Non-compactness of initial data sets in high dimensions.
Seminar on Mathematical General Relativity
LJLL, Université Paris 6

## Bruno Premoselli

Université Libre de Bruxelles

10 Avril 2017

## Scalar-field theory in General Relativity

Let $\left(\mathcal{M}^{n+1}, h\right), n \geq 3$, be a Lorentzian manifold, $\Psi \in C^{\infty}\left(\mathcal{M}^{n+1}\right)$ a scalar-field and $V \in C^{\infty}(\mathbb{R})$ a potential.
$\left(\mathcal{M}^{n+1}, h, \Psi\right)$ is said to be a a space-time if it satisfies the following Einstein equations:

$$
\left\{\begin{align*}
\operatorname{Ric}(h)_{i j}-\frac{1}{2} R(h) h_{i j} & =\nabla_{i} \Psi \nabla_{j} \Psi-\left(\frac{1}{2}|\nabla \Psi|_{h}^{2}+V(\Psi)\right) h_{i j}  \tag{E}\\
\square_{h} \Psi & =\frac{d V}{d \Psi}
\end{align*}\right.
$$

## Scalar-field theory in General Relativity

Let $\left(\mathcal{M}^{n+1}, h\right), n \geq 3$, be a Lorentzian manifold, $\Psi \in C^{\infty}\left(\mathcal{M}^{n+1}\right)$ a scalar-field and $V \in C^{\infty}(\mathbb{R})$ a potential.
$\left(\mathcal{M}^{n+1}, h, \Psi\right)$ is said to be a a space-time if it satisfies the following Einstein equations:

$$
\left\{\begin{align*}
\operatorname{Ric}(h)_{i j}-\frac{1}{2} R(h) h_{i j} & =\nabla_{i} \Psi \nabla_{j} \Psi-\left(\frac{1}{2}|\nabla \Psi|_{h}^{2}+V(\Psi)\right) h_{i j}  \tag{E}\\
\square_{h} \Psi & =\frac{d V}{d \Psi}
\end{align*}\right.
$$

Relevant physical cases:

- Vacuum case with no cosmological constant: $\Psi \equiv 0, V \equiv 0$.
- Vacuum case with positive cosmological constant: $\Psi \equiv 0, V \equiv \Lambda>0$.
- Klein-Gordon fields: $V(\Psi)=\frac{1}{2} m \Psi^{2}, m>0$.


## The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1}=M^{n} \times \mathbb{R}$ with $\left(M^{n}, h_{\mid M^{n}}\right)$ Riemannian.

## The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1}=M^{n} \times \mathbb{R}$ with $\left(M^{n}, h_{\mid M^{n}}\right)$ Riemannian. Notion of initial data sets on $M^{n}$ :

## Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

$\left(M^{n} \times \mathbb{R}, h, \Psi\right)$ solves $(E)$ if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in $M^{n}$ the contraint system:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr}_{\tilde{g}} \tilde{K}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi})  \tag{C}\\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-\operatorname{div}_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi}
\end{array}\right.
$$

In particular: any solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of $(C)$ evolves into a solution of the Einstein equations. A solution ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}$ ) is therefore called an initial data set.

## The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1}=M^{n} \times \mathbb{R}$ with $\left(M^{n}, h_{\mid M^{n}}\right)$ Riemannian.
Notion of initial data sets on $M^{n}$ :

## Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

$\left(M^{n} \times \mathbb{R}, h, \Psi\right)$ solves $(E)$ if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in $M^{n}$ the contraint system:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr}_{\tilde{g}} \tilde{K}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi})  \tag{C}\\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-d i v_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi}
\end{array}\right.
$$

In particular: any solution $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of $(C)$ evolves into a solution of the Einstein equations. A solution ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}$ ) is therefore called an initial data set.

Here we have let:

- $\tilde{g}=h_{\mid M^{n}}$ and $\tilde{\nabla}$ is the Levi-Civita connection for $\tilde{g}$ in $M^{n}$,
- $\tilde{K}$ : second fundamental form of the embedding $M^{n} \subset M^{n} \times \mathbb{R}$,
- $\tilde{\psi}=\Psi_{\mid M^{n}}$ and $\tilde{\pi}=(N \cdot \Psi)_{\mid M^{n}}$. $N$ is the future-directed unit normal to $M^{n}$.


## The Evolution Problem

Assume globally hyperbolic spacetime: $\mathcal{M}^{n+1}=M^{n} \times \mathbb{R}$ with $\left(M^{n}, h_{\mid M^{n}}\right)$ Riemannian.
Notion of initial data sets on $M^{n}$ :

## Theorem (Choquet-Bruhat '52, Choquet-Bruhat-Geroch '69)

$\left(M^{n} \times \mathbb{R}, h, \Psi\right)$ solves $(E)$ if and only if $(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ solves in $M^{n}$ the contraint system:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr} \tilde{K}_{\tilde{g}}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi}),  \tag{C}\\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-\operatorname{div} v_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi},
\end{array}\right.
$$

In particular: any solution ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ of (C) evolves into a solution of the Einstein equations. A solution ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}$ ) is therefore called an initial data set.

Here we have let:

- $\tilde{g}=h_{\mid M^{n}}$ and $\tilde{\nabla}$ is the Levi-Civita connection for $\tilde{g}$ in $M^{n}$,
- $\tilde{K}$ : second fundamental form of the embedding $M^{n} \subset M^{n} \times \mathbb{R}$,
- $\tilde{\psi}=\Psi_{\mid M^{n}}$ and $\tilde{\pi}=(N \cdot \Psi)_{\mid M^{n}}$. $N$ is the future-directed unit normal to $M^{n}$.

System (C) has $n(n+1)+2$ unknowns ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})$ for $n+1$ equations.

## The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr}_{\tilde{g}} \tilde{K}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi}) \\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-\operatorname{div}_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi}
\end{array}\right.
$$

Idea: look for solutions depending on $n+1$ parameters to overcome the underdetermination.

## The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr}_{\tilde{g}} \tilde{K}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi}) \\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-\operatorname{div}_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi}
\end{array}\right.
$$

Idea: look for solutions depending on $n+1$ parameters to overcome the underdetermination.

Conformal parametrization: look for the unknown initial data set ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}$ ) as:

$$
\begin{equation*}
(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})=\left(u^{\frac{4}{n-2}} g, \frac{\tau}{n} u^{\frac{4}{n-2}} g+u^{-2}\left(\sigma+\mathcal{L}_{g} W\right), \psi, u^{-\frac{2 n}{n-2}} \pi\right) \tag{*}
\end{equation*}
$$

where $u \in C^{\infty}(M), u>0, W \in T^{*} M$ and $\mathcal{L}_{g} W$ is the conformal Killing operator.

## The conformal method (Lichnerowicz, Choquet-Bruhat, York)

Goal: produce solution of the constraint equations:

$$
\left\{\begin{array}{l}
R(\tilde{g})+\operatorname{tr}_{\tilde{g}} \tilde{K}^{2}-\|\tilde{K}\|_{\tilde{g}}^{2}=\tilde{\pi}^{2}+|\tilde{\nabla} \tilde{\psi}|_{\tilde{g}}^{2}+2 V(\tilde{\psi}) \\
\tilde{\nabla}\left(\operatorname{tr}_{\tilde{g}} \tilde{K}\right)-\operatorname{div}_{\tilde{g}} K=-\tilde{\pi} \tilde{\nabla} \tilde{\psi}
\end{array}\right.
$$

Idea: look for solutions depending on $n+1$ parameters to overcome the underdetermination.

Conformal parametrization: look for the unknown initial data set ( $\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi}$ ) as:

$$
\begin{equation*}
(\tilde{g}, \tilde{K}, \tilde{\psi}, \tilde{\pi})=\left(u^{\frac{4}{n-2}} g, \frac{\tau}{n} u^{\frac{4}{n-2}} g+u^{-2}\left(\sigma+\mathcal{L}_{g} W\right), \psi, u^{-\frac{2 n}{n-2}} \pi\right) \tag{*}
\end{equation*}
$$

where $u \in C^{\infty}(M), u>0, W \in T^{*} M$ and $\mathcal{L}_{g} W$ is the conformal Killing operator.
These data depend on $n+1$ parameters $(u, W)$ and on given physics data $(\psi, \pi, \tau, \sigma, V)$ where:

- $V$ is the potential of the scalar-field,
- $\psi, \pi$ are scalar-field data,
- $\tau$ is a mean curvature,
- $\sigma$, is a (2,0)-symmetric tensor field with $\operatorname{tr}_{g} \sigma=0$ and $\operatorname{div}_{g} \sigma=0$ ("TT tensor").


## The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if ( $u, W$ ) solve the Einstein-Lichnerowicz constraint system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}},  \tag{CC}\\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y .
\end{array}\right.
$$

## The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if ( $u, W$ ) solve the Einstein-Lichnerowicz constraint system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}},  \tag{CC}\\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

Here: $2^{*}=\frac{2 n}{n-2},(u, W)$ are smooth, $u>0$. Also $\triangle_{g}=-\operatorname{div}_{g}(\nabla \cdot), \triangle_{g}=-\operatorname{div}_{g}(\nabla \cdot)$. $\mathcal{L}_{g} W$ is the conformal Killing derivative:

$$
\mathcal{L}_{g} W_{i j}=W_{i, j}+W_{j, i}-\frac{2}{n} \operatorname{div}_{g} W \cdot g_{i j},
$$

and $\vec{\triangle}_{g} W=-\operatorname{div}_{g}\left(\mathcal{L}_{g} W\right)$ is the Lamé operator.

## The Einstein-Lichnerowicz constraint system

The conformal parametrization solves the original constraint equations if and only if ( $u, W$ ) solve the Einstein-Lichnerowicz constraint system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}},  \tag{CC}\\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

Here: $2^{*}=\frac{2 n}{n-2},(u, W)$ are smooth, $u>0$. Also $\triangle_{g}=-\operatorname{div}_{g}(\nabla \cdot), \triangle_{g}=-\operatorname{div}_{g}(\nabla \cdot)$. $\mathcal{L}_{g} W$ is the conformal Killing derivative:

$$
\mathcal{L}_{\mathfrak{g}} W_{i j}=W_{i, j}+W_{j, i}-\frac{2}{n} \operatorname{div}_{g} W \cdot g_{i j},
$$

and $\vec{\triangle}_{g} W=-\operatorname{div}_{g}\left(\mathcal{L}_{g} W\right)$ is the Lamé operator.
In the physical case, the coefficients ( $h, f, \pi, \sigma, X, Y$ ) depend on the choice of the given physics data ( $\psi, \pi, \tau, \sigma, V$ ) of the conformal method.

Our goal: understand the blow-up behavior of the solutions of (CC).

## Setting of our problem:

In the following: for us, $M$ will alway be compact without boundary. The coefficients ( $h, f, \pi, X, Y, \sigma$ ) will satisfy the assumptions of the focusing case:

$$
f>0, \quad \triangle_{g}+h \quad \text { coercive }, \quad \text { and } \quad \pi \not \equiv 0
$$

## Setting of our problem:

In the following: for us, $M$ will alway be compact without boundary. The coefficients ( $h, f, \pi, X, Y, \sigma$ ) will satisfy the assumptions of the focusing case:

$$
f>0, \quad \triangle_{g}+h \quad \text { coercive }, \quad \text { and } \quad \pi \not \equiv 0
$$

In the physical case, the coefficients are related to the physics data by:

$$
\begin{aligned}
& h=\frac{n-2}{4(n-1)}\left(S_{g}-|\nabla \psi|_{g}^{2}\right) \\
& f=2 V(\psi)-\frac{n-1}{n} \tau^{2} \\
& X=-\frac{n-1}{n} \nabla \tau, \quad Y=-\pi \nabla \psi
\end{aligned}
$$

## Setting of our problem:

In the following: for us, $M$ will alway be compact without boundary. The coefficients ( $h, f, \pi, X, Y, \sigma$ ) will satisfy the assumptions of the focusing case:

$$
f>0, \quad \triangle_{g}+h \quad \text { coercive }, \quad \text { and } \quad \pi \not \equiv 0
$$

In the physical case, the coefficients are related to the physics data by:

$$
\begin{aligned}
h & =\frac{n-2}{4(n-1)}\left(S_{g}-|\nabla \psi|_{g}^{2}\right) \\
f & =2 V(\psi)-\frac{n-1}{n} \tau^{2} \\
X & =-\frac{n-1}{n} \nabla \tau, \quad Y=-\pi \nabla \psi
\end{aligned}
$$

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen).

## Setting of our problem:

In the following: for us, $M$ will alway be compact without boundary. The coefficients ( $h, f, \pi, X, Y, \sigma$ ) will satisfy the assumptions of the focusing case:

$$
f>0, \quad \triangle_{g}+h \quad \text { coercive }, \quad \text { and } \quad \pi \not \equiv 0
$$

In the physical case, the coefficients are related to the physics data by:

$$
\begin{aligned}
h & =\frac{n-2}{4(n-1)}\left(S_{g}-|\nabla \psi|_{g}^{2}\right) \\
f & =2 V(\psi)-\frac{n-1}{n} \tau^{2} \\
X & =-\frac{n-1}{n} \nabla \tau, \quad Y=-\pi \nabla \psi
\end{aligned}
$$

Solutions of (CC) exist under mild conditions on the coefficients (P., Gicquaud-Nguyen). In the following we will investigate the system for general focusing coefficients ( $h, f, \pi, X, Y, \sigma$ ), not only the physical ones.

## Criticality of the system and defects of compactness

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

The critical nonlinearity $u^{2^{*}-1}$, with the "mean" focusing sign $f>0$, implies that concentration phenomena (or blow-up) are likely to occur.

## Criticality of the system and defects of compactness

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}}, \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y .
\end{array}\right.
$$

The critical nonlinearity $u^{2^{*}-1}$, with the "mean" focusing sign $f>0$, implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}, n \geq 3$ :

$$
B_{\lambda, x_{0}}(x)=\left(\frac{\lambda}{\lambda^{2}+\frac{\left|x-x_{0}\right|^{2}}{n(n-2)}}\right)^{\frac{n-2}{2}}, \quad \triangle_{\xi} B_{\lambda, x_{0}}=B_{\lambda, x_{0}}^{2^{*}-1} \quad \text { in } \mathbb{R}^{n}, \quad\left\|B_{\lambda, x_{0}}\right\|_{L^{2}}=K_{n} .
$$

## Criticality of the system and defects of compactness

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}}, \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y .
\end{array}\right.
$$

The critical nonlinearity $u^{2^{*}-1}$, with the "mean" focusing sign $f>0$, implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}, n \geq 3$ :

$$
B_{\lambda, x_{0}}(x)=\left(\frac{\lambda}{\lambda^{2}+\frac{\left|x-x_{0}\right|^{2}}{n(n-2)}}\right)^{\frac{n-2}{2}}, \quad \triangle_{\xi} B_{\lambda, x_{0}}=B_{\lambda, x_{0}}^{2^{*}-1} \quad \text { in } \mathbb{R}^{n}, \quad\left\|B_{\lambda, x_{0}}\right\|_{L^{2^{*}}}=K_{n}
$$

Similar explosive phenomena in $C^{0}(M)$ are obtained for critical nonlinear elliptic equations or systems (Druet-Hebey '04, Robert-Vétois '14, Pistoia-Vaira '15, Vétois-Thizy '16...).

Perturbations of the coefficients increase the chance of appearance of defects of compactness.
Example: the Yamabe equation (Brendle '08, Esposito-Pistoia-Vétois '14).

## Criticality of the system and defects of compactness

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

The critical nonlinearity $u^{2^{*}-1}$, with the "mean" focusing sign $f>0$, implies that concentration phenomena (or blow-up) are likely to occur.

Model example: standard bubbles. For $\lambda>0$ and $x_{0} \in \mathbb{R}^{n}, n \geq 3$ :

$$
B_{\lambda, x_{0}}(x)=\left(\frac{\lambda}{\lambda^{2}+\frac{\left|x-x_{0}\right|^{2}}{n(n-2)}}\right)^{\frac{n-\mathbf{2}}{2}}, \quad \triangle_{\xi} B_{\lambda, x_{0}}=B_{\lambda, x_{0}}^{2^{*}-1} \quad \text { in } \mathbb{R}^{n}, \quad\left\|B_{\lambda, x_{0}}\right\|_{L^{2^{*}}}=K_{n}
$$

Similar explosive phenomena in $C^{0}(M)$ are obtained for critical nonlinear elliptic equations or systems (Druet-Hebey '04, Robert-Vétois '14, Pistoia-Vaira '15, Vétois-Thizy '16...).

Perturbations of the coefficients increase the chance of appearance of defects of compactness.
Example: the Yamabe equation (Brendle '08, Esposito-Pistoia-Vétois '14).
Natural Question: when do these blow-up phenomena occur for the EL system?

The notion of Stability for the Einstein-Lichnerowicz constraint system

## Definition

Let $(h, f, \pi, X, Y, \sigma) \in C^{2}(M)$. The Einstein-Lichnerowicz system is said to be stable if, for any sequence ( $\left.h_{k}, f_{k}, \pi_{k}, X_{k}, Y_{k}, \sigma_{k}\right)_{k}$ converging to ( $h, f, \pi, X, Y, \sigma$ ) in $C^{2}(M)$ and for any sequence $\left(u_{k}, W_{k}\right)_{k}$ of solutions of:

$$
\left\{\begin{array}{l}
\triangle_{g} u_{k}+h_{k} u_{k}=f_{k} u_{k}^{2^{*}-1}+\frac{\pi_{k}^{2}+\left|\sigma_{k}+\mathcal{L}_{g} W_{k}\right|_{g}^{2}}{u_{k}^{2^{*}+1}} \\
\vec{\triangle}_{g} W_{k}=u_{k}^{2^{*}} X_{k}+Y_{k}
\end{array}\right.
$$

there exists a solution $(u, W)$ of $(C C)$ such that $\left(u_{k}, W_{k}\right) \rightarrow(u, W)$ in $C^{2}(M)$ (up to a subsequence and up to elements in the kernel of $\mathcal{L}_{g}$ ).

The notion of Stability for the Einstein-Lichnerowicz constraint system

## Definition

Let $(h, f, \pi, X, Y, \sigma) \in C^{2}(M)$. The Einstein-Lichnerowicz system is said to be stable if, for any sequence $\left(h_{k}, f_{k}, \pi_{k}, X_{k}, Y_{k}, \sigma_{k}\right)_{k}$ converging to $(h, f, \pi, X, Y, \sigma)$ in $C^{2}(M)$ and for any sequence $\left(u_{k}, W_{k}\right)_{k}$ of solutions of:

$$
\left\{\begin{array}{l}
\triangle_{g} u_{k}+h_{k} u_{k}=f_{k} u_{k}^{2^{*}-1}+\frac{\pi_{k}^{2}+\left|\sigma_{k}+\mathcal{L}_{g} W_{k}\right|_{g}^{2}}{u_{k}^{2^{*}+1}} \\
\vec{\triangle}_{g} W_{k}=u_{k}^{2^{*}} X_{k}+Y_{k},
\end{array}\right.
$$

there exists a solution $(u, W)$ of $(C C)$ such that $\left(u_{k}, W_{k}\right) \rightarrow(u, W)$ in $C^{2}(M)$ (up to a subsequence and up to elements in the kernel of $\mathcal{L}_{g}$ ).

The system will be said to be unstable... if it is not stable. (Non)-Compactness is defined similarly for constant perturbations of the coefficients.

## The notion of Stability for the Einstein-Lichnerowicz constraint system

## Definition

Let $(h, f, \pi, X, Y, \sigma) \in C^{2}(M)$. The Einstein-Lichnerowicz system is said to be stable if, for any sequence ( $\left.h_{k}, f_{k}, \pi_{k}, X_{k}, Y_{k}, \sigma_{k}\right)_{k}$ converging to ( $h, f, \pi, X, Y, \sigma$ ) in $C^{2}(M)$ and for any sequence $\left(u_{k}, W_{k}\right)_{k}$ of solutions of:

$$
\left\{\begin{array}{l}
\triangle_{g} u_{k}+h_{k} u_{k}=f_{k} u_{k}^{2^{*}-1}+\frac{\pi_{k}^{2}+\left|\sigma_{k}+\mathcal{L}_{g} W_{k}\right|_{g}^{2}}{u_{k}^{2^{*+1}}}, \\
\vec{\triangle}_{g} W_{k}=u_{k}^{2^{*}} X_{k}+Y_{k},
\end{array}\right.
$$

there exists a solution $(u, W)$ of $(C C)$ such that $\left(u_{k}, W_{k}\right) \rightarrow(u, W)$ in $C^{2}(M)$ (up to a subsequence and up to elements in the kernel of $\mathcal{L}_{g}$ ).

The system will be said to be unstable... if it is not stable. (Non)-Compactness is defined similarly for constant perturbations of the coefficients.

The stability of an equation/system yields structural informations. Instability is a failure of uniform (in the choice of the coefficients) a priori bounds for solutions.

## Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

## Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n=3$, P. '15)
- If $n \geq 6$ and $\nabla f$ and $X$ have no common zero in $M$. Or, if they do, provided at these zeroes there holds:

$$
\begin{equation*}
h<\frac{n-2}{4(n-1)} S_{g}-\frac{(n-2)(n-4)}{8(n-1)} \frac{\triangle_{g} f}{f} . \tag{0.1}
\end{equation*}
$$

(P. '15)

It is a second-order compatibility condition between the geometric and physics data.

## Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n=3$, P. '15)
- If $n \geq 6$ and $\nabla f$ and $X$ have no common zero in $M$. Or, if they do, provided at these zeroes there holds:

$$
\begin{equation*}
h<\frac{n-2}{4(n-1)} S_{g}-\frac{(n-2)(n-4)}{8(n-1)} \frac{\triangle_{g} f}{f} \tag{0.1}
\end{equation*}
$$

(P. '15)

It is a second-order compatibility condition between the geometric and physics data. For the physical case of the Einstein-scalar field setting, these conditions ensure that stability holds when the scalar-field $\psi$ and the mean curvature $\tau$ have no common critical point in $M$.

## Stability results

Stability holds (on a locally conformally flat manifold) under the following conditions:

- If $3 \leq n \leq 5$ (Druet-P. '14, $n=3$, P. '15)
- If $n \geq 6$ and $\nabla f$ and $X$ have no common zero in $M$. Or, if they do, provided at these zeroes there holds:

$$
\begin{equation*}
h<\frac{n-2}{4(n-1)} S_{g}-\frac{(n-2)(n-4)}{8(n-1)} \frac{\triangle_{g} f}{f} \tag{0.1}
\end{equation*}
$$

(P. '15)

It is a second-order compatibility condition between the geometric and physics data. For the physical case of the Einstein-scalar field setting, these conditions ensure that stability holds when the scalar-field $\psi$ and the mean curvature $\tau$ have no common critical point in $M$.

What about the sharpness of these conditions in high dimensions: can blow-up phenomena happen in high dimensions?

Main result: instability examples in high dimensions

## Theorem (Non-compactness in high dimensions $n \geq 6$, P., '16)

Let $(M, g)$ be a closed Riemannian manifold of dimension $n \geq 6$, such that $\vec{\triangle}_{g}$ has no kernel. There exist coefficients ( $h, f, \pi, \sigma, X, Y$ ) of class $C^{2}$, satisfying the assumptions of the focusing case and $X \not \equiv 0$ such that the Einstein-Lichnerowicz system:

$$
\left\{\begin{align*}
\triangle_{g} u+h u & =f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}  \tag{0.2}\\
\vec{\triangle}_{g} W & =u^{2^{*}} X+Y
\end{align*}\right.
$$

possesses a blowing-up sequence of solutions $\left(u_{k}, W_{k}\right)_{k}$, that is: $\left\|u_{k}\right\|_{L \infty(M)} \rightarrow+\infty$ and $\left\|\mathcal{L}_{g} W_{k}\right\|_{L^{\infty}(M)} \rightarrow+\infty$ as $k \rightarrow+\infty$. Here the $u_{k}$ are positive, have one concentration point and have a non-zero limit profile.

Main result: instability examples in high dimensions

## Theorem (Non-compactness in high dimensions $n \geq 6$, P., '16)

Let $(M, g)$ be a closed Riemannian manifold of dimension $n \geq 6$, such that $\vec{\triangle}_{g}$ has no kernel. There exist coefficients ( $h, f, \pi, \sigma, X, Y$ ) of class $C^{2}$, satisfying the assumptions of the focusing case and $X \not \equiv 0$ such that the Einstein-Lichnerowicz system:

$$
\left\{\begin{align*}
\triangle_{g} u+h u & =f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}  \tag{0.2}\\
\vec{\triangle}_{g} W & =u^{2^{*}} X+Y
\end{align*}\right.
$$

possesses a blowing-up sequence of solutions $\left(u_{k}, W_{k}\right)_{k}$, that is: $\left\|u_{k}\right\|_{L \infty(M)} \rightarrow+\infty$ and $\left\|\mathcal{L}_{g} W_{k}\right\|_{L^{\infty}(M)} \rightarrow+\infty$ as $k \rightarrow+\infty$. Here the $u_{k}$ are positive, have one concentration point and have a non-zero limit profile.

In particular: these coefficients ( $h, f, \pi, \sigma, X, Y$ ) satisfy

$$
h \geq \frac{n-2}{4(n-1)} S_{g}-\frac{(n-2)(n-4)}{8(n-1)} \frac{\triangle_{g} f}{f} \text { somewhere. }
$$

Main result: instability examples in high dimensions

## Theorem (Non-compactness in high dimensions $n \geq 6$, P., '16)

Let $(M, g)$ be a closed Riemannian manifold of dimension $n \geq 6$, such that $\vec{\triangle}_{g}$ has no kernel. There exist coefficients ( $h, f, \pi, \sigma, X, Y$ ) of class $C^{2}$, satisfying the assumptions of the focusing case and $X \not \equiv 0$ such that the Einstein-Lichnerowicz system:

$$
\left\{\begin{align*}
\triangle_{g} u+h u & =f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}  \tag{0.2}\\
\vec{\triangle}_{g} W & =u^{2^{*}} X+Y
\end{align*}\right.
$$

possesses a blowing-up sequence of solutions $\left(u_{k}, W_{k}\right)_{k}$, that is: $\left\|u_{k}\right\|_{L \infty(M)} \rightarrow+\infty$ and $\left\|\mathcal{L}_{g} W_{k}\right\|_{L^{\infty}(M)} \rightarrow+\infty$ as $k \rightarrow+\infty$. Here the $u_{k}$ are positive, have one concentration point and have a non-zero limit profile.

In particular: these coefficients $(h, f, \pi, \sigma, X, Y)$ satisfy

$$
h \geq \frac{n-2}{4(n-1)} S_{g}-\frac{(n-2)(n-4)}{8(n-1)} \frac{\triangle_{g} f}{f} \text { somewhere. }
$$

Surprising consequence: the Einstein-Lichnerowicz system has an infinite number of (blowing-up) solutions in high dimensions!

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the pointwise blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...

## Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the pointwise blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence ( $u_{k}, W_{k}$ ) of the E-L system satisfies:

$$
u_{k}=B_{k}+o\left(B_{k}\right) \text { in } C^{0}
$$

in the neighbourhood of a concentration point, where $B_{k}$ is a given bubbling profile modeled on the standard bubble. And, as a consequence, that at a concentration point $x_{0}$ there holds:

$$
\nabla f\left(x_{0}\right)=X\left(x_{0}\right)=0
$$

## Two dual approaches in the blow-up analysis of critical elliptic equations

1) The a priori approach. It is the one used to prove stability results.

Answers the following question: given an (arbitrary) blowing-up sequence of solutions of EL, what can I say about it? It gives informations about: the pointwise blow-up behavior of sequences of solutions, the localisation of concentration points, the mutual interactions between different defects of compactness,...

In P., '15 it is for instance proven that any blowing-up sequence ( $u_{k}, W_{k}$ ) of the E-L system satisfies:

$$
u_{k}=B_{k}+o\left(B_{k}\right) \text { in } C^{0}
$$

in the neighbourhood of a concentration point, where $B_{k}$ is a given bubbling profile modeled on the standard bubble. And, as a consequence, that at a concentration point $x_{0}$ there holds:

$$
\nabla f\left(x_{0}\right)=X\left(x_{0}\right)=0
$$

Approach developed by: Li, Zhu, Druet, Schoen, Marques, Zhang, Khuri, Hebey, Robert.

Two dual approaches in the blow-up analysis of critical elliptic equations II
2) The Lyapounov-Schmidt approach, or $H^{1}$-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

$u_{0}>0$ weak limit, $B_{t, \xi, k}$ is a bubbling profile and $\varphi_{t, \xi, k}$ is small in $H^{1}(M)$.

Two dual approaches in the blow-up analysis of critical elliptic equations II
2) The Lyapounov-Schmidt approach, or $H^{1}$-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

$u_{0}>0$ weak limit, $B_{t, \xi, k}$ is a bubbling profile and $\varphi_{t, \xi, k}$ is small in $H^{1}(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of $(t, \xi)$.

Two dual approaches in the blow-up analysis of critical elliptic equations II
2) The Lyapounov-Schmidt approach, or $H^{1}$-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

$u_{0}>0$ weak limit, $B_{t, \xi, k}$ is a bubbling profile and $\varphi_{t, \xi, k}$ is small in $H^{1}(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of $(t, \xi)$.

Example: to solve $\triangle_{g} u+h u=u^{2^{*}-1}$, find $u_{t, \xi, k}$ critical point of the energy. Reduces to find $(t, \xi)$ critical point of:

$$
(t, \xi) \mapsto \frac{1}{2} \int_{M}\left|\nabla B_{t, \xi, k}\right|^{2}+h B_{t, \xi, k}^{2} d v_{g}-\frac{1}{2^{*}} \int_{M} B_{t, \xi, k}^{2^{*}} d v_{g}
$$

Two dual approaches in the blow-up analysis of critical elliptic equations II
2) The Lyapounov-Schmidt approach, or $H^{1}$-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

$u_{0}>0$ weak limit, $B_{t, \xi, k}$ is a bubbling profile and $\varphi_{t, \xi, k}$ is small in $H^{1}(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of $(t, \xi)$.

Example: to solve $\triangle_{g} u+h u=u^{2^{*}-1}$, find $u_{t, \xi, k}$ critical point of the energy. Reduces to find $(t, \xi)$ critical point of:

$$
(t, \xi) \mapsto \frac{1}{2} \int_{M}\left|\nabla B_{t, \xi, k}\right|^{2}+h B_{t, \xi, k}^{2} d v_{g}-\frac{1}{2^{*}} \int_{M} B_{t, \xi, k}^{2^{*}} d v_{g}
$$

The method implicitly relies on the informations provided by the a priori techniques.

Two dual approaches in the blow-up analysis of critical elliptic equations II
2) The Lyapounov-Schmidt approach, or $H^{1}$-constructive approach: used to construct blowing-up sequences of solutions under suitable assumptions on the coefficients.

Idea: look for solutions as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

$u_{0}>0$ weak limit, $B_{t, \xi, k}$ is a bubbling profile and $\varphi_{t, \xi, k}$ is small in $H^{1}(M)$. The solution depends on $(n+1)$ parameters to be chosen. Reduces the problem to finding critical points of an explicit function of $(t, \xi)$.

Example: to solve $\triangle_{g} u+h u=u^{2^{*}-1}$, find $u_{t, \xi, k}$ critical point of the energy. Reduces to find $(t, \xi)$ critical point of:

$$
(t, \xi) \mapsto \frac{1}{2} \int_{M}\left|\nabla B_{t, \xi, k}\right|^{2}+h B_{t, \xi, k}^{2} d v_{g}-\frac{1}{2^{*}} \int_{M} B_{t, \xi, k}^{2^{*}} d v_{g}
$$

The method implicitly relies on the informations provided by the a priori techniques.
Developed by Wei, Rey, Del Pino, Pacard (over the last 15 years)

## Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

having the following form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

Here: $u_{0}>0$ is a weak limit, $B_{t, \xi, k}$ is a standard bubble and $\varphi_{t, \xi, k}$ is small.

## Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

having the following form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

Here: $u_{0}>0$ is a weak limit, $B_{t, \xi, k}$ is a standard bubble and $\varphi_{t, \xi, k}$ is small.
Problem: the usual constructive method in $H^{1}(M)$ does not apply here: $\varphi_{t, \xi, k}$ cannot be chosen small in $H^{1}(M)$ !

## Proof: A constructive approach via a glueing method

We hope to find blowing-up solutions of the Einstein-Lichnerowicz system:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

having the following form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

Here: $u_{0}>0$ is a weak limit, $B_{t, \xi, k}$ is a standard bubble and $\varphi_{t, \xi, k}$ is small.
Problem: the usual constructive method in $H^{1}(M)$ does not apply here: $\varphi_{t, \xi, k}$ cannot be chosen small in $H^{1}(M)$ !

The system is strongly coupled $(X \not \equiv 0)$ and the vector equation is supercritical in the natural energy space $H^{1}(M)$ : the system is non-variational and ill-posed in $H^{1}(M)$. The system therefore exhibits a double (super-)criticality that cannot be handled with standard constructive energy methods.

Solution: a $C^{0}$ constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard $H^{1}$ reduction method to perform the ping-pong method.

Solution: a $C^{0}$ constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard $H^{1}$ reduction method to perform the ping-pong method.

Look again for $u_{k}$ under the form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

Solution: a $C^{0}$ constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard $H^{1}$ reduction method to perform the ping-pong method.

Look again for $u_{k}$ under the form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

with a remainder small in a $C^{0}(M)$ sense, with explicit pointwise bounds depending on the ansatz of the solution:

$$
\begin{equation*}
\left|\varphi_{t, \xi, k}\right| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right) \tag{0.3}
\end{equation*}
$$

where $\varepsilon_{k} \rightarrow 0$ and is independent of $t$ and $\xi$.

Solution: a $C^{0}$ constructive approach that relies on the a priori analysis

For us today: constructive method in strong spaces by combining a priori analysis techniques with the standard $H^{1}$ reduction method to perform the ping-pong method.

Look again for $u_{k}$ under the form:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

with a remainder small in a $C^{0}(M)$ sense, with explicit pointwise bounds depending on the ansatz of the solution:

$$
\begin{equation*}
\left|\varphi_{t, \xi, k}\right| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right), \tag{0.3}
\end{equation*}
$$

where $\varepsilon_{k} \rightarrow 0$ and is independent of $t$ and $\xi$.
Our solution depends on $(n+1)$ parameters $(t, \xi)$ - just like the standard bubbling profiles.

Goal: find, for every $k$, a value $\left(t_{k}, \xi_{k}\right)_{k}$ of the parameters and a suitable remainder $\varphi_{t_{k}, \xi_{k}, k}$ (small in $\left.C^{0}(M)\right)$ for which $u_{t_{k}, \xi_{k}, k}$ is indeed a solution!

## Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1+3$ main steps:

## Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1+3$ main steps:
Step 0: Choose the following zeroth-order approximation:

$$
B_{t, \xi, k}(x)=\underbrace{\Lambda_{\xi}(x) \cdot \chi\left(\frac{d_{g_{\xi}}(\xi, x)}{r_{k}}\right)}_{\text {conformal correction + cutoff }} \underbrace{\left(t \mu_{k}\right)^{\frac{n-2}{2}}}_{\text {standard bubble }} \frac{\left(\left(\mu_{k}\right)^{2}+\frac{f(\xi)}{n(n-2)} d_{g_{\xi}}(\xi, x)^{2}\right)^{\frac{n-\mathbf{2}}{2}}}{}
$$

## Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1+3$ main steps:
Step 0: Choose the following zeroth-order approximation:

$$
B_{t, \xi, k}(x)=\underbrace{\Lambda_{\xi}(x) \cdot \chi\left(\frac{d_{g_{\xi}}(\xi, x)}{r_{k}}\right)}_{\text {conformal correction }+ \text { cutoff }} \underbrace{\frac{\left(t \mu_{k}\right)^{\frac{n-2}{2}}}{\left(\left(t \mu_{k}\right)^{2}+\frac{f(\xi)}{n(n-2)} d_{g \xi}(\xi, x)^{2}\right)^{\frac{n-2}{2}}}}_{\text {standard bubble }},
$$

Choose $\varphi$ satisfying $|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$ and consider the only solution of:

$$
\vec{\triangle}_{g} W_{t, \xi, k}=\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}} X+Y
$$

## Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1+3$ main steps:
Step 0: Choose the following zeroth-order approximation:

$$
B_{t, \xi, k}(x)=\underbrace{\Lambda_{\xi}(x) \cdot \chi\left(\frac{d_{g_{\xi}}(\xi, x)}{r_{k}}\right)}_{\text {conformal correction }+ \text { cutoff }} \underbrace{\frac{\left(t \mu_{k}\right)^{\frac{n-2}{2}}}{\left(\left(t \mu_{k}\right)^{2}+\frac{f(\xi)}{n(n-2)} d_{g_{\xi}}(\xi, x)^{2}\right)^{\frac{n-2}{2}}}}_{\text {standard bubble }},
$$

Choose $\varphi$ satisfying $|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$ and consider the only solution of:

$$
\vec{\triangle}_{g} W_{t, \xi, k}=\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}} X+Y
$$

By the choice of $\varphi$ and $X$, we now have pointwise estimates on this $W_{k}$ that blows-up:

$$
\left|\mathcal{L}_{g} W_{t, \xi, k}\right| \sim \frac{\mu_{k}^{\frac{n-1}{2}}}{\left(\mu_{k}^{2}+d_{g \xi}(\xi, x)^{2}\right)^{\frac{n-1}{2}}} \text { close to } \xi
$$

## Sketch of the proof I

The proof is a fixed-point ("ping-pong") method in $1+3$ main steps:
Step 0: Choose the following zeroth-order approximation:

$$
B_{t, \xi, k}(x)=\underbrace{\Lambda_{\xi}(x) \cdot \chi\left(\frac{d_{g_{\xi}}(\xi, x)}{r_{k}}\right)}_{\text {conformal correction + cutoff }} \underbrace{\left(t \mu_{k}\right)^{\frac{n-\mathbf{2}}{2}}}_{\text {standard bubble }} \frac{\left(\left(\mu_{k}\right)^{2}+\frac{f(\xi)}{n(n-2)} d_{g_{\xi}}(\xi, x)^{2}\right)^{\frac{n-\mathbf{2}}{2}}}{}
$$

Choose $\varphi$ satisfying $|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$ and consider the only solution of:

$$
\vec{\triangle}_{g} W_{t, \xi, k}=\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}} X+Y
$$

By the choice of $\varphi$ and $X$, we now have pointwise estimates on this $W_{k}$ that blows-up:

$$
\left|\mathcal{L}_{g} W_{t, \xi, k}\right| \sim \frac{\mu_{k}^{\frac{n-1}{2}}}{\left(\mu_{k}^{2}+d_{g_{\xi}}(\xi, x)^{2}\right)^{\frac{n-1}{2}}} \text { close to } \xi
$$

Problem: it blows up too fast to plug it into the scalar equation and perform a usual ping-pong method!

## Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$
\begin{array}{r}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}+\left(\frac{\left|\mathcal{L}_{g} W_{t, \xi, k}+\sigma\right|_{g}^{2}-\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}}{\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}+1}}\right) \\
+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi, \varphi)\left(\triangle_{g}+h\right) Z_{j, k} .
\end{array}
$$

Done via a nonlinear fixed-point method in $H^{1}$ in the orthogonal of the kernel of the linearized equation at $B_{t, \xi, k}$ (spanned by the $Z_{j, k}$ ). Here $\mathcal{L}_{g} W_{t, \xi, k}$ is a coefficient.

Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$
\begin{array}{r}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}+\left(\frac{\left|\mathcal{L}_{g} W_{t, \xi, k}+\sigma\right|_{g}^{2}-\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}}{\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}+1}}\right) \\
\quad+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi, \varphi)\left(\triangle_{g}+h\right) Z_{j, k} .
\end{array}
$$

Done via a nonlinear fixed-point method in $H^{1}$ in the orthogonal of the kernel of the linearized equation at $B_{t, \xi, k}$ (spanned by the $Z_{j, k}$ ). Here $\mathcal{L}_{g} W_{t, \xi, k}$ is a coefficient. It works since the red term comes with explicit pointwise estimates on it.

Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$
\begin{array}{r}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}+\left(\frac{\left|\mathcal{L}_{g} W_{t, \xi, k}+\sigma\right|_{g}^{2}-\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}}{\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2^{*}+1}}\right) \\
\quad+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi, \varphi)\left(\triangle_{g}+h\right) Z_{j, k} .
\end{array}
$$

Done via a nonlinear fixed-point method in $H^{1}$ in the orthogonal of the kernel of the linearized equation at $B_{t, \xi, k}$ (spanned by the $Z_{j, k}$ ). Here $\mathcal{L}_{g} W_{t, \xi, k}$ is a coefficient. It works since the red term comes with explicit pointwise estimates on it.
The solution is of the form $B_{t, \xi, k}+u_{0}+\psi_{t, \xi, k}$ for a new remainder $\psi \in H^{1}(M)$, orthogonal to the $Z_{j, k}$.

Sketch of the proof II: Semi-decoupling

Step 1: Construct a solution of:

$$
\begin{array}{r}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}+\pi^{2}}{u^{2^{*}+1}}+\left(\frac{\left|\mathcal{L}_{g} W_{t, \xi, k}+\sigma\right|_{g}^{2}-\left|\mathcal{L}_{g} W_{0}+\sigma\right|_{g}^{2}}{\left(B_{t, \xi, k}+u_{0}+\varphi\right)^{2 *+1}}\right) \\
\quad+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi, \varphi)\left(\triangle_{g}+h\right) Z_{j, k} .
\end{array}
$$

Done via a nonlinear fixed-point method in $H^{1}$ in the orthogonal of the kernel of the linearized equation at $B_{t, \xi, k}$ (spanned by the $Z_{j, k}$ ). Here $\mathcal{L}_{g} W_{t, \xi, k}$ is a coefficient. It works since the red term comes with explicit pointwise estimates on it.
The solution is of the form $B_{t, \xi, k}+u_{0}+\psi_{t, \xi, k}$ for a new remainder $\psi \in H^{1}(M)$, orthogonal to the $Z_{j, k}$.

Goal: Get an (almost) solution of the system if $\psi=\varphi$.

Sketch of the proof III: Fixed-point in $C^{0} 1$

Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of $C^{0}$ functions satisfying:

$$
\begin{equation*}
|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right) . \tag{0.4}
\end{equation*}
$$

Sketch of the proof III: Fixed-point in $C^{0} 1$

Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of $C^{0}$ functions satisfying:

$$
\begin{equation*}
|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right) . \tag{0.4}
\end{equation*}
$$

Since $\psi$ comes from an $H^{1}$ procedure it is not even clear that $|\psi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$. We prove this by a priori analysis techniques.

## Sketch of the proof III: Fixed-point in $C^{0} 1$

Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of $C^{0}$ functions satisfying:

$$
\begin{equation*}
|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right) . \tag{0.4}
\end{equation*}
$$

Since $\psi$ comes from an $H^{1}$ procedure it is not even clear that $|\psi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$. We prove this by a priori analysis techniques.

This is again done in three steps:
Step a): Extend the a priori asymptotic techniques of the $C^{0}$-theory of Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with explicit (and suitable) pointwise bounds.

## Sketch of the proof III: Fixed-point in $C^{0} 1$

Step 2: The goal is now to fix-point $\varphi \mapsto \psi$, in the set of $C^{0}$ functions satisfying:

$$
\begin{equation*}
|\varphi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right) . \tag{0.4}
\end{equation*}
$$

Since $\psi$ comes from an $H^{1}$ procedure it is not even clear that $|\psi| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$. We prove this by a priori analysis techniques.

This is again done in three steps:
Step a): Extend the a priori asymptotic techniques of the $C^{0}$-theory of Druet-Hebey-Robert to this scalar equation. Possible here since the red term comes with explicit (and suitable) pointwise bounds.

This shows that

$$
\psi=o\left(B_{t, \xi, k}+u_{0}\right) \quad \text { in } C^{0}(M) .
$$

## Sketch of the proof III: Fixed-point in $C^{0} 2$

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on $\psi$ (again blow-up arguments).

Sketch of the proof III: Fixed-point in $C^{0} 2$

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on $\psi$ (again blow-up arguments). They are for instance, at finite distance from $\xi$ :

$$
\begin{aligned}
& |\psi|(x) \lesssim\left[\mu_{k}^{\frac{n}{2}}+\mu_{k}\|\nabla f\|_{L \infty}+\left\|h-c_{n} S_{g}\right\|_{L \infty} \mu_{k}^{2} \ln \left(\frac{\mu_{k}+d_{g}(\xi, x)}{\mu_{k}}\right)\right. \\
& \left.+\left\|h-c_{n} S_{g}\right\|_{L \infty} d_{g}(\xi, x)^{2}+d_{g}(\xi, x)^{4} \mathbb{1}_{n \mid c f}\right] B_{t, \xi, k}(x)+\left(\frac{\mu_{k}}{\mu_{k}+d_{g}(\xi, x)}\right)^{2} .
\end{aligned}
$$

Sketch of the proof III: Fixed-point in $C^{0} 2$

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on $\psi$ (again blow-up arguments). They are for instance, at finite distance from $\xi$ :

$$
\begin{aligned}
& |\psi|(x) \lesssim\left[\mu_{k}^{\frac{n}{2}}+\mu_{k}\|\nabla f\|_{L \infty}+\left\|h-c_{n} S_{g}\right\|_{L \infty \mu_{k}^{2}} \ln \left(\frac{\mu_{k}+d_{g}(\xi, x)}{\mu_{k}}\right)\right. \\
& \left.+\left\|h-c_{n} S_{g}\right\|_{L \infty} d_{g}(\xi, x)^{2}+d_{g}(\xi, x)^{4} \mathbb{1}_{n l c f}\right] B_{t, \xi, k}(x)+\left(\frac{\mu_{k}}{\mu_{k}+d_{g}(\xi, x)}\right)^{2} .
\end{aligned}
$$

We also prove that these estimates are uniform in $t, \xi$ and $\varphi$.

Step b): Quantify the $o(1)$. This requires to obtain second-order estimates on $\psi$ (again blow-up arguments). They are for instance, at finite distance from $\xi$ :

$$
\begin{aligned}
& |\psi|(x) \lesssim\left[\mu_{k}^{\frac{n}{2}}+\mu_{k}\|\nabla f\|_{L \infty}+\left\|h-c_{n} S_{g}\right\| \|_{L \infty} \mu_{k}^{2} \ln \left(\frac{\mu_{k}+d_{g}(\xi, x)}{\mu_{k}}\right)\right. \\
& \left.+\left\|h-c_{n} S_{g}\right\|_{L \infty} d_{g}(\xi, x)^{2}+d_{g}(\xi, x)^{4} \mathbb{1}_{n l c f}\right] B_{t, \xi, k}(x)+\left(\frac{\mu_{k}}{\mu_{k}+d_{g}(\xi, x)}\right)^{2} .
\end{aligned}
$$

We also prove that these estimates are uniform in $t, \xi$ and $\varphi$.
Step c): Choose a suitable $\varepsilon_{k}$ (according to the red term). And then show that $\varphi \mapsto \psi$ is a contraction. Relies on the second-order estimates.

## Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution $\left(u_{t, \xi, k}, W_{t, \xi, k}\right)$ of:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}}+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi)\left(\triangle_{g}+h\right) Z_{j, k, t, \xi}, \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y,
\end{array}\right.
$$

where $u_{t, \xi, k}$ writes as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

and $\left|\varphi_{t, \xi, k}\right| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$, where $\varepsilon_{k}$ is known.

## Sketch of the proof IV: Concluding argument

Step 3: At the end of Step 2, after point-fixing the remainders, we have a solution $\left(u_{t, \xi, k}, W_{t, \xi, k}\right)$ of:

$$
\left\{\begin{array}{l}
\triangle_{g} u+h u=f u^{2^{*}-1}+\frac{\pi^{2}+\left|\sigma+\mathcal{L}_{g} W\right|_{g}^{2}}{u^{2^{*}+1}}+\sum_{j=0}^{n} \lambda_{k}^{j}(t, \xi)\left(\triangle_{g}+h\right) Z_{j, k, t, \xi} \\
\vec{\triangle}_{g} W=u^{2^{*}} X+Y
\end{array}\right.
$$

where $u_{t, \xi, k}$ writes as:

$$
u_{t, \xi, k}=B_{t, \xi, k}+u_{0}+\varphi_{t, \xi, k}
$$

and $\left|\varphi_{t, \xi, k}\right| \leq \varepsilon_{k}\left(B_{t, \xi, k}+u_{0}\right)$, where $\varepsilon_{k}$ is known.
To conclude: use the second-order estimates on $\varphi_{t, \xi, k}$ to obtain an asymptotic expansion of the $\lambda_{k, j}(t, \xi)$ in $C_{\text {loc }}^{0}\left(\mathbb{R}^{n+1}\right)$ as $k \rightarrow+\infty$. And we are left to annihilate $(n+1)$ functions from $\mathbb{R}^{n+1}$ to $\mathbb{R}$.

Thank you for your attention.

## Bonus: Explicit expressions of $h$ and $X$.

The explicit expressions of $h, f$ and $X$ are the following:

$$
\begin{aligned}
& f(x) \approx f_{0} \\
& h(x)=\frac{n-2}{4(n-1)} S_{g}(x)+\sum_{k \geq 1} \tau_{k} H\left(\frac{1}{\beta_{k}}\left(\exp _{\xi_{0}}\right)^{-1}(x)\right), \\
& X(x)=X_{0}(x)+\sum_{k \geq 1} \mu_{k} \frac{n-1}{2} Z\left(\left(\exp _{\xi_{0}}\right)^{-1}(x)\right),
\end{aligned}
$$

where $\tau_{k}$ depends on $\mu_{k}$ and on the dimension and if $(M, g)$ is locally conformally flat or not. Also, $\mu_{k} \ll \beta_{k} \ll 1$ is another scale parameter.

The function $H$ has a strict local maximum at 0 and $|Z(0)|_{\xi}>0$.

## Bonus: Explicit expressions of $h$ and $X$.

The explicit expressions of $h, f$ and $X$ are the following:

$$
\begin{aligned}
& f(x) \approx f_{0} \\
& h(x)=\frac{n-2}{4(n-1)} S_{g}(x)+\sum_{k \geq 1} \tau_{k} H\left(\frac{1}{\beta_{k}}\left(\exp _{\xi_{0}}\right)^{-1}(x)\right), \\
& X(x)=X_{0}(x)+\sum_{k \geq 1} \mu_{k} \frac{n-1}{2} Z\left(\left(\exp _{\xi_{0}}\right)^{-1}(x)\right),
\end{aligned}
$$

where $\tau_{k}$ depends on $\mu_{k}$ and on the dimension and if $(M, g)$ is locally conformally flat or not. Also, $\mu_{k} \ll \beta_{k} \ll 1$ is another scale parameter.

The function $H$ has a strict local maximum at 0 and $|Z(0)|_{\xi}>0$.
We did not jut play around with the values of the parameters so that everything fits well in the end: the relations between the parameters are rigid and are given by the a priori pointwise stability analysis.

