ji\ U
f\ 3 5

r

T r=7rT2 rT=7T3

Figure:  The RNdS manifold with the radial null geodesics (integral curves
of YT = fflﬁt =+ 0r). It admits 16 time-orientations.
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Regge-Wheeler Coordinate:r,-coordinate

Figure: The hypersurfaces r = r; (indicated in parenthesis) are off the chart
since they are at infinity in r..
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Eddington-Finkelstein Extensions

Advanced and retarded time coordinate

The Eddington-Finkelstein coordinates uy =t + r,.
The metric in these coordinates:

g = f(r)dus? T 2dusdr — r2dw?

When 8, is future-oriented we denote it by M3, and M3 in the other
case.

IV

A /
: / r
r=r

~ o/
: 27
: Ay
=0 r::rl 7‘::7‘2

Figure: M5 and the integral curves of Y.
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Eddington-Finkelstein Extensions

Double null coordinates

Using both u, the metric is: g = f(r)du_du, — r?dw?.

m 4" o v oy "
- U Sy Uy 7"{; t ¢
—_— — pam— //§ UuU_
— Ay : " &
1 I
T T S SR CCT
N RN S b (VA
+ 4 U— —t Uy )f; f v
@) § L A e — L
> | o N s \\
. | | o AR
R : - A -
U, U, Us U,

Figure: In (1), we have time-orientation given by 0, and 0., while in (2) by
—0¢ and —0,. Incoming and outgoing radial null geodesics are integral
curves of YT = 2f_1aui and of =Y T (shown in gray). The horizons
+.F (dotted lines) are asymptotic to the charts.
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Eddington-Finkelstein Extensions

Double null coordinates
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Kruskal-Szekeres Extensions

Bifuraction spheres

A natural choice of coordinates to glue the charts is the
Kruskal-Szekeres coordinates of the form:

Ui = ﬂieaiui .

r=0 AU, AU, S IE N

Uiy :
UES| :
Usyp 1 Ugy

.......................................................... >
D+3

1 L
JR ANRCES S D AN N N, L AN —
Uity Uty X
\}
r:l)// /A & ‘-
IC] KZ KS
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Tetrad Formalism

Maxwell Compacted Equations
o Null tetrad on N: “Stationary tetrad”

M=084+——0

L=0,+0,; N=0—-0; sin(6) 0> M
@ Spin-components of F' on the stationary tetrad:
o) =F(L,M) ;
P = % (V'F(L,N)+F (M,M)) ; (V = 52)
®_1=F(N,M)

r /Maxwell Compacted Equations

N®, = VM®,, Ndy = —M;®_,,
Ldy = M, 4, Lo_; = —VM®,,

where M; = M + cot(6) and M is its conjugate.
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Energies of the Maxwell Field

@ Divergence theorem:
1
/ (X2T) adie == / (VaXp — VX, )T?d4z .
au 2 Ju
@ Energy flux across a hypersurface S:

Ex[FI(S) = [

(X1T)*1dis = / T X 0% (rsJ d*z) .
S S

ns normal to S, 7g is transverse to S, such that g(ns,7s) = 1.
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Energies of the Maxwell Field

@ Divergence theorem:
1
/ (X2 adiz =2 / (VaXp — VpXo)T%d% .
au 2 Ju
o Energy flux across a hypersurface S:

Ex[FI(8) = [

(X2T) adlz = / T X nl(rsd diz) .
S S

e Energy: for X =T :=09,and S =%, := {t} xR, x 82,
— _ 1 2, 2f o 2 2 2
Er[F|(t) := Ep[F|(%) = 1 |P1 ] + ﬁ@o\ + Py |*dr.diw .
PO
o Conformal energy: for X = K := (t* +r2)0; + 2tr,0,, ,

Ex[F|(t) = —/Z u2+|<1>1|2+(ui+u3)£\¢0|2+u%|¢,1|2dr*d2w .
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Decay

Theorem (Uniform Decay)

Let tg > 0 be a real parameter. Let S be any achronal future oriented
smooth hypersurface, such that its union with Yo = {0} x R x 82 is
the boundary of an open submanifold of N', and such that on S,

t > |r«| + to. Then there is a constant C > 0 independent of

to, F, (t,r4,w), and S, such that

1 5
Er[F](S) <ty 2C (Z Ex[LEF)(0) + Z Eﬂﬁ@F](O)) .

k=0 k=0
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Maxwell Field on the Closure of N

Adapted tetrads: Outgoin and incoming tetrads

e N the closure of the static exterior region N in M*.

s I s

o Stationary tetrad: {L, N, M, M} can be extended to N but it will
be singular (basis) on the horizons.

o Outgoing tetrad: {L = f~'L =0,,N =28, — f0,,M,M}is a
regular basis on M. (but not on 7% and 7).

e Incoming tetrad: {L, N = f1N, M, M} is a basis on M.
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Maxwell Field on the Closure of N

Compacted equations

@ Spin components of F' in the outgoing tetrad:

&, = F(i,M)
by = %(V*lF(E,NHF(M,M))
&, = F(N,II)

where V = f~1V =2,
o Maxwell compacted equations in the outgoing tetrad take the
following form:

Nb, = VM®,+ f/d,
Loy, = M;dy,

N®y = —-M;P_q,
Ld_, = —VM®,.

o Similarly for the incoming tetrad.
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Function Spaces

@ The energy flux across the horizons:

1 .
Er[F|(A7) = Z/%+ T NON(LJ d*z) /|q> 12du_ d*w
3

R, xS82

1 - 1
Er[F)(5") = 1/ T LOLY(N Jdz) = = / |®1 |2duyd?w ,
+
7 Ry, xS?
o The energy spaces on =: the completions of C3°(#F) for

1

2 — —
012 =7

1
2 2 . 2 _ 2 2
/}fi |p|“dusAd®w ; H(bll,f; *:FZ /%i |p|“dusAd w
T2 Jl3

o On 7+ .= 55 U At
H* the completions of C§°(H5) x C&°(H5) for

10, 832 = 9152 + o115+
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Energy Identity up to i*

o Consider

Si(s):{(t,r*,w)eRxRx82+; t==+v1+724+s; £5>0}.

A A

@ By the divergence theorem,
Er[F)(S0) = Er[F|(" (s)) + Er[FI(A5" (5)) + Er[F)(S*(5))-
@ Thanks to the uniform decay,

lim Er[F|(St(s)) =0,

s——+o00

and
Er[F)(S0) = Er[F)(A57) + BEr[F|(A").
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Trace Operators

@ The future and past trace operators:

TH U — H*

TH(@) = (Pt |t s Pt ),

@ By the energy identity,

el = 1T (D)0

= T injective and have closed ranges.

M. Mokdad Conformal Scattering for Maxwell Fields on RNdS



Goursat Problem

Set-up, simplifications, and strategy

@ The Problem: Prove dense range.
For (¢4, ¢_) € C5° (H57) x C§° (H5T) find ® € C(Ry; H) such
that
(1l Pral st ) = (9, 05) -
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Goursat Problem

Set-up, simplifications, and strategy

@ The Problem: Prove dense range.
For (¢4, ¢_) € C5° (H57) x C§° (H5T) find ® € C(Ry; H) such
that
(1l Pral st ) = (9, 05) -

e Simplifications:

o Future and past are analogous.
o By linearity and analogy of structure:
(0,6-) € C5° (A7) x C&° (A5T).
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Goursat Problem

Set-up, simplifications, and strategy

@ The Problem: Prove dense range.
For (¢4, ¢_) € C5° (H57) x C§° (H5T) find ® € C(Ry; H) such
that
(1l Pral st ) = (9, 05) -

e Simplifications:
o Future and past are analogous.
o By linearity and analogy of structure:
(0.6-) € C&° (A7) x C&° (A57).
e The strategy: use Hérmander’s results about the characteristic
Cauchy problem:
@ Counvert the initial-value problem from Maxwell’s equations to
wave equations.
© Put the problem in a framework for which Hérmander’s results
apply.
@ Reinterpret the solution of the wave equations as a Maxwell field.
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Solving the Goursat Problem

Theorem (Goursat Problem)

For ¢_ € C§° (%‘L)_ there is a unique smooth, finite energy, Mazwell

field F defined on N, with ® = (91, Py, P_1) its spin components in
the stationary tetrad, such that

((I)1|jf2+7(1)71|%+) = (0,¢7)

Q,/“The Scattering Operator
| S—THo (@)U — Ut
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Wave equations

Goursat Problem

/Wave equations
(®1,Pg,P_1) be the spin components of a smooth

Let & =
Maxwell field in the outgoing tetrad, then
A Wi VM 0 &,
Wo = 0 Woo 0 D =0,
0 —V/M W(),l (I)—l
where the diagonal entries are W11 = LNy — VMM, , Wy :=
LN — VMM Wo_, :=LN —VMM, ,and Ny = N — f'.

The indices of sz indicate their expressions: W;; = L I —V J with

. 1 if J=MDM;;
. 0 ifI=N; ) . _ _
= . 7=40 if J=MM = MM ;
1 1fI:N17 . —
-1 if J=MM; .

Conformal Scattering for Maxwell Fields on RNdS

M. Mokdad




Wave equations

Goursat Problem

/Wave equations

Let & = ((i)l,tbo,(l),l) be the spin components of a smooth
Maxwell field in the outgoing tetrad, then

Wiu -V'M 0 &,
Wé = 0 W 0 o, | =0.
0 —V/M Wofl (I)—l

’/Proof

Ni®, — VMdy =: E; ;

L®y — M &, =: By ;
N®y+ M1®  =: E3;
LO_ +VMdy=: Ey ;
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Wave equations

Goursat Problem

/Wave equations

Let & = ((i)l,tbo,(l),l) be the spin components of a smooth
Maxwell field in the outgoing tetrad, then

Wiu -V'M 0 &,
Wé = 0 W 0 o, | =0.
0 —V/M Wofl (I)—l

’/Proof

Ni®y — VM®y =: Ey; LE, +VME, =Wy — V' M®, ;
L®)— M &) =: E;; NiEy+ MiEy = Wo®y ;

N®y + M 94 =: E3; LE; — MiEy = Woo®o ;

LO_ +VM®y=:E;; NiEj—VMEs=Wyo_1®_1—V'M,.
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Goursat Problem

Rienterpreting the solution as a Maxwell field

Let W@ = (Ql,Qo,Qfl)Z

lell — VMQO = WOlEl + fV/MEQ 3
LQy — VM Q= WioEs ;
NiQo + MiQ_y = WooFs ;
L +VMQy=W,_1E,—V'ME; .
where
WOI = [A/N—VMMl ]
Wm = I:Nl — VMlM ;
Wi_y = LN, — VMM .
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Goursat Data for the Wave System

The Constraints

Since NV is tangent to jff;r, equations Iy =0 and E5 = 0 are
constraint equations on the null horizon:

N1l @1l e = Vra)M®ol e =0,

N|7203+(I)0|%+ + Mlq),1|‘}%+ =0.

Therefore, for ¢_ € C§° (/") we define ¢o, ¢ € C= (H5")
consecutively by the constraints initial-value problems in %‘E;F:

20u_¢0 = Mig- (205 — f'(rs))dy = V(rs) Moy
bols, =0 o4ls, =0

where S, is any sphere of %" in the future of the support of ¢_.

The triplet ¢ = (¢4, $o, #—) is the Goursat data for the wave
equations. Note that ¢ vanishes between i and the support of ¢_.
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Transferring to Hormander’s Framework
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