General Covariant Modulated procedure

Dawei Shen

Laboratoire Jacques-Louis Lions, Sorbonne Université

Plan of the talk

1. Introduction: Kerr stability for small angular momentum
2. General Covariant Modulated (GCM) spheres
3. General Covariant Modulated (GCM) hypersurfaces

1. Introduction

The Kerr and the Schwarzschild solutions

Einstein vacuum equations (EVE): $\mathbf{R i c}_{\alpha \beta}=0(\mathbf{R i c}$ Ricci tensor of $\mathbf{g})$

Kerr metric given in Boyer-Lindquist (t, r, θ, φ) coordinates by

$$
\begin{gathered}
\mathbf{g}_{a, m}=-\frac{\rho^{2} \Delta}{\Sigma^{2}} d t^{2}+\frac{\Sigma^{2} \sin ^{2} \theta}{\rho^{2}}\left(d \varphi-\frac{2 a m r}{\Sigma^{2}} d t\right)^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2} \\
\Delta=r^{2}+a^{2}-2 m r, \rho^{2}=r^{2}+a^{2} \cos ^{2} \theta, \Sigma^{2}=\left(r^{2}+a^{2}\right)^{2}-a^{2} \sin ^{2} \theta \Delta
\end{gathered}
$$

The Schwarzschild metric is spherically symmetric and corresponds to the particular case $a=0, m>0$

$$
\mathbf{g}_{m}=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+(\sin \theta)^{2} d \varphi^{2}\right)
$$

Stability conjecture for the Kerr family

Schwarzchild spacetimes correspond to non rotating black holes while for $|a|<m$, Kerr spacetimes correspond to rotating black holes

Stability problem: Are these black holes stable?

In the context of asymptotically flat solutions to the Einstein vacuum equation, we have the following conjecture:

Conjecture (Stability of the exterior region of Kerr). Small perturbations of given initial conditions of an exterior Kerr $\mathbf{g}_{a, m}$ with $|a|<m$ have maximal future developments converging to another exterior Kerr solution $\mathbf{g}_{a_{f}, m_{f}}$ with $\left|a_{f}\right|<m_{f}$

Nonlinear stability of Kerr for $|a| \ll m$

Theorem: The stability conjecture holds true for $|a| \ll m$.

- Modulation: Klainerman-Szeftel 19' (arXiv:1911.00697, arXiv:1912.12195), and S. 22' (arXiv:2205.12336)
- Decay estimates, as well as statement of the result and strategy: Klainerman-Szeftel 21' (arXiv:2104.11857)
- Hyperbolic estimates: Giorgi-Klainerman-Szeftel 22' (arXiv:2205.14808)

In this talk, we focus on the modulation procedure that extends [Klainerman-Szeftel 18'] in axial polarized symmetry to general perturbations of Kerr spacetimes

Modulation

$\boldsymbol{\operatorname { R i c }}\left[\phi^{*} \mathbf{g}_{a, m}\right]=0$ for all $|a|<m$ and diffeomorphism ϕ and hence:

$$
\delta \mathbf{R i c}\left[\frac{\partial \mathbf{g}_{a, m}}{\partial m}\right]=\delta \mathbf{R i c}\left[\frac{\partial \mathbf{g}_{m, a}}{\partial a}\right]=\delta \mathbf{R i c}\left[\mathcal{L}_{X} \mathbf{g}_{m, a}\right]=0
$$

Thus, $\partial_{m} \mathbf{g}_{m, a}, \partial_{a} \mathbf{g}_{m, a}$ and $\mathcal{L}_{X} \mathbf{g}_{m, a}$ belong to the kernel of Linearized Gravity System (LGS), which corresponds at the nonlinear level to the tracking of (m_{f}, a_{f}).

When dealing with a linearized operator possessing a non trivial kernel, one uses modulation theory

General covariance of Einstein equations generates a kernel of LGS which has infinite dimensions and hence requires to find a strategy to implement modulation in infinite dimensions

The continuity argument and the last slice

The last slice is chosen as a GCM hypersurface, which is the topic of this talk.

2. GCM spheres

Principal quantities

S-adapted null frame $\left(e_{1}, e_{2}, e_{3}, e_{4}\right):\left(e_{1}, e_{2}\right)$ are tangent to S
Ricci coefficients:

$$
\begin{array}{rlrl}
\chi_{a b} & :=g\left(D_{e_{a}} e_{4}, e_{b}\right), & \underline{\chi}_{a b} & :=g\left(D_{e_{a}} e_{3}, e_{b}\right), \\
\underline{\xi}_{a} & :=\frac{1}{2} g\left(D_{e_{3}} e_{3}, e_{a}\right), & & :=\frac{1}{2} g\left(D_{e_{4}} e_{4}, e_{a}\right), \\
\eta_{a} & :=\frac{1}{2} g\left(D_{e_{3}} e_{4}, e_{a}\right), & \underline{\eta}_{a} & :=\frac{1}{2} g\left(D_{e_{4}} e_{4}, e_{3}\right), \\
& \underline{\omega}\left(D_{e_{4}} e_{3}, e_{a}\right), & : \frac{1}{4} g\left(D_{e_{3}} e_{3}, e_{4}\right), \\
\zeta_{a} & :=\frac{1}{2} g\left(D_{e_{a}} e_{4}, e_{3}\right)
\end{array}
$$

Expansion, shear and twist:

$$
\begin{array}{lll}
\operatorname{tr} \chi:=g^{a b} \chi_{a b}, & \widehat{\chi}_{a b}:=\chi_{a b}-\frac{1}{2} \operatorname{tr} \chi g_{a b}, & { }^{(a)} \operatorname{tr} \chi:=\in^{a b} \chi_{a b}, \\
\operatorname{tr} \underline{\chi}:=g^{a b} \underline{\chi}_{a b}, & \underline{\chi}_{a b}:=\underline{\chi}_{a b}-\frac{1}{2} \operatorname{tr} \underline{\chi} g_{a b}, & { }^{(a)} \operatorname{tr} \underline{\chi}:=\in^{a b} \underline{\chi}_{a b}
\end{array}
$$

Principal quantities

Curvature components:

$$
\begin{aligned}
\alpha_{a b} & :=R\left(e_{a}, e_{4}, e_{b}, e_{4}\right), & \underline{\alpha}_{a b} & :=R\left(e_{a}, e_{3}, e_{b}, e_{3}\right), \\
\beta_{a} & :=\frac{1}{2} R\left(e_{a}, e_{4}, e_{3}, e_{4}\right), & \underline{\beta}_{a} & :=\frac{1}{2} R\left(e_{a}, e_{3}, e_{3}, e_{4}\right), \\
\rho & :=\frac{1}{4} R\left(e_{3}, e_{4}, e_{3}, e_{4}\right), & \sigma & :=\frac{1}{4} R\left(e_{3}, e_{4}, e_{3}, e_{4}\right)
\end{aligned}
$$

Mass aspect function:

$$
\mu:=-\operatorname{div} \zeta-\rho+\frac{1}{2} \widehat{\chi} \cdot \underline{\widehat{\chi}}
$$

Conditions of geodesic foliation on e_{4} :

$$
\xi=0, \quad \omega=0, \quad \underline{\eta}=-\zeta
$$

Choice of last slice Σ_{*}

Before estimating the Exterior region ${ }^{(\text {ext })} \mathcal{M}$, we need to estimate Σ_{*}

- We only have Hodge-Elliptic equations on Σ_{*} (e.g. Codazzi equations)
- $\operatorname{tr} \chi, \operatorname{tr} \underline{\chi}$ and μ do not verify Hodge-Elliptic equations, (only transport equations)

Idea: Construct Σ_{*} by combination of well chosen spheres such that $\operatorname{tr} \chi, \operatorname{tr} \underline{\chi}$ and μ take Schwarzchild values (Close enough to Kerr values for $r \gg m$):

$$
\operatorname{tr} \chi=\frac{2}{r}, \quad \operatorname{tr} \underline{\chi}=-\frac{2 \Upsilon}{r}, \quad \mu=\frac{2 m}{r^{3}}
$$

where m denotes the Hawking mass. These conditions called GCM conditions and these spheres called GCM spheres.

Deformations of spheres

Idea: Start from $\stackrel{\circ}{S}(u, s)$ having small GCM conditions. Then contruct GCM spheres by the deformation of spheres

$$
\begin{aligned}
\Phi: \stackrel{\circ}{S}(u, s) & \rightarrow \mathbf{S}^{\prime} \\
\left(u, s, y^{1}, y^{2}\right) & \rightarrow\left(u+U\left(y^{1}, y^{2}\right), s+S\left(y^{1}, y^{2}\right), y^{1}, y^{2}\right)
\end{aligned}
$$

Goal: Find \mathbf{S}^{\prime}-adapted frame $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, e_{4}^{\prime}\right)$ verifying the following GCM conditions:

$$
\operatorname{tr} \chi^{\prime}=\frac{2}{r^{\prime}}, \quad \operatorname{tr} \underline{\chi}^{\prime}=-\frac{2 \Upsilon^{\prime}}{r^{\prime}}, \quad \mu^{\prime}=\frac{2 m^{\prime}}{r^{\prime 3}}
$$

Frame transformations

Transition functions $F:=(f, \underline{f}, \lambda-1)$ describe $S O(1,3) / S O(2)$:

$$
\begin{aligned}
e_{4}^{\prime} & =\lambda\left(e_{4}+f^{b} e_{b}\right)+O\left(|F|^{2}\right), \\
e_{a}^{\prime} & =e_{a}+\frac{1}{2} f_{a} e_{4}+\frac{1}{2} f_{a} e_{3}+O\left(|F|^{2}\right), \\
e_{3}^{\prime} & =\lambda^{-1}\left(e_{3}+\underline{f}^{b} e_{b}\right)+O\left(|F|^{2}\right)
\end{aligned}
$$

The condition that ($e_{1}^{\prime}, e_{2}^{\prime}$) is tangent to \mathbf{S}^{\prime} leads to:

$$
\begin{aligned}
\partial_{y^{a}} U & =\Phi^{\#}(\mathcal{U}(f, \underline{f}, \Gamma))_{a}, \\
\partial_{y^{a}} S & =\Phi^{\#}(\mathcal{S}(f, \underline{f}, \Gamma))_{a},
\end{aligned}
$$

where $\mathcal{U}, \mathcal{S}=(f, \underline{f})+O\left(|f, \underline{f}|^{2}\right)$ are 1 -forms on \mathbf{S}^{\prime}

Null transformation formulae

Transformation formulae for Ricci coefficients:

$$
\begin{aligned}
& \operatorname{tr} \chi^{\prime}=\operatorname{tr} \chi+\operatorname{div}^{\prime} f+F \cdot \Gamma+\ldots \\
& \operatorname{tr} \underline{\chi}^{\prime}=\operatorname{tr} \underline{\chi}+\operatorname{div}^{\prime} \underline{f}+F \cdot \Gamma+\ldots
\end{aligned}
$$

${ }^{(a)} \operatorname{tr} \chi^{\prime}={ }^{(a)} \operatorname{tr} \chi+\operatorname{curl}^{\prime} f+F \cdot \Gamma+\ldots$
${ }^{(a)} \operatorname{tr} \underline{\chi}^{\prime}={ }^{(a)} \operatorname{tr} \underline{\chi}+\operatorname{curl}^{\prime} \underline{f}+F \cdot \Gamma+\ldots$

$$
\mu^{\prime}=\mu+\Delta^{\prime} \lambda+F \cdot \Gamma+F \cdot R+\ldots
$$

Elliptic systems

Fixing following conditions:

$$
\begin{array}{rlrl}
\operatorname{tr} \chi^{\prime} & =\frac{2}{r^{\prime}}, & \operatorname{tr} \underline{\chi}^{\prime} & =-\frac{2 \Upsilon^{\prime}}{r^{\prime}}, \\
{ }^{(a)} \operatorname{tr} \chi^{\prime} & =0, & \mu^{\prime}=\frac{2 m^{\prime}}{\left(r^{\prime}\right)^{3}}, \\
\operatorname{tr} \underline{\chi}^{\prime} & =0 &
\end{array}
$$

We obtain elliptic systems: $(\stackrel{\circ}{\lambda}:=\lambda-1)$

$$
\begin{aligned}
\operatorname{div}^{\prime} f & =\ldots & \operatorname{div}^{\prime} \underline{f} & =\ldots \\
\operatorname{curl}^{\prime} f & =\ldots & \operatorname{curl}^{\prime} \underline{f} & =\ldots \\
\left(\Delta^{\prime}+V\right) \stackrel{\circ}{\lambda} & =\ldots & V & :=\frac{2}{\left(r^{\prime}\right)^{2}}
\end{aligned}
$$

Presence of an asymptotic kernel on $\ell=1$ modes as $r \rightarrow+\infty$

GCM systems

We relax the GCM conditions as follows:

$$
\begin{array}{rlrl}
\operatorname{tr} \chi^{\prime} & =\frac{2}{r^{\prime}}, & \left(\operatorname{tr} \underline{\chi}^{\prime}+\frac{2 \Upsilon^{\prime}}{r^{\prime}}\right)_{\ell \geq 2}=0, & \left(\mu^{\prime}-\frac{2 m^{\prime}}{\left(r^{\prime}\right)^{3}}\right)_{\ell \geq 2}=0, \\
{ }^{(a)} \operatorname{tr} \chi^{\prime} & =0, & (a) \operatorname{tr} \underline{\chi}^{\prime}=0
\end{array}
$$

We solve the following GCM systems by iteration:

$$
\left\{\begin{aligned}
\operatorname{div}^{\prime} f & =\ldots \\
\operatorname{curl}^{\prime} f & =\ldots \\
\operatorname{div}^{\prime} \underline{f} & =\ldots+\text { Extra terms } \quad \text { and } \quad\left\{\begin{array}{l}
\left(\operatorname{div}^{\prime} f\right)_{\ell=1}=\Lambda \\
\left(\operatorname{div}^{\prime} \underline{f}\right)_{\ell=1}=\underline{\Lambda}
\end{array}\right. \\
\operatorname{curl}^{\prime} \underline{f} & =\ldots \\
\left(\Delta^{\prime}+V\right) \stackrel{\circ}{\lambda} & =\ldots+\text { Extra terms }
\end{aligned}\right.
$$

6 parameters of $(\Lambda, \underline{\Lambda}): 3$ translations and 3 boosts.

Construction of GCM spheres

Theorem [Klainerman-Szeftel, 19']. Let \mathcal{R} be a fixed spacetime region endowed with an outgoing geodesic foliation $\stackrel{\circ}{S}(u, s)$, verifying

$$
\operatorname{tr} \chi-\frac{2}{r}, \quad\left(\operatorname{tr} \underline{\chi}+\frac{2 \Upsilon}{r}\right)_{\ell \geq 2}, \quad\left(\mu-\frac{2 m}{r^{3}}\right)_{\ell \geq 2}=O(\stackrel{\circ}{\delta}) .
$$

Then, for any (u, s) and $(\Lambda, \underline{\Lambda})=O(\stackrel{\circ}{\delta})$, there exists a unique GCM sphere $\mathbf{S}^{\prime}=\mathbf{S}^{\prime}(u, s, \Lambda, \underline{\Lambda})$, which is a deformation of $\stackrel{\circ}{S}(u, s)$ s.t.

$$
\operatorname{tr} \chi^{\prime}-\frac{2}{r^{\prime}}=0, \quad\left(\operatorname{tr} \underline{\chi}^{\prime}+\frac{2 \Upsilon^{\prime}}{r^{\prime}}\right)_{\ell \geq 2}=0, \quad\left(\mu^{\prime}-\frac{2 m^{\prime}}{\left(r^{\prime}\right)^{3}}\right)_{\ell \geq 2}=0
$$

and

$$
\left(\operatorname{div}^{\prime} f\right)_{\ell=1}=\Lambda, \quad\left(\operatorname{div}^{\prime} \underline{f}\right)_{\ell=1}=\underline{\Lambda}
$$

3. GCM hypersurfaces

GCM hypersurfaces

The last slice is foliated by these GCM spheres:

$$
\Sigma_{*}=\bigcup \mathbf{S}^{\prime}(\Psi(s), s, \Lambda(s), \underline{\Lambda}(s))
$$

Choice of $\Lambda, \underline{\Lambda}$ and Ψ

Denoting $\nu:=e_{3}+b e_{4}$ which is tangent to Σ_{*}

- We only have elliptic equations for $\phi_{2}^{*} \eta$ and $\phi_{2}^{*} \underline{\xi}$ instead of equations of η and $\underline{\xi}$
- The kernel of ϕ_{2}^{*} consist of the basis of $\ell=1$ modes
- Freedom to choose Ψ corresponds to freedom to fix \bar{b}

Idea: Choose $\Lambda, \underline{\Lambda}$ and Ψ s.t. $(\operatorname{div} \eta)_{\ell=1},(\operatorname{div} \underline{\xi})_{\ell=1}$ and \bar{b} take Schwarzchild values:

$$
(\operatorname{div} \eta)_{\ell=1}=0, \quad(\operatorname{div} \underline{\xi})_{\ell=1}=0, \quad \bar{b}=-1-\frac{2 m}{r}
$$

Transport systems

Recall the transformation formulae:

$$
\begin{aligned}
\eta^{\prime} & =\eta+\frac{1}{2} \nabla_{3}^{\prime} f+F \cdot \Gamma+\ldots \\
\underline{\xi}^{\prime} & =\underline{\xi}+\frac{1}{2} \nabla_{3}^{\prime} \underline{f}+F \cdot \Gamma+\ldots
\end{aligned}
$$

and

$$
\Lambda=(\operatorname{div} f)_{\ell=1}, \quad \underline{\Lambda}=(\operatorname{div} \underline{f})_{\ell=1}
$$

We deduce

$$
\begin{aligned}
& \nu(\Lambda) \sim(\operatorname{div}(\nu f))_{\ell=1} \sim\left(\operatorname{div}\left(\nabla_{3}^{\prime} f\right)\right)_{\ell=1} \sim(\operatorname{div} \eta)_{\ell=1}, \\
& \nu(\underline{\Lambda}) \sim(\operatorname{div}(\nu \underline{f}))_{\ell=1} \sim\left(\operatorname{div}\left(\nabla_{3}^{\prime} \underline{f}\right)\right)_{\ell=1} \sim(\operatorname{div} \underline{\xi})_{\ell=1}
\end{aligned}
$$

ODE systems

Along the characteristic of ν :

$$
\begin{aligned}
& \Lambda^{\prime}(s)=\left(\operatorname{div}^{\prime} \eta^{\prime}\right)_{\ell=1}+F(\Lambda, \underline{\Lambda}, \Psi) \\
& \underline{\Lambda}^{\prime}(s)=\left(\operatorname{div}^{\prime} \underline{\xi}^{\prime}\right)_{\ell=1}+G(\Lambda, \underline{\Lambda}, \Psi) \\
& \Psi^{\prime}(s)=\bar{b}+1+\frac{2 m^{\prime}}{r^{\prime}}+H(\Lambda, \underline{\Lambda}, \Psi)
\end{aligned}
$$

Solving the ODE systems

$$
\Lambda^{\prime}(s)=F(\Lambda, \underline{\Lambda}, \Psi), \quad \underline{\Lambda}^{\prime}(s)=G(\Lambda, \underline{\Lambda}, \Psi), \quad \Psi^{\prime}(s)=H(\Lambda, \underline{\Lambda}, \Psi)
$$

to find $\Lambda, \underline{\Lambda}$ and Ψ s.t.

$$
\left(\operatorname{div}^{\prime} \eta^{\prime}\right)_{\ell=1}=0, \quad\left(\operatorname{div}^{\prime} \underline{\xi}^{\prime}\right)_{\ell=1}=0, \quad \bar{b}+1+\frac{2 m^{\prime}}{r^{\prime}}=0
$$

Construction of GCM hypersurfaces

Theorem [S. 22']. Let \mathcal{R} be a fixed spacetime region satisfying the same conditions as [Klainerman-Szeftel 19']. Then, there exists a unique GCM hypersurface $\Sigma_{*}=\bigcup \mathbf{S}^{\prime}(\Psi(s), s, \Lambda(s), \underline{\Lambda}(s))$, which is a combination of GCM spheres s.t.

$$
\operatorname{tr} \chi^{\prime}-\frac{2}{r^{\prime}}=0, \quad\left(\operatorname{tr} \underline{\chi}^{\prime}+\frac{2 \Upsilon^{\prime}}{r^{\prime}}\right)_{\ell \geq 2}=0, \quad\left(\mu^{\prime}-\frac{2 m^{\prime}}{\left(r^{\prime}\right)^{3}}\right)_{\ell \geq 2}=0
$$

and

$$
\left(\operatorname{div}^{\prime} \eta^{\prime}\right)_{\ell=1}=0, \quad\left(\operatorname{div}^{\prime} \underline{\xi}^{\prime}\right)_{\ell=1}=0, \quad \bar{b}=-1-\frac{2 m^{\prime}}{r^{\prime}}
$$

Apply to Kerr stability

The last slice is foliated by these GCM spheres starting from the last GCM sphere S_{*}. In particular, the gauge is initialized from the future with no reference to the initial data. See Klainerman-Szeftel 21' (arXiv:2104.11857).

Thanks for your attention!

Appendix

Spherical harmonics

Functions $Y_{\ell}^{m},-\ell \leq m \leq \ell$ defined on 2 -sphere S satisfying

$$
\left(\Delta^{S}+\frac{\ell(\ell+1)}{r^{2}}\right) Y_{\ell}^{m}=0
$$

In the spherical coordinates coordinates:

$$
\begin{aligned}
& Y_{0}^{0}=1 \\
& Y_{1}^{-1}=\cos \theta, \quad Y_{1}^{0}=\sin \theta \cos \varphi, \quad Y_{1}^{1}=\sin \theta \sin \varphi
\end{aligned}
$$

Basis of $\ell=1$ modes

A basis of $\ell=1$ modes: Scalar functions $J^{(p)}: S \rightarrow \mathbb{R}$ for $p=-, 0,+$ defined on a topological 2 -sphere S satisfying:

$$
\begin{aligned}
\left(r^{2} \Delta^{S}+2\right) J^{(p)} & =O(\epsilon) \\
\frac{1}{|S|} \int_{S} J^{(p)} J^{(q)} & =\frac{1}{3} \delta_{p q}+O(\epsilon) \\
\frac{1}{|S|} \int_{S} J^{(p)} & =O(\epsilon)
\end{aligned}
$$

The $\ell=1$ modes of scalar λ and 1 -form f :

$$
\begin{array}{r}
(\lambda)_{\ell=1}:=\left\{\int_{S} J^{(p)} \lambda, \quad p \in\{0,+,-\}\right\}, \\
(f)_{\ell=1}:=\left\{\int_{S} J^{(p)} \operatorname{div}^{S}(f), \quad p \in\{0,+,-\}\right\}
\end{array}
$$

Elliptic equations on Σ_{*}

Codazzi equations:

$$
\begin{aligned}
& \operatorname{div} \underline{\hat{\chi}}=\nabla \operatorname{tr} \underline{\chi}+\underline{\chi} \cdot \zeta-\operatorname{tr} \underline{\chi} \zeta+\underline{\beta} \\
& \operatorname{div} \hat{\chi}=\nabla \operatorname{tr} \chi-\chi \cdot \zeta+\operatorname{tr} \chi \zeta-\beta
\end{aligned}
$$

Additional equations for $\underline{\omega}, \eta$ and $\underline{\xi}$:

$$
\begin{aligned}
& 2 \not \phi_{2}^{*} \phi_{1}^{*} \phi_{1} \not d_{2} \phi_{2}^{*} \eta=-\phi_{2}^{*} \phi_{1}^{*} \phi_{1} \nabla_{3} \nabla \operatorname{tr} \chi+\frac{2}{r} \nabla_{3} \phi_{2}^{*} \phi_{1}^{*} \mu-\frac{4}{r} \phi_{2}^{*} \dot{d}_{1}^{*} \operatorname{div} \underline{\beta}+\Gamma \cdot \Gamma, \\
& 2 \phi_{2}^{*} \dot{d}_{1}^{*} \phi_{1} \phi_{2} \phi_{2}^{*} \underline{\xi}=\nabla_{3}\left(\phi_{2}^{*} \phi_{2}+2 K\right) \dot{d}_{2}^{*} \phi_{1}^{*} \operatorname{tr} \underline{\chi}+\frac{2}{r} \nabla_{3} \dot{d}_{2}^{*} \phi_{1}^{*} \mu-\frac{4}{r} d_{2}^{*} \dot{d}_{1}^{*} \operatorname{div} \underline{\beta}+\Gamma \cdot \Gamma, \\
& 2 \nabla \underline{\omega}=\frac{1}{r} \underline{\xi}-\nabla_{3} \zeta-\underline{\beta}+\frac{1}{r} \eta+\Gamma \cdot \Gamma, \\
& 2 \underline{\bar{\omega}}=r \bar{\mu}+\Gamma \cdot \Gamma
\end{aligned}
$$

Curvature components α and $\underline{\alpha}$

Curvature transformation formulae:

$$
\begin{aligned}
& \alpha^{\prime}=\alpha+F \cdot \beta+O\left(F^{2}\right) \cdot\left(\rho,{ }^{*} \rho\right)+\ldots \\
& \underline{\alpha}^{\prime}=\underline{\alpha}-F \cdot \underline{\beta}+O\left(F^{2}\right) \cdot\left(\rho,{ }^{*} \rho\right)+\ldots
\end{aligned}
$$

In Boyer-Lindquist coordinates:

$$
\alpha, \beta,{ }^{*} \rho, \underline{\beta}, \underline{\alpha}=O(\epsilon), \quad \rho+\frac{2 m}{r^{3}}=O(\epsilon)
$$

Gauge dependence of α and $\underline{\alpha}$ are higher order:

$$
\alpha^{\prime}-\alpha=O\left(\epsilon^{2}\right), \quad \underline{\alpha}^{\prime}-\underline{\alpha}=O\left(\epsilon^{2}\right)
$$

α and $\underline{\alpha}$ can be treated independent on modulation procedure, see Giorgi-Klainerman-Szeftel 22' (arXiv:2205.14808)

