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1. Warm-up: late-time behaviour of the wave equation on
Minkowski



Consider the wave equation on 3+1-dimensional Minkowski space:

−∂2
t ψ +

3∑
i=1

∂2
i ψ = 0,

with initial data

ψ(0, ·) ∈ C∞0 (R3),

∂tψ(0, ·) ∈ C∞0 (R3).

The strong Huygens principle: if ψ is initially supported in dark blue ball,
then ψ vanishes outside the wave zone (depicted below in light blue). This
follows from Kirchoff’s formula for ψ(t, x).
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We obtain boundedness of solutions ψ to the wave equation by using energy
conservation:

d

dt

(∫
R3

(∂tψ)2(t, x) +
3∑
i=1

(∂iψ)2(t, x) dx

)
= 0.

Σ̃t′ = {t = t′}

Σ̃0 = {t = 0}

r
=

0
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We want to capture decay of solutions ψ to the wave equation by using energy
conservation with respect to asymptotically null hypersurfaces:

d

dτ
E[τ ] ≤ 0.

N⌧

N1

wave zone

r
=

R

r
=

0

e⌃0 = {t = 0}

e⌃1 = {t = 1}

⌃⌧

N0

“Energy at time τ = 1” equals “energy at time τ = 0” plus “energy radiated to
infinity between τ = 0 and τ = 1”.
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2. Statement of main result



Let M be a 3 + 1-dimensional manifold equipped with a metric g of signature
(−,+,+,+) (a “spacetime”) that is:

1. stationary,

2. asymptotically flat.

Consider the initial value problem for the corresponding geometric wave
equation

�gψ =
1

√
− det g

∑
α,β

∂α
(√
− det g(g−1)αβ∂βψ

)
= 0

with smooth, compactly supported Cauchy data.

Assume moreover:

3. energy boundedness and integrated local energy decay for the wave
equation.

For this talk, let us fix (M, g) to be the domain of outer communications of a
Schwarzschild black hole: M = R× [2M,∞)× S2 and

g = −(1− 2M/r)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2),

with M > 0.
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Theorem (Y. Angelopoulos–S. Aretakis–D.G. ’16).
Let ψ be a solution to �gψ = 0 on Schwarzschild, arising from smooth, compactly
supported initial data. Then we can estimate∣∣∣∣ψ(τ, r, θ, ϕ)− P ·

1

(1 + τ)3

∣∣∣∣ . D(1 + τ)−3−ε in {r ≤ R},∣∣∣∣ψ(u, v, θ, ϕ)−
1

2
P ·

1

u2v

(
1 +

u

v

)∣∣∣∣ . D(1 + v)−1(1 + u)−2−ε in {r ≥ R},

where D and P are constants depending on initial data for ψ.

1. The constant P can be determined explicitly from initial data and is
generically non-zero.

2. Important difference with Minkowski: presence of “polynomial tails”.

3. Better decay for higher angular modes (work in progress):
|ψ≥`|(v, r, θ, ϕ) ∼ (1 + v)−3−2`, where ψ≥` is the projection of ψ to
eigenspaces of the spherical Laplacian /∆S2 corresponding to eigenvalues
less or equal to −`(`+ 1), ` ≥ 0.

4. The above polynomial decay rates were first derived heuristically by Price

’72 for fixed modes ψ` and are sometimes referred to as “Price’s law”.
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3. Motivations and previous work



Motivations

General relativity is a theory of gravity that describes the interaction of energy
and matter with spacetime curvature according to the Einstein equations. In
vacuum these are given by:

Ricαβ(g) = 0.

In harmonic coordinates these reduce to:

�ggαβ = Nαβ(g, ∂g).

The wave equation on a spacetime solution to the Einstein equations is the
simplest linear toy model for the dynamics of spacetime perturbations in the
context of the Cauchy problem for the Einstein equations:
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1. Robust, quantitative, uniform upper bound time-decay estimates are
needed for proving global existence and uniqueness of nonlinear wave
equations and for proving global stability of spacetime solutions to the
Einstein equations,

See the proof of global stability of Minkowski by
Christodoulou–Klainerman ’91.

2. Quantitative uniform lower bound time-decay estimates outside black holes
are relevant for understanding the geometry inside black holes.
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Previous work

Recently there has been a lot of activity in proving boundedness and decay
estimates for solutions to the wave equation on domains of outer
communications of black holes. See for example work by:

Andersson, Angelopoulos, Aretakis, Bachelot, Blue, Chodosh, Civin, Dafermos,

Donninger, Finster, Ionescu, Kamran, Kay, Klainerman, Luk, Marzuola,

Metcalfe, Moschidis, Oh, Rodnianski, Schlag, Schlue, Shlapentokh-Rothman,

Smoller, Soffer, Sterbenz, Stogin, Tataru, Tohaneanu, Wald, Whiting, Yau,. . .

In the Λ > 0 (cosmological) and Λ < 0 (anti de Sitter) settings, see work by:

Bony, Dafermos, Dold, Dunn, Dyatlov, Gannot, Häfner, Hintz, Holzegel,

Melrose, Rodnianski, Sà Barreto, Shao, Smulevici, Vasy, Warnick,. . .

In addition: a plethora of heuristics and numerics by the physics community.
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Previous sharp upper bound results

Dafermos–Rodnianski ’03 proved a τ−3+ε upper bound for spherically
symmetric ψ in dynamic black hole solutions to the Einstein-scalar field
equations (and a τ−2 upper bound for r · ψ using L1 estimates).

Tataru ’09 proved a τ−3 upper bound for ψ (and a τ−2 upper bound for r · ψ)
in a general class of stationary spacetimes containing Schwarzschild via Fourier
methods and resolvent estimates (see also a later extension to certain
non-stationary spacetimes by Metcalfe–Tataru–Tohaneanu ’11).

Donninger–Schlag–Soffer ’09 obtained τ−2`−2 upper bound on Schwarzschild
for ψ≥` with ` ≥ 1.
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Previous lower bound results

Luk–Oh ’15 showed that∫ ∞
1

v7(∂vψ)2 sin θdθdϕdv

∣∣∣∣∣
r=2M

blows up for generic smooth, compactly supported initial data on Schwarzschild
(and more generally, sub-extremal Reissner–Nordström).

15



4. The Klainerman commutating vector field method



Klainerman’s vector field method in a nutshell

Klainerman ’85:

Use energy conservation:

d

dt

(∫
R3

(∂tψ)2(t, x) +
3∑
i=1

(∂iψ)2(t, x) dx

)
= 0,

together with:
�g(Zψ) = 0

if �gψ = 0, with Z a vector field generating a Poincaré symmetry in Minkowski
or the conformal scaling symmetry.

Obtain decay by using that some of the Z have growing weights in t and r.
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Commuting with Z and applying a Klainerman–Sobolev inequality in
Minkowski, gives:

|ψ| ≤ C(t+ r + 1)−1(t− r + 1)−
1
2 ,

where the constant C ≥ 0 depends on weighted initial L2 norms.

1. Klainerman ’86 used this method to prove global existence and uniqueness
of quasilinear wave equations on Minkowski satisfying the null condition.

2. The above decay estimate plays a direct role in the global stability proof of
Lindblad–Rodnianski ’04.

3. One can avoid commuting with the vector fields generating Lorentz boosts
by using the inverted time translation conformal Killing vector field as a
multiplier Klainerman–Sideris ’96.

4. The above ideas have been adapted to obtain t−3/2 decay in Schwarzschild
in Luk ’09 and slowly rotating Kerr in Luk ’10 inside a region {r ≤ t

2
}.
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4. The Dafermos–Rodnianski hierarchy of rp-weighted estimates



Dafermos–Rodnianski ’09:

Philosophy: capture quantitatively the “radiation to infinity” corresponding
to a foliation by asymptotically null hypersurfaces. We will sketch the method
in Minkowski.

N⌧

N1

wave zone

r
=

R

r
=

0

e⌃0 = {t = 0}

e⌃1 = {t = 1}

⌃⌧

N0

Split the spacetime slab τ1 ≤ τ ≤ τ2 into two regions: {r < R} and {r ≥ R}.
First, let us assume integrated local energy decay:∫ τ2

τ1

[∫
Στ∩{r≤R}

(∂ψ)2dµ

]
dτ ≤ C

∫
Στ1

(∂ψ)2 + (∂∂tψ)2 dµ.

Allow for loss of derivatives due to “trapping of null geodesics”.
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Write v = t+ r and u = t− r. Integrate by parts the spacetime integral of
rp∂v(rψ) ·�g(rψ) with p = 1, 2 to obtain the following (schematic) hierarchy of
estimates in {r ≥ R}:∫ τ2

τ1

[∫
Nτ

(∂v(rψ))2 + r2| /∇ψ|2 dωdv
]
du ≤ C

∫
Nτ1

r · (∂v(rψ))2dωdv + . . . ,∫ τ2

τ1

[∫
Nτ

r · (∂v(rψ))2dωdv

]
du ≤ C

∫
Nτ1

r2 · (∂v(rψ))2dωdv + . . . .

Apply mean-value theorem on dyadic intervals [τj , τj+1], j ∈ N, to obtain:∫
Nτ′

j+1

(∂v(rψ))2 + r2| /∇ψ|2 dωdv ≤ C(1 + τ ′j)
−2

Together with local integrated energy decay and energy boundedness: for all
τ ≥ 0 ∫

Στ

(∂ψ)2dµτ ≤ C(1 + τ)−2.
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By standard Sobolev inequalities, obtain:

|ψ| ≤ C(1 + r)−1(1 + τ)−
1
2 ,

|ψ| ≤ C(1 + r)−
1
2 (1 + τ)−1.

Commute �g with ∂v or r · ∂v (Schlue ’10, Moschidis ’15) to obtain moreover:

|ψ| ≤ C(1 + τ)−
3
2 ,

cf. commuting with the scaling vector field S = u · ∂u + v · ∂v and considering
conformal energy in Klainerman’s method.
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5. Conserved radiative quantities and higher-order hierarchies



Strategy: Extend the Dafermos–Rodnianski hierarchy in order to apply the
mean-value theorem more times and consequently get better energy decay rates.

Main idea: Commute �g with r2 · ∂v and obtain the following hierarchy for
Φ = r2∂v(rψ):∫ τ2

τ1

[∫
Nτ

(∂vΦ)2dωdv

]
dτ ≤ C

∫
Nτ1

r · (∂vΦ)2dωdv + . . . ,∫ τ2

τ1

[∫
Nτ

r · (∂vΦ)2dωdv

]
dτ ≤ C

∫
Nτ1

r2 · (∂vΦ)2dωdv + . . . .

Now observe that a Hardy inequality gives:∫ τ2

τ1

[∫
Nτ

r2 · (∂v(rψ))2dωdv

]
dτ =

∫ τ2

τ1

[∫
Nτ

r−2 · (r2∂v(rψ))2dωdv

]
dτ

≤ C
∫ τ2

τ1

[∫
Nτ

(∂v(r2∂v(rψ))2dωdv

]
dτ.
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Some remarks

1. Caveat: above method works only for ψ −
∫
S2 ψ dω.

More generally, if we decompose ψ =
∑∞
`=0 ψ`, where

/∆S2ψ` = −`(`+ 1)ψ`, we can keep on commuting with r2 · ∂v , provided we
subtract ψ0, ψ1, . . . , ψ`, with ` > 0 suitable large.

2. For each fixed ψ`, with ` ≥ 0, we obtain a sharp number of hierarchies if
we commute with vector fields of the form w(r) · ∂v , where the functions
w(r) = r2(1 +O(r−1)) have to be chosen carefully.

3. The hierarchy of r-weighted estimates results in |ψ| ≤ Cτ−3+ε, with ε > 0
arbitrarily small. To get rid of ε, we need a deeper understanding of the

quantities r2∂v(rψ).

4. Observe that the commutator vector field r2 · ∂v resembles the conformal
Killing vector field K = u2 · ∂u + v2 · ∂v , which produces the conformal
energy when used as a multiplier.
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Aside: extremal Reissner–Nordström

In extremal Reissner–Nordström black hole spacetimes,

g = −(1−M/r)2dv2 + 2dvdr + r2(dθ2 + sin θ2dφ2),

there exists a conformal transformation that maps {r ≥ R} to a neighbourhood
of the event horizon at r = M (Couch–Torrence ’84).

The above estimates in {r ≥ R} can therefore be adapted to obtain precise
asymptotics for the wave equation on extremal Reissner–Nordström which are
fundamental for studying the black hole interior D.G. ’15 and are relevant for
non-linear problems (work in progress). See also previous work by Aretakis ’10.
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Conserved quantities

The quantity limv→∞
(∫

S2 r
2∂v(rψ) dω

)
(u, v) is conserved in u, i.e. it is equal

to a constant I0 determined from initial data for ψ.

For each fixed `, the `+ 1-th order commuted quantities
r2∂v [(w1(r)∂v) · (w2(r)∂v) · . . . (w`(r)∂v)(rψ`)] are conserved along null infinity.

These conserved quantities were first discovered by Newman–Penrose ’68 and
are called Newman–Penrose constants.

The Newman–Penrose constants not only suggest which commutator vector
fields to consider in the r-weighted estimates, but their conservation can also be
viewed as the source of lower bounds and polynomial tails appearing in the
late-time asymptotics for the wave equation!
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Theorem (Y. Angelopoulos–S. Aretakis–D.G. ’16).
Let ψ be a solution to �gψ = 0 on Schwarzschild, arising from smooth, compactly
supported initial data. Then we can estimate∣∣∣∣ψ(τ, r, θ, ϕ)− 8I

(1)
0 ·

1

(1 + τ)3

∣∣∣∣ .ε D(1 + τ)−3−ε in {r ≤ R},∣∣∣∣ψ(u, v, θ, ϕ)− 4I
(1)
0 ·

1

u2v

(
1 +

u

v

)∣∣∣∣ .ε D(1 + v)−1(1 + u)−2−ε in {r ≥ R},

where D is a constant depending on initial data for ψ and I
(1)
0 is the ` = 0

Newman–Penrose constant of the time integral ψ(1), which is a smooth
function satisfying �gψ(1) = 0 and ∂τψ(1) = ψ.

1. I
(1)
0 can be determined explicitly from initial data for ψ.

2. The constant I
(1)
0 is generically non-zero in Schwarzschild, but it is

always zero in Minkowski.

3. Can obtain similar estimates for ∂kτψ where the decay rate in τ or u
increases by k.

28



Theorem (Y. Angelopoulos–S. Aretakis–D.G. ’16).
Let ψ be a solution to �gψ = 0 on Schwarzschild, arising from smooth, compactly
supported initial data. Then we can estimate∣∣∣∣ψ(τ, r, θ, ϕ)− 8I

(1)
0 ·

1

(1 + τ)3

∣∣∣∣ .ε D(1 + τ)−3−ε in {r ≤ R},∣∣∣∣ψ(u, v, θ, ϕ)− 4I
(1)
0 ·

1

u2v

(
1 +

u

v

)∣∣∣∣ .ε D(1 + v)−1(1 + u)−2−ε in {r ≥ R},

where D is a constant depending on initial data for ψ and I
(1)
0 is the ` = 0

Newman–Penrose constant of the time integral ψ(1), which is a smooth
function satisfying �gψ(1) = 0 and ∂τψ(1) = ψ.

1. I
(1)
0 can be determined explicitly from initial data for ψ.

2. The constant I
(1)
0 is generically non-zero in Schwarzschild, but it is

always zero in Minkowski.

3. Can obtain similar estimates for ∂kτψ where the decay rate in τ or u
increases by k.

28



Theorem (Y. Angelopoulos–S. Aretakis–D.G. ’16).
Let ψ be a solution to �gψ = 0 on Schwarzschild, arising from smooth, compactly
supported initial data. Then we can estimate∣∣∣∣ψ(τ, r, θ, ϕ)− 8I

(1)
0 ·

1

(1 + τ)3

∣∣∣∣ .ε D(1 + τ)−3−ε in {r ≤ R},∣∣∣∣ψ(u, v, θ, ϕ)− 4I
(1)
0 ·

1

u2v

(
1 +

u

v

)∣∣∣∣ .ε D(1 + v)−1(1 + u)−2−ε in {r ≥ R},

where D is a constant depending on initial data for ψ and I
(1)
0 is the ` = 0

Newman–Penrose constant of the time integral ψ(1), which is a smooth
function satisfying �gψ(1) = 0 and ∂τψ(1) = ψ.

1. I
(1)
0 can be determined explicitly from initial data for ψ.

2. The constant I
(1)
0 is generically non-zero in Schwarzschild, but it is

always zero in Minkowski.

3. Can obtain similar estimates for ∂kτψ where the decay rate in τ or u
increases by k.

28



Theorem (Y. Angelopoulos–S. Aretakis–D.G. ’16).
Let ψ be a solution to �gψ = 0 on Schwarzschild, arising from smooth, compactly
supported initial data. Then we can estimate∣∣∣∣ψ(τ, r, θ, ϕ)− 8I

(1)
0 ·

1

(1 + τ)3

∣∣∣∣ .ε D(1 + τ)−3−ε in {r ≤ R},∣∣∣∣ψ(u, v, θ, ϕ)− 4I
(1)
0 ·

1

u2v

(
1 +

u

v

)∣∣∣∣ .ε D(1 + v)−1(1 + u)−2−ε in {r ≥ R},

where D is a constant depending on initial data for ψ and I
(1)
0 is the ` = 0

Newman–Penrose constant of the time integral ψ(1), which is a smooth
function satisfying �gψ(1) = 0 and ∂τψ(1) = ψ.

1. I
(1)
0 can be determined explicitly from initial data for ψ.

2. The constant I
(1)
0 is generically non-zero in Schwarzschild, but it is

always zero in Minkowski.

3. Can obtain similar estimates for ∂kτψ where the decay rate in τ or u
increases by k.

28



Thank you!
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