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Scalar-field theory in General Relativity

Let (M"*1 h), n > 3, be a Lorentzian manifold, ¥ € C>(M"!) a scalar-field and
V € C*(R) a potential.

(M"™, h, W) is said to be a a space-time if it satisfies the following Einstein equations:

Ric(h); — %R(h)h,-j — VWYY (%\vwﬁ + V(\IJ)) hy,

(E)
dv
OWV =
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Scalar-field theory in General Relativity

Let (M"*1 h), n > 3, be a Lorentzian manifold, ¥ € C>(M"!) a scalar-field and
V € C*°(R) a potential.

(M"™, h, W) is said to be a a space-time if it satisfies the following Einstein equations:

. 1 1
Ric(h); — ER(h)hij =V,¥V;V — (E\V\Uﬁ + V(\IJ)) hij,
(E)
dv
OpW = —.
" qw
Relevant physical cases:
@ Vacuum case with no cosmological constant: ¥ =0, V =0.
@ Vacuum case with positive cosmological constant: ¥ =0, V=A > 0.
o Klein-Gordon fields: V(W) =Im¥* m>0.

Bruno Premoselli (ULB) 10 Avril 2017 2 /20



The Evolution Problem

Assume globally hyperbolic spacetime: M™™ = M" x R with (M", hjmn) Riemannian.
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The Evolution Problem

Assume globally hyperbolic spacetime: M™™ = M" x R with (M", hjmn) Riemannian.

Notion of initial data sets on M":

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

(M" x R, h, V) solves (E) if and only if (g, K., i) solves in M" the contraint system:
R(&) + trgR — |IRIE = 7 + V93 +2V (D), -
6(trgk) - ding = —ﬁ'@?ﬁ ;

In particular: any solution ~(g—,~k, ¥, 7) of (C) evolves into a solution of the Einstein
equations. A solution (&, K, v, 7) is therefore called an initial data set.
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The Evolution Problem

Assume globally hyperbolic spacetime: M™™ = M" x R with (M", hjmn) Riemannian.
Notion of initial data sets on M":

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

(M" x R, h, V) solves (E) if and only if (g, K., i) solves in M" the contraint system:

{ R(E) + tmR? = |IKI = 7 + 190 +2V(D) o

6((’;[‘@/‘%) — divgK = —ﬁ'@?ﬁ ]

In particular: any solution ~(g,j%, ¥, 7) of (C) evolves into a solution of the Einstein
equations. A solution (&, K, v, 7) is therefore called an initial data set.

Here we have let:
@ g = hyr and V is the Levi-Civita connection for & in M",
o K: second fundamental form of the embedding M" ¢ M" x R,
° )= Viy» and 7 = (N - V). N is the future-directed unit normal to M".
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The Evolution Problem

Assume globally hyperbolic spacetime: M™™ = M" x R with (M", hjmn) Riemannian.

Notion of initial data sets on M":

Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

(M" x R, h, V) solves (E) if and only if (g, K., i) solves in M" the contraint system:
R(&) + trsK* — ||K[Z = 7° + |V9[; +2V() , ©
6((’;[‘5/‘%) — divgK = —ﬁ'@?ﬂ ]

In particular: any solution ~(g,j%, ¥, 7) of (C) evolves into a solution of the Einstein

equations. A solution (&, K, v, 7) is therefore called an initial data set.

Here we have let:
@ g = hyr and V is the Levi-Civita connection for & in M",
o K: second fundamental form of the embedding M" ¢ M" x R,
° )= Viy» and 7 = (N - V). N is the future-directed unit normal to M".

System (C) has n(n+ 1) 4 2 unknowns (&, K, ¢, %) for n+ 1 equations.
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The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

R() + trzK* —[|K|[z = 7 +|V{Iz +2V()) ,
V(trgK) — divgK = -7V .

Idea: look for solutions depending on n+ 1 parameters to overcome the
underdetermination.
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The conformal method (Lichnerowicz, Choquet-Bruhat, York)
Goal: produce solution of the constraint equations:

R() + trzK* —[|K|[z = 7 +|V{Iz +2V()) ,
V(trgK) — divgK = -7V .

Idea: look for solutions depending on n+ 1 parameters to overcome the
underdetermination.

Conformal parametrization: look for the unknown initial data set (g, K, v, ) as:
(8. R.0.7)= (' 2g. Zur2g +u™? (0 + LeW) w737, (+)

where u € C*°(M), u >0, W € T*M and LW is the conformal Killing operator.
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The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:
R() + trzK* —[|K|[z = 7 +|V{Iz +2V()) ,
V(trgK) — divgK = -7V .
Idea: look for solutions depending on n + 1 parameters to overcome the
underdetermination.

Conformal parametrization: look for the unknown initial data set (g, K, v, ) as:
~ o 7 ~ _4 T _4_ _2 _2n
(8. R.0.7)= (' 2g. Zur2g +u™? (0 + LeW) w737, (+)
where u € C*°(M), u >0, W € T*M and LW is the conformal Killing operator.

These data depend on n+ 1 parameters (u, W) and on given physics data (¢, 7, 7,0, V)
where:

o V is the potential of the scalar-field,

@ 9, are scalar-field data,

@ T is a mean curvature,

o, is a (2,0)-symmetric tensor field with trgo =0 and divgo =0 (“TT tensor”).
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The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if
(u, W) solve the Einstein-Lichnerowicz constraint system:

w2+ o+ LgW|E

2% -1
Agu + hu = fu + U2*+1 ; (CC)

R W= X+Y.
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The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if
(u, W) solve the Einstein-Lichnerowicz constraint system:

w2+ o+ LgW|E

2% -1
Agu + hu = fu + U2*+1 ; (CC)

R W= X+Y.

Here: 2° = 2% (u, W) are smooth, u > 0. Also Ay = —divg(V:), &g = —divg (V).
Lz W is the conformal Killing derivative:

2 .
L Wi=W;+W,;— ;d/ng'gijv

and ZgW = —divg (Lg W) is the Lamé operator.
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The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if
(u, W) solve the Einstein-Lichnerowicz constraint system:

w2+ o+ LgW|E

2% -1
Agu + hu = fu + U2*+1 ; (CC)

R W= X+Y.

Here: 2* = 2% (u, W) are smooth, u > 0. Also A, = —divg(V-), Ap = —divg(V-).

n—2"'
Lz W is the conformal Killing derivative:

2 .
L Wi=W;+W,;— ;d/ng'gijv

and ZgW = —divg (Lg W) is the Lamé operator.

In the physical case, the coefficients (h, f, 7,0, X, Y) depend on the choice of the given
physics data (¢, 7, 7,0, V) of the conformal method.

Our goal: understand the blow-up behavior of the solutions of (CC).
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Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients
(h, f,m, X, Y,o) will satisfy the assumptions of the focusing case:

f>0, Ag+ h  coercive, and 7 Z0.

Bruno Premoselli (ULB) 10 Avril 2017 6 /20



Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients
(h, f,m, X, Y,o) will satisfy the assumptions of the focusing case:

f>0, Ag+ h  coercive, and 7 Z0.

In the physical case, the coefficients are related to the physics data by:

_ n—2 2
h= m(sg —[Vlg),
f= 2\/(1/]) - "%17_2’

n—

X:— 1v7'7 Y:—ﬂ'vw

n
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Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients
(h, f,m, X, Y,o) will satisfy the assumptions of the focusing case:

f>0, Ag+ h  coercive, and 7 Z0.

In the physical case, the coefficients are related to the physics data by:

_ n—2 2
h= m(sg —[Vlg),
f= 2\/(1/]) - "%17_2,

n—

X:— 1V7'7 Y:—Trvw

n

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen).
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Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients
(h, f,m, X, Y, o) will satisfy the assumptions of the focusing case:

f>0, Ag+ h  coercive, and 7 Z0.

In the physical case, the coefficients are related to the physics data by:

o n—2 2
h= m(sg —[Vlg),
f:2V(1/J) - n; 17-27

n—1

X=- V1, Y =—-nV.

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen).

In the following we will investigate the system for general focusing coefficients
(h, f,m, X, Y,0), not only the physical ones.
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Criticality of the system and defects of compactness

2 2
«_1 T H o+ LW|

Agu-‘v-hUqu2 +nga

— .

KW =0 X+Y.

The critical nonlinearity u?" 71, with the “mean” focusing sign f > 0, implies that
concentration phenomena (or blow-up) are likely to occur.
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Criticality of the system and defects of compactness

|+ LgWE

yr+1 ?

Agu+ hu = fu? 4

RW=u"X+Y.

The critical nonlinearity u?" 71, with the “mean” focusing sign f > 0, implies that
concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For A > 0 and xo € R", n > 3:

n—2
2
)\ 2% 1 . n
By xo(x) = Ny el s DeBrao =By o0 IR Byl = K
n(n—2)
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Criticality of the system and defects of compactness

2 2
. ™+ o+ LW
Agu+ hu = fu? 1+%,
KW= X+Y.

The critical nonlinearity u?" 71, with the “mean” focusing sign f > 0, implies that

concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For A > 0 and xo € R", n > 3:

n—2
2
)\ 2% 1 . n
By xo(x) = Ny el s DeBrao =By o0 IR Byl = K
n(n—2)

Similar explosive phenomena in C°(M) are obtained for critical nonlinear elliptic equations
or systems (Druet-Hebey '04, Robert-Vétois '14, Pistoia-Vaira '15, Vétois-Thizy '16...).

Perturbations of the coefficients increase the chance of appearance of defects of
compactness.
Example: the Yamabe equation (Brendle '08, Esposito-Pistoia-Vétois '14).
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Criticality of the system and defects of compactness

2 2
. ™+ o+ LW
Agu+ hu = fu? 1+%,
KW= X+Y.

The critical nonlinearity u?" 71, with the “mean” focusing sign f > 0, implies that

concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For A > 0 and xo € R", n > 3:

n—2
2
)\ 2% 1 . n
By xo(x) = Ny el s DeBrao =By o0 IR Byl = K
n(n—2)

Similar explosive phenomena in C°(M) are obtained for critical nonlinear elliptic equations
or systems (Druet-Hebey '04, Robert-Vétois '14, Pistoia-Vaira '15, Vétois-Thizy '16...).

Perturbations of the coefficients increase the chance of appearance of defects of
compactness.
Example: the Yamabe equation (Brendle '08, Esposito-Pistoia-Vétois '14).

Natural Question: when do these blow-up phenomena occur for the EL system?
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The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let (h,f,m,X,Y,0) € C3(M). The Einstein-Lichnerowicz system is said to be stable if,
for any sequence (hx, fi, Tk, Xk, Yk, ok )k converging to (h,f, 7, X, Y ) in C*(M) and for
any sequence (ux, W)k of solutions of:

2 2
21 | Tt |ok+ LeWilg
Aguk + heux = feuk + PR ;

ﬁ *
R gWi = u® Xic + Y,

there exists a solution (u, W) of (CC) such that (ux, Wi) — (u, W) in C*(M) (up to a
subsequence and up to elements in the kernel of L,).
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The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition
Let (h,f,m,X,Y,0) € C3(M). The Einstein-Lichnerowicz system is said to be stable if,
for any sequence (hx, fi, Tk, Xk, Yk, ok )k converging to (h,f, 7, X, Y ) in C*(M) and for
any sequence (ux, W)k of solutions of:

S1, Tt lok+ [,ng|§

-
Aguk + heux = feuk + PR ;

ﬁ *
R gWi = u® Xic + Y,

there exists a solution (u, W) of (CC) such that (ux, Wi) — (u, W) in C*(M) (up to a
subsequence and up to elements in the kernel of L,).

The system will be said to be unstable... if it is not stable. (Non)-Compactness is defined
similarly for constant perturbations of the coefficients.
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The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let (h,f,m,X,Y,0) € C3(M). The Einstein-Lichnerowicz system is said to be stable if,
for any sequence (hx, fi, Tk, Xk, Yk, ok )k converging to (h,f, 7, X, Y ) in C*(M) and for
any sequence (ux, W)k of solutions of:

2 2
21 | Tt |ok+ LeWilg
Aguk + heux = feuk + PR ;

—> *
N gWi = u® Xi + Ya,

there exists a solution (u, W) of (CC) such that (ux, Wi) — (u, W) in C*(M) (up to a
subsequence and up to elements in the kernel of L,).

The system will be said to be unstable... if it is not stable. (Non)-Compactness is defined
similarly for constant perturbations of the coefficients.

The stability of an equation/system yields structural informations. Instability is a failure
of uniform (in the choice of the coefficients) a priori bounds for solutions.
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Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- & = = Aa R
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Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:
o If 3 < n <5 (Druet-P. '14, n =3, P. '15)

e If n> 6 and Vf and X have no common zero in M. Or, if they do, provided at
these zeroes there holds:

n—2 (0 =2)(n—4) Agf

h<4@—1)g 8(n—1) f

(0.1)

(P. '15)

It is a second-order compatibility condition between the geometric and physics data.
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Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:
o If 3 < n <5 (Druet-P. '14, n =3, P. '15)

e If n> 6 and Vf and X have no common zero in M. Or, if they do, provided at
these zeroes there holds:

n—2 (n—=2)(n—4) Agf
4n—1)"¢  8(n—1) £

h < (0.1)

(P. '15)
It is a second-order compatibility condition between the geometric and physics data.

For the physical case of the Einstein-scalar field setting, these conditions ensure that
stability holds when the scalar-field ¢) and the mean curvature 7 have no common critical
point in M.
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Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

o If 3 < n <5 (Druet-P. '14, n =3, P. '15)

e If n> 6 and Vf and X have no common zero in M. Or, if they do, provided at
these zeroes there holds:

n—2 (n=2)(n—4) Dgf

4n—1)"% 8(n—1) f (0.1)

h <

(P. '15)
It is a second-order compatibility condition between the geometric and physics data.

For the physical case of the Einstein-scalar field setting, these conditions ensure that
stability holds when the scalar-field ¢) and the mean curvature 7 have no common critical

point in M.

What about the sharpness of these conditions in high dimensions: can blow-up
phenomena happen in high dimensions?
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Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions n > 6, P., '16)

%
Let (M, g) be a closed Riemannian manifold of dimension n > 6, such that A\, has no
kernel. There exist coefficients (h, f, 7,0, X, Y) of class C?, satisfying the assumptions of
the focusing case and X # 0 such that the Einstein-Lichnerowicz system:

- |£gW+0'|§+7r2

— 5,2
Agu+ hu = fu s (0.2)

— x
AW =1 X+Y
possesses a blowing-up sequence of solutions (ux, Wi )k, that is: ||u||ec(my — +oo and

| £¢ Wil|Loo(my — 400 as k — +-o0o. Here the uy are positive, have one concentration
point and have a non-zero limit profile.
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Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions n > 6, P., '16)

_>
Let (M, g) be a closed Riemannian manifold of dimension n > 6, such that A\, has no
kernel. There exist coefficients (h, f, 7,0, X, Y) of class C?, satisfying the assumptions of
the focusing case and X # 0 such that the Einstein-Lichnerowicz system:

s |£gW+U|§ + 72

Agu+ hu = fu e (0.2)

— x
AW =1 X+Y
possesses a blowing-up sequence of solutions (ux, Wi )k, that is: ||u||ec(my — +oo and

| £¢ Wil|Loo(my — 400 as k — +-o0o. Here the uy are positive, have one concentration
point and have a non-zero limit profile.

In particular: these coefficients (h, f, 7,0, X, Y) satisfy

n—2 (n=2)(n—4) Agf

hZ dn—D> T sn-1) f

somewhere.
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Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions n > 6, P., '16)

_>
Let (M, g) be a closed Riemannian manifold of dimension n > 6, such that A\, has no
kernel. There exist coefficients (h, f, 7,0, X, Y) of class C?, satisfying the assumptions of
the focusing case and X # 0 such that the Einstein-Lichnerowicz system:

- |£gW+0'|z+7r2

— 5,2
Agu+ hu = fu s (0.2)

— x
AW =1 X+Y
possesses a blowing-up sequence of solutions (ux, Wi )k, that is: ||u||ec(my — +oo and

| £¢ Wil|Loo(my — 400 as k — +-o0o. Here the uy are positive, have one concentration
point and have a non-zero limit profile.

In particular: these coefficients (h, f, 7,0, X, Y) satisfy

n—2 (n=2)(n—4) Agf

> .
h S 8(n—1) f somewhere

Surprising consequence: the Einstein-Lichnerowicz system has an infinite number of
(blowing-up) solutions in high dimensions!
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Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of
EL, what can | say about it? It gives informations about: the pointwise blow-up behavior
of sequences of solutions, the localisation of concentration points, the mutual
interactions between different defects of compactness,...
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Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of
EL, what can | say about it? It gives informations about: the pointwise blow-up behavior
of sequences of solutions, the localisation of concentration points, the mutual
interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence (uk, Wi) of the E-L
system satisfies:

ux = By + O(Bk) in CO
in the neighbourhood of a concentration point, where By is a given bubbling profile
modeled on the standard bubble. And, as a consequence, that at a concentration point

Xo there holds:
Vf(Xo) = X(Xo) = 0.
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Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of
EL, what can | say about it? It gives informations about: the pointwise blow-up behavior
of sequences of solutions, the localisation of concentration points, the mutual
interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence (uk, Wi) of the E-L
system satisfies:

ux = By + O(Bk) in CO
in the neighbourhood of a concentration point, where By is a given bubbling profile
modeled on the standard bubble. And, as a consequence, that at a concentration point

Xo there holds:
Vf(Xo) = X(Xo) = 0.

Approach developed by: Li, Zhu, Druet, Schoen, Marques, Zhang, Khuri, Hebey, Robert.
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Two dual approaches in the blow-up analysis of critical elliptic equations Il

2) The Lyapounov-Schmidt approach, or H-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

Utk = Brex + to + otk

uo > 0 weak limit, By ¢ « is a bubbling profile and ;¢ x is small in H*(M).

Bruno Premoselli (ULB)
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Two dual approaches in the blow-up analysis of critical elliptic equations Il

2) The Lyapounov-Schmidt approach, or H-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:
Utek = Bre i + o + pt.e ks

uo > 0 weak limit, By ¢ « is a bubbling profile and ;¢ x is small in H*(M). The solution
depends on (n+ 1) parameters to be chosen. Reduces the problem to finding critical
points of an explicit function of (t,&).
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Two dual approaches in the blow-up analysis of critical elliptic equations Il

2) The Lyapounov-Schmidt approach, or H-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:
Utk = Brek + to + prek,

uo > 0 weak limit, By ¢ « is a bubbling profile and ;¢ x is small in H*(M). The solution
depends on (n+ 1) parameters to be chosen. Reduces the problem to finding critical
points of an explicit function of (t, ).

Example: to solve Agu+ hu = u? 71, find Ug ¢k critical point of the energy. Reduces to
find (t,£) critical point of:

1 1 *
(t, &) — 5/ |VBtexl® + hBE e cdvg — 27/ Bledvg
M M
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Two dual approaches in the blow-up analysis of critical elliptic equations Il

2) The Lyapounov-Schmidt approach, or H-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:
Utk = Brek + to + prek,

uo > 0 weak limit, By ¢ « is a bubbling profile and ;¢ x is small in H*(M). The solution
depends on (n+ 1) parameters to be chosen. Reduces the problem to finding critical
points of an explicit function of (t, ).

Example: to solve Agu+ hu = u? 71, find Ug ¢k critical point of the energy. Reduces to
find (t,£) critical point of:

1 1 *
(t, &) — 5/ |VBtexl® + hBE e cdvg — 27/ Bledvg
M M

The method implicitly relies on the informations provided by the a priori techniques.
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Two dual approaches in the blow-up analysis of critical elliptic equations Il

2) The Lyapounov-Schmidt approach, or H-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:
Utk = Brek + to + prek,

uo > 0 weak limit, By ¢ « is a bubbling profile and ;¢ x is small in H*(M). The solution
depends on (n+ 1) parameters to be chosen. Reduces the problem to finding critical
points of an explicit function of (t, ).

Example: to solve Agu+ hu = u? 71, find Ug ¢k critical point of the energy. Reduces to
find (t,£) critical point of:

1 1 *
(t, &) — 5/ |VBtexl® + hBE e cdvg — 27/ Bledvg
M M

The method implicitly relies on the informations provided by the a priori techniques.

Developed by Wei, Rey, Del Pino, Pacard (over the last 15 years)
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Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

™ o+ LWE

2" -1
Agu+ hu = fu + i1 ,

KW= X+Y
having the following form:

Ute e = Brek + to + @r.e k-

Here: up > 0 is a weak limit, B¢ « is a standard bubble and ¢ ¢ « is small.

Bruno Premoselli (ULB) 10 Avril 2017 13 / 20



Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

™ o+ LWE

2" -1
Agu+ hu = fu + i1 ,

KW= X+Y
having the following form:
Utg.k = Bk + to + pr.e k-
Here: up > 0 is a weak limit, B¢ « is a standard bubble and ¢ ¢ « is small.

Problem: the usual constructive method in H*(M) does not apply here: ©; ¢« cannot be
chosen small in H*(M) !
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Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

™ o+ LWE

Ngu+hu=fu "+ T ;

KW= X+Y
having the following form:
Utg.k = Bk + to + pr.e k-
Here: up > 0 is a weak limit, B¢ « is a standard bubble and ¢ ¢ « is small.

Problem: the usual constructive method in H*(M) does not apply here: ©; ¢« cannot be
chosen small in H*(M) !

The system is strongly coupled (X # 0) and the vector equation is supercritical in the
natural energy space H*(M): the system is non-variational and ill-posed in H*(M). The
system therefore exhibits a double (super-)criticality that cannot be handled with
standard constructive energy methods.
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Solution: a CO constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis
techniques with the standard H reduction method to perform the ping-pong method.
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Solution: a C constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis
techniques with the standard H* reduction method to perform the ping-pong method.

Look again for ux under the form:

Ute e = Bre + to + prek,
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Solution: a C constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis
techniques with the standard H* reduction method to perform the ping-pong method.

Look again for ux under the form:
Ur ek = Bre k + o + 01k,

with a remainder small in a C°(M) sense, with explicit pointwise bounds depending on
the ansatz of the solution:

l@rek| < ek (Brek + o), (0.3)

where e, — 0 and is independent of t and &.
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Solution: a C constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis
techniques with the standard H' reduction method to perform the ping-pong method.

Look again for ux under the form:

Utek = Beek + Uo + Qe k,

with a remainder small in a C°(M) sense, with explicit pointwise bounds depending on
the ansatz of the solution:

|ot,ek] < ek (Beek + uo), (0.3)

where e — 0 and is independent of t and &.

Our solution depends on (n+ 1) parameters (t,&) — just like the standard bubbling
profiles.

Goal: find, for every k, a value (tx, &k)« of the parameters and a suitable remainder
ek (small in CO(M)) for which wy, ¢, « is indeed a solution!
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Sketch of the proof |

The proof is a fixed-point (“ping-pong”’) method in 1 4+ 3 main steps:
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Sketch of the proof |
The proof is a fixed-point (“ping-pong”’) method in 1 4+ 3 main steps:
Step 0: Choose the following zeroth-order approximation:

dg, (&, x)) (tp) =

Ik

2’
((tﬂk)z + ,,(2(5)2) A, & X)z) ’

standard bubble

Brex(x) = Ne(x)- X(

conformal correction + cutoff
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Sketch of the proof |

The proof is a fixed-point (“ping-pong”’) method in 1 4+ 3 main steps:

Step 0: Choose the following zeroth-order approximation:

Btygyk(x) = /\g(x) % (dgg(g, X)) (t#k)%

Ik

2’
((tﬂk)z + ,,(Z(E)z) A, & X)z) ’

standard bubble

conformal correction + cutoff

Choose ¢ satisfying |p| < ek (B« + uo) and consider the only solution of:

— *
NgWiek = (Brew +uo+9)> X+ Y.
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Sketch of the proof |

The proof is a fixed-point (“ping-pong”) method in 1 4+ 3 main steps:

Step 0: Choose the following zeroth-order approximation:

Breal) = Aclx) x (dgﬁ (€. X)) ()%

Ik

2’
((tﬂk)z + ,,(fn(f)z) A, & X)z) ’

standard bubble

conformal correction + cutoff

Choose ¢ satisfying |p| < ek (B« + uo) and consider the only solution of:

— *
NeWeek = (Brex +uo+¢)> X+ Y.

By the choice of ¢ and X, we now have pointwise estimates on this W that blows-up:

n—1

IS
~ T close to &.

n—

(,ui + dgg (&X)Z) 2

|LgWhe i
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Sketch of the proof |

The proof is a fixed-point (“ping-pong”) method in 1 4+ 3 main steps:

Step 0: Choose the following zeroth-order approximation:

n—2
((tuk)z + n(fn(f)z) dgg (57 X)z) :

standard bubble

dgg(fﬁ‘)) (t//zk)%

Breal) = hel)x (4

conformal correction + cutoff

Choose ¢ satisfying |p| < ek (B« + uo) and consider the only solution of:

— *
N gWeek = (Brex + to + 90)2 X+Y.

By the choice of ¢ and X, we now have pointwise estimates on this W that blows-up:

n—1

IS
~ T close to &.

n—

(,ui + dgg (&X)Z) 2

|LgWhe i

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!
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Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

At hy— it 4 |Le Wo—|—cr|g—|—7r (|£th,g,k—|—a|§, - \[lgWo+a|§,)
¢ T (Br ek + o+ )>

+Z/\ (t,€,0) (Dg + h) Zi &

Done via a nonlinear fixed-point method in H* in the orthogonal of the kernel of the
linearized equation at By ¢ « (spanned by the Z; ). Here Lo Wi ¢ « is a coefficient.
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Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

Agu+ hu = fu

S |LeWo + o2 + 72 <|,cg Ween + 0|2 — |LeWo + a|§,)
T (Brek + o+ p)> ™

+D N(6,0) (Dg + h) Zjk.

Jj=0

Done via a nonlinear fixed-point method in H* in the orthogonal of the kernel of the
linearized equation at By ¢ « (spanned by the Z; ). Here Lo Wi ¢ « is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.
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Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

S |LeWo + o2 + 72 <|£g Ween + 0|2 — |LeWo + a|§,)

Ngu+ hu = fu ” T
y w2+ (Bee + o+ )

+D N(6,0) (Dg + h) Zjk.

Jj=0

Done via a nonlinear fixed-point method in H* in the orthogonal of the kernel of the
linearized equation at By ¢ « (spanned by the Z; ). Here Lo Wi ¢ « is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.

The solution is of the form Bt ¢« + o + tt.¢.« for a new remainder ¢ € H*(M),
orthogonal to the Zj .
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Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

Agu+ hu = fu

21 | [LgWotolz+ 7% ([LeWiek+ 0z — [LoWo + 03
+ u2*+1 (B 2% 41
¢ ekt Uo + ©)
+ z Ajl‘((taga SO) (Ag + h) Zj,k.
j=0

Done via a nonlinear fixed-point method in H* in the orthogonal of the kernel of the
linearized equation at By ¢ « (spanned by the Z; ). Here Lo Wi ¢ « is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.

The solution is of the form Bt ¢« + o + tt.¢.« for a new remainder ¢ € H*(M),
orthogonal to the Zj .

Goal: Get an (almost) solution of the system if ¢ = (.
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Sketch of the proof IlI: Fixed-point in C° 1

lo] < ek (Btex + o) -

(0.4)
o = = = DA

Step 2: The goal is now to fix-point ¢ — 9, in the set of C° functions satisfying:



Sketch of the proof IlI: Fixed-point in C° 1

Step 2: The goal is now to fix-point ¢ — 9, in the set of C° functions satisfying:

ol < ek (Brgk + to). (0.4)

Since v comes from an H' procedure it is not even clear that |1)| < ek (Bre.x + to). We
prove this by a priori analysis techniques.
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Sketch of the proof IlI: Fixed-point in C° 1

Step 2: The goal is now to fix-point ¢ — 9, in the set of C° functions satisfying:

lo| < ek (Brek + to) . (0.4)

Since 1 comes from an H* procedure it is not even clear that [1)| < ek (Brex + to). We
prove this by a priori analysis techniques.

This is again done in three steps:

Step a): Extend the a priori asymptotic techniques of the C°-theory of
Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with
explicit (and suitable) pointwise bounds.
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Sketch of the proof IlI: Fixed-point in C° 1

Step 2: The goal is now to fix-point ¢ — 9, in the set of C° functions satisfying:

lo| < ek (Brek + to) . (0.4)

Since 1 comes from an H* procedure it is not even clear that [1)| < ek (Brex + to). We
prove this by a priori analysis techniques.

This is again done in three steps:

Step a): Extend the a priori asymptotic techniques of the C°-theory of
Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with
explicit (and suitable) pointwise bounds.

This shows that
Y =0(Btex+ ) in CO(M).
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Sketch of the proof IlI: Fixed-point in C° 2

Step b): Quantify the o(1). This requires to obtain second-order estimates on v (again
blow-up arguments).
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Sketch of the proof IlI: Fixed-point in C° 2

Step b): Quantify the o(1). This requires to obtain second-order estimates on v (again
blow-up arguments). They are for instance, at finite distance from ¢&:

Mk+dg(§7><))

R I A R Y

2
— ¢ - 2 41nc Bk .
+Ih = cnSglleeedg (€, %) + dg (&, ) Loier | Be,e,i(x) + L+ dg (€, %)
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Sketch of the proof Ill: Fixed-point in C° 2

Step b): Quantify the o(1). This requires to obtain second-order estimates on v (again
blow-up arguments). They are for instance, at finite distance from ¢&:

2 + dg (&, x
9100 5 | if -+l Ve + 11~ 08 (145 960620 )

2
- - 2 4 125
Hlh — Sl de(€.x)7 + (€, %) n] Beal) + () -

We also prove that these estimates are uniform in t, £ and .
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Sketch of the proof Ill: Fixed-point in C° 2

Step b): Quantify the o(1). This requires to obtain second-order estimates on v (again
blow-up arguments). They are for instance, at finite distance from ¢&:

2 + dg (&, x
9100 5 | if -+l Ve + 11~ 08 (145 960620 )

2
_ - 2 4 Mk
Hlh — cnSelli da(€.3)° + dp(€.) 1] Beal) + () -

We also prove that these estimates are uniform in t, £ and .

Step c): Choose a suitable ¢, (according to the red term). And then show that ¢ — 1 is
a contraction. Relies on the second-order estimates.
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Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution
(ut,g,k, Wt,&,k) of:

2 2 n
«_q T4 |o+ LW ;
Agu+ hu = fu* ~t + ng + ZAJk(tv §) (Dg+h) Zre
j=0
— *
KW =v>X+Y,
where u; ¢ i writes as:
Utk = Brek + to + prek,

and [pe,e.k| < ek (Brek + Uo), where g is known.
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Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution
(Ut,gyk, Wt,.g,k) of:

vy TH|o+LWE N
guthu= a7 T LWl 5P (46 (8 4 1) Zisee
j=0

KW= X1,

where u; ¢ « writes as:
Urgk = Brg sk + o + prek,

< Ek(Bt,g’k + uo), where e is known.

and Qe ¢,k

To conclude: use the second-order estimates on ¢; ¢« to obtain an asymptotic expansion
of the A j(t, &) in C2.(R™™) as k — +oo. And we are left to annihilate (n + 1)
functions from R™* to R.
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Thank you for your attention.

=] = = E A
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Bonus: Explicit expressions of h and X.

The explicit expressions of h, f and X are the following:

f(x)~fo

h(x) = ( x)+Z7’kH< (expe, )~ 1(x)),

k>1

X(x) = Xo(x) + ZukTZ ((expee) (),

k>1

where 7, depends on p and on the dimension and if (M, g) is locally conformally flat or
not. Also, ux << Bk << 1 is another scale parameter.

The function H has a strict local maximum at 0 and |Z(0)]¢ > 0.
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Bonus: Explicit expressions of h and X.

The explicit expressions of h, f and X are the following:

f(x)~fo

h(x)=4(nn7 x)+ZnH< engo)_l(X))a

k>1

X() = Xo(x) + YT Z ((expe, ) ().

k>1

where 7, depends on p and on the dimension and if (M, g) is locally conformally flat or
not. Also, ux << Bk << 1 is another scale parameter.

The function H has a strict local maximum at 0 and |Z(0)]¢ > 0.

We did not jut play around with the values of the parameters so that everything fits well
in the end: the relations between the parameters are rigid and are given by the a priori
pointwise stability analysis.
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