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1. Introduction



The Kerr and the Schwarzschild solutions

Einstein vacuum equations (EVE): Ric,s = 0 (Ric Ricci tensor of g)

Kerr metric given in Boyer-Lindquist (¢, 7,6, @) coordinates by
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The Schwarzschild metric is spherically symmetric and corresponds

to the particular case a =0,m > 0
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Stability conjecture for the Kerr family

Schwarzchild spacetimes correspond to non rotating black holes while

for |a| < m, Kerr spacetimes correspond to rotating black holes

Stability problem: Are these black holes stable?

In the context of asymptotically flat solutions to the Einstein vacuum

equation, we have the following conjecture:

Conjecture (Stability of the exterior region of Kerr). Small
perturbations of given initial conditions of an exterior Kerr g, ,, with
la| < m have maximal future developments converging to another

exterior Kerr solution g, ,n, with |ay| < my



Nonlinear stability of Kerr for |a| < m

Theorem: The stability conjecture holds true for |a| < m.

e Modulation: Klainerman-Szeftel 19’ (arXiv:1911.00697,
arXiv:1912.12195), and S. 22’ (arXiv:2205.12336)

e Decay estimates, as well as statement of the result and strategy:
Klainerman-Szeftel 21’ (arXiv:2104.11857)

e Hyperbolic estimates: Giorgi-Klainerman-Szeftel 22’
(arXiv:2205.14808)

In this talk, we focus on the modulation procedure that extends
|Klainerman-Szeftel 18’| in axial polarized symmetry to general

perturbations of Kerr spacetimes



Modulation

Ric[¢*ga.m| = 0 for all |a| < m and diffeomorphism ¢ and hence:

dRic laga,m] = JRic lﬁgm,a] = )Ric [Lxgm.a] =0
om Oa ’

Thus, 0m8m.a, 0a8m.a and Lxg. . belong to the kernel of Linearized
Gravity System (LGS), which corresponds at the nonlinear level to
the tracking of (mys,ay).

When dealing with a linearized operator possessing a non trivial

kernel, one uses modulation theory

General covariance of Einstein equations generates a kernel of LGS
which has infinite dimensions and hence requires to find a strategy to

implement modulation in infinite dimensions



The continuity argument and the last slice

The last slice is chosen as a GCM hypersurface, which is the topic of
this talk.




2. GCM spheres



Principal quantities

S—adapted null frame (e1, ea,e3,€4): (e1,e2) are tangent to S

Ricci coeflicients:

1
Xab = g(Deae4, eb)a Kab — g(Deae?n eb) fa = §Q(De4€4, ea)7
1 1 1
£, = §Q(De3€3,€a), W = Zg(D€484763)7 W = 19(D63€37€4)7
1 1 1
Na = 59(D636476a)7 ﬂa F= 59(D64637€a)7 Ca ‘= 59(D6a64763)
Expansion, shear and twist:
ab =~ 1 (a) ab
trxX =9 Xab; Xab = Xab — 2tr><gab, trx :=€"" Xab;
try = g X o= 1 tr (@ ¢ry 1=
X-=9 Xab’ Xab T Xab 2 X Gab; X - Xab
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Principal quantities

Curvature components:

Agp = R(@a,€4,€b, 64)7 Agp = R(6a7 €3, 6b763)7

1 1
Ba ‘= §R(ea764763764)7 ﬁa c= §R(€a7€37€37€4)7
1 1,
p = ZR(63764763764)7 0 .= Z R(63764763764)

Mass aspect function:

: |
poo=—dive —p+ 5 - X
Conditions of geodesic foliation on ey4:
5 = 0, w =0, n = _C
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Choice of last slice 2.,
Before estimating the Exterior region (¢*Y) M, we need to estimate 3,

e We only have Hodge-Elliptic equations on ¥, (e.g. Codazzi

equations)

e try, trx and u do not verify Hodge-Elliptic equations, (only

transport equations)

Idea: Construct X, by combination of well chosen spheres such that
tr x, tr x and p take Schwarzchild values (Close enough to Kerr

values for r > m):

2 27T 2m
tI’X:—, tI‘X:——, :u:—37
r = r r
where m denotes the Hawking mass. These conditions called GCM

conditions and these spheres called GCM spheres.
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Deformations of spheres

[dea: Start from S(u, s) having small GCM conditions. Then
contruct GCM spheres by the deformation of spheres

P : g‘(u,s) — S’

(u, 5,9, v%) = (u+ Uy, y2),s + S v?), vt )

Goal: Find S’-adapted frame (€], 5, €5, €);) verifying the following
GCM conditions:

tI’X/:—/, trX p—
r
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Frame transformations

Transition functions F':= (f, f, A — 1) describe SO(1,3)/SO(2):
ey = A (es + fler) + O(|FI?),
/ 1 1 2
el =eq+ §LL64 + §fa€3 + O(|F|7),

ey = A1 (63 —I—ibeb) + O(\F\Q)

The condition that (e, e5) is tangent to S’ leads to:

ayaU — (I)#(u(fai7 F))C“
Oya S = 7 (S(f, £,T))as

where U, S = (f, f) + O(|f, f|?) are 1-forms on S’
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Null transformation formulae

Transformation formulae for Ricci coefficients:

try =try +divf+F-T+..

try' =trxy+divf+F -T+..
@try' = Dtry +curl f+ F-T + ...
(“)trg = (a)trXJrcurl/iJrF-FJr

W =p+A'X+F.-T+F R+ ..

15



Elliptic systems

Fixing following conditions:

o2 2T o
Ir _ — r = — —
X'= = X at W= e
(@r v =0, (a)trx’ =0

We obtain elliptic systems: (A:= A —1)

div' f = ... divli = ...

curl f = ... curl’i = ...

o 2
A"+ V)X = .. V=

Presence of an asymptotic kernel on ¢ = 1 modes as r — +0o0
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GCM systems

We relax the GCM conditions as follows:

2 27’ 2m/
try’ = — trx’ =0 " — =0
rx 7"/, ( I'K + - )£>2 ) (,u (T’)3)£>2 )

(@tr ' =0, (a)trx' =0

We solve the following GCM systems by iteration:

( div' f = ...
curl’ f =
/ —_
4 dlv/i = ... + Extra terms and (le/f)ezl = A,
CU.I'llf — (le i)€:1 — A
\ (A"+ V)X = ... + Extra terms

6 parameters of (A, A): 3 translations and 3 boosts.
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Construction of GCM spheres

Theorem |Klainerman-Szeftel, 19’|. Let R be a fixed spacetime region

endowed with an outgoing geodesic foliation S(u, s), verifying

2 27T 2m o
tI’X——, tI'X—F— ’ :u_—g — (5)
r "/ >2 ™/ >2

o

Then, for any (u,s) and (A, A) = O(6), there exists a unique GCM
sphere 8’ = S’(u, s, A, A), which is a deformation of g(u, s) s.t.

2 277 2m/
try —— =0, (try =0 ' — =0
rx ! , ( rx -+ o )522 ) (/'L (T’)3)£22 )

and

18



3. GCM hypersurfaces
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GCM hypersurfaces

The last slice is foliated by these GCM spheres:

2. =|JS'(¥(s), s, A(s), A(s))
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Choice of A, A and ¥

Denoting v := e3 + bey which is tangent to >,

e We only have elliptic equations for d;n and d;g instead of
equations of 1 and ¢

e The kernel of f, consist of the basis of £ = 1 modes

e Freedom to choose ¥ corresponds to freedom to fix b

Idea: Choose A, A and VU s.t. (divy)s=1, (div),—1 and b take
Schwarzchild values:

(divn)p=1 = 0, (div€) =1 = 0, b=—-1—-"—
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Transport systems

Recall the transformation formulae:
n' =n+%vgf+F-F+...
§’:§+%Vgi+F-F+...
and
A = (divf)e=1, A = (divf)e=:

We deduce

v(A) ~ (div(vf)) ey ~ (div(ng))gzl ~ (divn)e=1,
V(A) ~ (div(yi))ezl ~ (div( éi))E:l ~ (div€)e—1
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ODE systems

Along the characteristic of v:

to find A, A and V¥ s.t.

(div'n')e=1 = 0, (div'g)p=1 =0,  b+1-+
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Construction of GCM hypersurfaces

Theorem [S. 22’|. Let R be a fixed spacetime region satisfying the
same conditions as [Klainerman-Szeftel 19°|. Then, there exists a
unique GCM hypersurface ¥, = S (¥(s), s, A(s),A(s)), which is a
combination of GCM spheres s.t.

2 277 2m/
try — = =0, (try =0 ' — =0
rx - 9 < rx -+ o )EZQ ) (:u (T’)3>£>2 )

and

(diV/U/)gzl - O, (div,é,)gzl — O, B = —1-—
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Apply to Kerr stability

The last slice is foliated by these GCM spheres starting from the last
GCM sphere S,. In particular, the gauge is initialized from the

future with no reference to the initial data. See Klainerman-Szeftel
217 (arXiv:2104.11857).
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Thanks for your attention!
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Appendix
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Spherical harmonics

Functions Y™, —¢ < m < £ defined on 2-sphere S satistying
00+ 1
r
In the spherical coordinates coordinates:

YOO — 17

Y1 = cosé, Y, = sinf cos p, Y{' = sinfsin ¢



Basis of / = 1 modes

A basis of £ = 1 modes: Scalar functions J® : S — R for p = —,0, +
defined on a topological 2—sphere S satisfying:

(r2A% +2)J®P) = O(e),

3

5.
— [ J® =0(e),
S| Js

The ¢ = 1 modes of scalar A and 1-form f:

<mky={LJ@m pémﬁv%},

e i={ [ 1005, pe (04,1}

1 1
S| /s JPJ = 265 + O(e),
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Elliptic equations on >,

Codazzi equations:

divy = Vtrx + x - ¢ —trx ¢ + 8,
divy =Vtry —x-C+trx(— 8

Additional equations for w,n and §:

Qﬂgdl 1¢72d277 — —d2d1d1V3VtrX + ;VBdelﬂ — ;dgdﬁil"é + 1T,
d*

d
2oy dy dods€ = V3 (dads + 2K ) dod tr x + %%dédiu ~ %did’{div@ +T-T,

1 1
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Curvature components o and «

Curvature transformation formulae:

o =a+F-B+0(F%)-(p,"p)+ ...
o =a—F-B+O(F?)-(p,"p) + ...

In Boyer-Lindquist coordinates:

2m

a, B,%p, B, a=0(), p+—35 =O0(e)

r3

Gauge dependence of a and « are higher order:
o —a=0(e), o —a=0(e)

« and o can be treated independent on modulation procedure, see
Giorgi-Klainerman-Szeftel 22’ (arXiv:2205.14808)

31



