
Non-compactness of initial data sets in high dimensions.

Seminar on Mathematical General Relativity
LJLL, Université Paris 6

Bruno Premoselli

Université Libre de Bruxelles

10 Avril 2017

Bruno Premoselli (ULB) 10 Avril 2017 1 / 20



Scalar-field theory in General Relativity

Let (Mn+1, h), n � 3, be a Lorentzian manifold,  2 C1(Mn+1) a scalar-field and
V 2 C1(R) a potential.

(Mn+1, h, ) is said to be a a space-time if it satisfies the following Einstein equations:
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Relevant physical cases:
Vacuum case with no cosmological constant:  ⌘ 0, V ⌘ 0.
Vacuum case with positive cosmological constant:  ⌘ 0, V ⌘ ⇤ > 0.
Klein-Gordon fields: V ( ) = 1

2

m 2, m > 0 .
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The Evolution Problem

Assume globally hyperbolic spacetime: Mn+1 = Mn ⇥ R with (Mn, h|Mn ) Riemannian.

Notion of initial data sets on Mn:

Theorem (Choquet-Bruhat ’52, Choquet-Bruhat-Geroch ’69)

(Mn ⇥ R, h, ) solves (E) if and only if (g̃ , K̃ ,  ̃, ⇡̃) solves in Mn the contraint system:
(
R(g̃) + tr

g̃

K̃ 2 � ||K̃ ||2
g̃

= ⇡̃2 + |r̃ ̃|2
g̃

+ 2V ( ̃) ,

r̃(tr
g̃

K̃)� div
g̃

K = �⇡̃r̃ ̃ ,
(C)

In particular: any solution (g̃ , K̃ ,  ̃, ⇡̃) of (C) evolves into a solution of the Einstein
equations. A solution (g̃ , K̃ ,  ̃, ⇡̃) is therefore called an initial data set.

Here we have let:
g̃ = h|Mn and r̃ is the Levi-Civita connection for g̃ in Mn,

K̃ : second fundamental form of the embedding Mn ⇢ Mn ⇥ R,
 ̃ =  |Mn and ⇡̃ = (N · )|Mn

. N is the future-directed unit normal to Mn.

System (C) has n(n + 1) + 2 unknowns (g̃ , K̃ ,  ̃, ⇡̃) for n + 1 equations.
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The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:
(
R(g̃) + tr

g̃

K̃ 2 � ||K̃ ||2
g̃

= ⇡̃2 + |r̃ ̃|2
g̃

+ 2V ( ̃) ,

r̃(tr
g̃

K̃)� div

g̃

K = �⇡̃r̃ ̃ .

Idea: look for solutions depending on n + 1 parameters to overcome the
underdetermination.

Conformal parametrization: look for the unknown initial data set (g̃ , K̃ ,  ̃, ⇡̃) as:
⇣
g̃ , K̃ ,  ̃, ⇡̃

⌘
=

⇣
u

4

n�2 g ,
⌧
n
u

4

n�2 g + u�2 (� + L
g

W ) , , u� 2n

n�2 ⇡
⌘
, (⇤)

where u 2 C1(M), u > 0, W 2 T ⇤M and L
g

W is the conformal Killing operator.

These data depend on n + 1 parameters (u,W ) and on given physics data ( ,⇡, ⌧,�,V )
where:

V is the potential of the scalar-field,
 ,⇡ are scalar-field data,
⌧ is a mean curvature,
�, is a (2, 0)-symmetric tensor field with tr

g

� = 0 and div

g

� = 0 (“TT tensor”).
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The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if
(u,W ) solve the Einstein-Lichnerowicz constraint system:

8
><

>:
4

g

u + hu = fu2

⇤�1 +
⇡2 + |� + L

g

W |2
g

u2

⇤+1

,

�!
4

g

W = u2

⇤
X + Y .

(CC)

Here: 2⇤ = 2n

n�2

, (u,W ) are smooth, u > 0. Also 4
g

= �div

g

(r·), 4
g

= �div

g

(r·).
L

g

W is the conformal Killing derivative:

L
g

W
ij

= W
i,j +W

j,i �
2
n
div

g

W · g
ij

,

and
�!
4

g

W = �div
g

(L
g

W ) is the Lamé operator.

In the physical case, the coefficients (h, f ,⇡,�,X ,Y ) depend on the choice of the given
physics data ( ,⇡, ⌧,�,V ) of the conformal method.

Our goal: understand the blow-up behavior of the solutions of (CC).
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Setting of our problem:

In the following: for us, M will alway be compact without boundary. The coefficients
(h, f ,⇡,X ,Y ,�) will satisfy the assumptions of the focusing case:

f > 0, 4
g

+ h coercive, and ⇡ 6⌘ 0.

In the physical case, the coefficients are related to the physics data by:

h =
n � 2

4(n � 1)
�
S
g

� |r |2
g

�
,

f = 2V ( )� n � 1
n

⌧2,

X = �n � 1
n

r⌧, Y = �⇡r .

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen).
In the following we will investigate the system for general focusing coefficients
(h, f ,⇡,X ,Y ,�), not only the physical ones.
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Criticality of the system and defects of compactness

8
><

>:
4

g

u + hu = fu2

⇤�1 +
⇡2 + |� + L

g

W |2
g

u2

⇤+1

,

�!
4

g

W = u2

⇤
X + Y .

The critical nonlinearity u2

⇤�1, with the “mean” focusing sign f > 0, implies that
concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For � > 0 and x
0

2 Rn, n � 3:

B�,x
0

(x) =

0

@ �

�2 + |x�x

0

|2
n(n�2)

1

A

n�2

2

, 4⇠B�,x
0

= B2

⇤�1

�,x
0

in Rn, kB�,x
0

k
L

2

⇤ = K
n

.

Similar explosive phenomena in C 0(M) are obtained for critical nonlinear elliptic equations
or systems (Druet-Hebey ’04, Robert-Vétois ’14, Pistoia-Vaira ’15, Vétois-Thizy ’16...).

Perturbations of the coefficients increase the chance of appearance of defects of
compactness.
Example: the Yamabe equation (Brendle ’08, Esposito-Pistoia-Vétois ’14).

Natural Question: when do these blow-up phenomena occur for the EL system?
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The notion of Stability for the Einstein-Lichnerowicz constraint system

Definition

Let (h, f ,⇡,X ,Y ,�) 2 C 2(M). The Einstein-Lichnerowicz system is said to be stable if,
for any sequence (h

k

, f
k

,⇡
k

,X
k

,Y
k

,�
k

)
k

converging to (h, f ,⇡,X ,Y ,�) in C 2(M) and for
any sequence (u

k

,W
k

)
k

of solutions of:
8
><

>:

4
g

u
k

+ h
k

u
k

= f
k

u
k

2

⇤�1 +
⇡2

k

+ |�
k

+ L
g

W
k

|2
g

u
k

2

⇤+1

,

�!
4

g

W
k

= u
k

2

⇤
X
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Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

If 3  n  5 (Druet-P. ’14, n = 3, P. ’15)
If n � 6 and rf and X have no common zero in M. Or, if they do, provided at
these zeroes there holds:

h <
n � 2

4(n � 1)
S
g

� (n � 2)(n � 4)
8(n � 1)

4
g

f

f
. (0.1)

(P. ’15)

It is a second-order compatibility condition between the geometric and physics data.
For the physical case of the Einstein-scalar field setting, these conditions ensure that
stability holds when the scalar-field  and the mean curvature ⌧ have no common critical
point in M.

What about the sharpness of these conditions in high dimensions: can blow-up
phenomena happen in high dimensions?
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Main result: instability examples in high dimensions

Theorem (Non-compactness in high dimensions n � 6, P., ‘16)

Let (M, g) be a closed Riemannian manifold of dimension n � 6, such that
�!
4

g

has no
kernel. There exist coefficients (h, f ,⇡,�,X ,Y ) of class C 2, satisfying the assumptions of
the focusing case and X 6⌘ 0 such that the Einstein-Lichnerowicz system:

8
><

>:
4

g

u + hu = fu2

⇤�1 +
|L

g

W + �|2
g

+ ⇡2

u2

⇤+1

�!
4

g

W = u2

⇤
X + Y

(0.2)

possesses a blowing-up sequence of solutions (u
k

,W
k

)
k

, that is: ku
k

k
L

1(M) ! +1 and
kL

g

W
k

k
L

1(M) ! +1 as k ! +1. Here the u
k

are positive, have one concentration
point and have a non-zero limit profile.

In particular: these coefficients (h, f ,⇡,�,X ,Y ) satisfy

h � n � 2
4(n � 1)

S
g

� (n � 2)(n � 4)
8(n � 1)

4
g

f

f
somewhere.

Surprising consequence: the Einstein-Lichnerowicz system has an infinite number of
(blowing-up) solutions in high dimensions!
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Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of
EL, what can I say about it? It gives informations about: the pointwise blow-up behavior
of sequences of solutions, the localisation of concentration points, the mutual
interactions between different defects of compactness,...

In P., ’15 it is for instance proven that any blowing-up sequence (u
k

,W
k

) of the E-L
system satisfies:

u
k

= B
k

+ o(B
k

) in C 0

in the neighbourhood of a concentration point, where B
k

is a given bubbling profile
modeled on the standard bubble. And, as a consequence, that at a concentration point
x
0

there holds:
rf (x

0

) = X (x
0

) = 0.

Approach developed by: Li, Zhu, Druet, Schoen, Marques, Zhang, Khuri, Hebey, Robert.
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Two dual approaches in the blow-up analysis of critical elliptic equations II

2) The Lyapounov-Schmidt approach, or H1-constructive approach: used to construct
blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

u
t,⇠,k = B

t,⇠,k + u
0

+ '
t,⇠,k ,

u
0

> 0 weak limit, B
t,⇠,k is a bubbling profile and '

t,⇠,k is small in H1(M).

The solution
depends on (n + 1) parameters to be chosen. Reduces the problem to finding critical
points of an explicit function of (t, ⇠).

Example: to solve 4
g

u + hu = u2

⇤�1, find u
t,⇠,k critical point of the energy. Reduces to

find (t, ⇠) critical point of:

(t, ⇠) 7! 1
2

Z

M

|rB
t,⇠,k |2 + hB2

t,⇠,kdvg � 1
2⇤

Z

M

B2

⇤
t,⇠,kdvg

The method implicitly relies on the informations provided by the a priori techniques.

Developed by Wei, Rey, Del Pino, Pacard (over the last 15 years)
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Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:
8
><

>:
4

g

u + hu = fu2

⇤�1 +
⇡2 + |� + L

g

W |2
g

u2

⇤+1

,

�!
4

g

W = u2

⇤
X + Y

having the following form:

u
t,⇠,k = B

t,⇠,k + u
0

+ '
t,⇠,k .

Here: u
0

> 0 is a weak limit, B
t,⇠,k is a standard bubble and '

t,⇠,k is small.

Problem: the usual constructive method in H1(M) does not apply here: '
t,⇠,k cannot be

chosen small in H1(M) !

The system is strongly coupled (X 6⌘ 0) and the vector equation is supercritical in the
natural energy space H1(M): the system is non-variational and ill-posed in H1(M). The
system therefore exhibits a double (super-)criticality that cannot be handled with
standard constructive energy methods.
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Solution: a C 0
constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis
techniques with the standard H1 reduction method to perform the ping-pong method.

Look again for u
k

under the form:

u
t,⇠,k = B

t,⇠,k + u
0

+ '
t,⇠,k ,

with a remainder small in a C 0(M) sense, with explicit pointwise bounds depending on
the ansatz of the solution:

|'
t,⇠,k |  "

k

(B
t,⇠,k + u

0

) , (0.3)

where "
k

! 0 and is independent of t and ⇠.

Our solution depends on (n + 1) parameters (t, ⇠) – just like the standard bubbling
profiles.

Goal: find, for every k, a value (t
k

, ⇠
k

)
k

of the parameters and a suitable remainder
'

t

k

,⇠
k

,k (small in C 0(M)) for which u
t

k

,⇠
k

,k is indeed a solution!
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profiles.
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Sketch of the proof I

The proof is a fixed-point (“ping-pong”) method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

B
t,⇠,k(x) = ⇤⇠(x) · �

✓
d
g⇠ (⇠, x)

r
k

◆

| {z }
conformal correction + cutoff

(tµ
k

)
n�2

2

⇣
(tµ

k

)2 + f (⇠)
n(n�2)dg⇠ (⇠, x)

2

⌘ n�2

2

| {z }
standard bubble

,

Choose ' satisfying |'|  "
k

(B
t,⇠,k + u

0

) and consider the only solution of:

�!
4

g

W
t,⇠,k = (B

t,⇠,k + u
0

+ ')2
⇤
X + Y .

By the choice of ' and X , we now have pointwise estimates on this W
k

that blows-up:

|L
g

W
t,⇠,k | ⇠

µ
n�1

2

k

�
µ2

k

+ d
g⇠ (⇠, x)

2

� n�1

2

close to ⇠.

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!

Bruno Premoselli (ULB) 10 Avril 2017 15 / 20



Sketch of the proof I

The proof is a fixed-point (“ping-pong”) method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

B
t,⇠,k(x) = ⇤⇠(x) · �

✓
d
g⇠ (⇠, x)

r
k

◆

| {z }
conformal correction + cutoff

(tµ
k

)
n�2

2

⇣
(tµ

k

)2 + f (⇠)
n(n�2)dg⇠ (⇠, x)

2

⌘ n�2

2

| {z }
standard bubble

,

Choose ' satisfying |'|  "
k

(B
t,⇠,k + u

0

) and consider the only solution of:

�!
4

g

W
t,⇠,k = (B

t,⇠,k + u
0

+ ')2
⇤
X + Y .

By the choice of ' and X , we now have pointwise estimates on this W
k

that blows-up:

|L
g

W
t,⇠,k | ⇠

µ
n�1

2

k

�
µ2

k

+ d
g⇠ (⇠, x)

2

� n�1

2

close to ⇠.

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!

Bruno Premoselli (ULB) 10 Avril 2017 15 / 20



Sketch of the proof I

The proof is a fixed-point (“ping-pong”) method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

B
t,⇠,k(x) = ⇤⇠(x) · �

✓
d
g⇠ (⇠, x)

r
k

◆

| {z }
conformal correction + cutoff

(tµ
k

)
n�2

2

⇣
(tµ

k

)2 + f (⇠)
n(n�2)dg⇠ (⇠, x)

2

⌘ n�2

2

| {z }
standard bubble

,

Choose ' satisfying |'|  "
k

(B
t,⇠,k + u

0

) and consider the only solution of:

�!
4

g

W
t,⇠,k = (B

t,⇠,k + u
0

+ ')2
⇤
X + Y .

By the choice of ' and X , we now have pointwise estimates on this W
k

that blows-up:

|L
g

W
t,⇠,k | ⇠

µ
n�1

2

k

�
µ2

k

+ d
g⇠ (⇠, x)

2

� n�1

2

close to ⇠.

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!

Bruno Premoselli (ULB) 10 Avril 2017 15 / 20



Sketch of the proof I

The proof is a fixed-point (“ping-pong”) method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

B
t,⇠,k(x) = ⇤⇠(x) · �

✓
d
g⇠ (⇠, x)

r
k

◆

| {z }
conformal correction + cutoff

(tµ
k

)
n�2

2

⇣
(tµ

k

)2 + f (⇠)
n(n�2)dg⇠ (⇠, x)

2

⌘ n�2

2

| {z }
standard bubble

,

Choose ' satisfying |'|  "
k

(B
t,⇠,k + u

0

) and consider the only solution of:

�!
4

g

W
t,⇠,k = (B

t,⇠,k + u
0

+ ')2
⇤
X + Y .

By the choice of ' and X , we now have pointwise estimates on this W
k

that blows-up:

|L
g

W
t,⇠,k | ⇠

µ
n�1

2

k

�
µ2

k

+ d
g⇠ (⇠, x)

2

� n�1

2

close to ⇠.

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!

Bruno Premoselli (ULB) 10 Avril 2017 15 / 20



Sketch of the proof I

The proof is a fixed-point (“ping-pong”) method in 1 + 3 main steps:

Step 0: Choose the following zeroth-order approximation:

B
t,⇠,k(x) = ⇤⇠(x) · �

✓
d
g⇠ (⇠, x)

r
k

◆

| {z }
conformal correction + cutoff

(tµ
k

)
n�2

2

⇣
(tµ

k

)2 + f (⇠)
n(n�2)dg⇠ (⇠, x)

2

⌘ n�2

2

| {z }
standard bubble

,

Choose ' satisfying |'|  "
k

(B
t,⇠,k + u

0

) and consider the only solution of:

�!
4

g

W
t,⇠,k = (B

t,⇠,k + u
0

+ ')2
⇤
X + Y .

By the choice of ' and X , we now have pointwise estimates on this W
k

that blows-up:

|L
g

W
t,⇠,k | ⇠

µ
n�1

2

k

�
µ2

k

+ d
g⇠ (⇠, x)

2

� n�1

2

close to ⇠.

Problem: it blows up too fast to plug it into the scalar equation and perform a usual
ping-pong method!

Bruno Premoselli (ULB) 10 Avril 2017 15 / 20



Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

4
g

u + hu = fu2

⇤�1 +
|L

g

W
0

+ �|2
g

+ ⇡2

u2

⇤+1

+

✓
|L

g

W
t,⇠,k + �|2

g

� |L
g

W
0

+ �|2
g

(B
t,⇠,k + u

0

+ ')2
⇤+1

◆

+
nX

j=0

�j

k

(t, ⇠,') (4
g

+ h)Z
j,k .

Done via a nonlinear fixed-point method in H1 in the orthogonal of the kernel of the
linearized equation at B

t,⇠,k (spanned by the Z
j,k). Here L

g

W
t,⇠,k is a coefficient.

It works since the red term comes with explicit pointwise estimates on it.

The solution is of the form B
t,⇠,k + u

0

+  
t,⇠,k for a new remainder  2 H1(M),

orthogonal to the Z
j,k .

Goal: Get an (almost) solution of the system if  = '.
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Sketch of the proof III: Fixed-point in C 0
1

Step 2: The goal is now to fix-point ' 7!  , in the set of C 0 functions satisfying:

|'|  "
k

(B
t,⇠,k + u

0

) . (0.4)

Since  comes from an H1 procedure it is not even clear that | |  "
k

(B
t,⇠,k + u

0

). We
prove this by a priori analysis techniques.

This is again done in three steps:

Step a): Extend the a priori asymptotic techniques of the C 0-theory of
Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with
explicit (and suitable) pointwise bounds.

This shows that
 = o (B

t,⇠,k + u
0

) in C 0(M).
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Sketch of the proof III: Fixed-point in C 0
2

Step b): Quantify the o(1). This requires to obtain second-order estimates on  (again
blow-up arguments).

They are for instance, at finite distance from ⇠:

| |(x) .
"
µ

n

2

k

+ µ
k

krf k
L

1 + kh � c
n

S
g

k
L

1µ2

k

ln
✓
µ
k

+ d
g

(⇠, x)
µ
k

◆

+kh � c
n

S
g

k
L

1d
g

(⇠, x)2 + d
g

(⇠, x)41
nlcf

#
B

t,⇠,k(x) +

✓
µ
k

µ
k

+ d
g

(⇠, x)

◆
2

.

We also prove that these estimates are uniform in t, ⇠ and '.

Step c): Choose a suitable "
k

(according to the red term). And then show that ' 7!  is
a contraction. Relies on the second-order estimates.
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Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution
(u

t,⇠,k ,Wt,⇠,k) of:
8
>><

>>:

4
g

u + hu = fu2

⇤�1 +
⇡2 + |� + L

g

W |2
g

u2

⇤+1

+
nX

j=0

�j

k

(t, ⇠) (4
g

+ h)Z
j,k,t,⇠ ,

�!
4

g

W = u2

⇤
X + Y ,

where u
t,⇠,k writes as:

u
t,⇠,k = B

t,⇠,k + u
0

+ '
t,⇠,k ,

and |'
t,⇠,k |  "

k

�
B

t,⇠,k + u
0

�
, where "

k

is known.

To conclude: use the second-order estimates on '
t,⇠,k to obtain an asymptotic expansion

of the �
k,j(t, ⇠) in C 0

loc

(Rn+1) as k ! +1. And we are left to annihilate (n + 1)
functions from Rn+1 to R.

Bruno Premoselli (ULB) 10 Avril 2017 19 / 20



Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution
(u

t,⇠,k ,Wt,⇠,k) of:
8
>><

>>:

4
g

u + hu = fu2

⇤�1 +
⇡2 + |� + L

g

W |2
g

u2

⇤+1

+
nX

j=0

�j

k

(t, ⇠) (4
g

+ h)Z
j,k,t,⇠ ,

�!
4

g

W = u2

⇤
X + Y ,

where u
t,⇠,k writes as:

u
t,⇠,k = B

t,⇠,k + u
0

+ '
t,⇠,k ,

and |'
t,⇠,k |  "

k

�
B

t,⇠,k + u
0

�
, where "

k

is known.

To conclude: use the second-order estimates on '
t,⇠,k to obtain an asymptotic expansion

of the �
k,j(t, ⇠) in C 0

loc

(Rn+1) as k ! +1. And we are left to annihilate (n + 1)
functions from Rn+1 to R.

Bruno Premoselli (ULB) 10 Avril 2017 19 / 20



Thank you for your attention.
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Bonus: Explicit expressions of h and X .

The explicit expressions of h, f and X are the following:

f (x) ⇡ f
0

h(x) =
n � 2

4(n � 1)
S
g

(x) +
X

k�1

⌧
k

H

✓
1
�
k

�
exp⇠

0

��1

(x)

◆
,

X (x) = X
0

(x) +
X

k�1

µ
k

n�1

2 Z
⇣�

exp⇠
0

��1

(x)
⌘
,

where ⌧
k

depends on µ
k

and on the dimension and if (M, g) is locally conformally flat or
not. Also, µ
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Bonus: Explicit expressions of h and X .
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