On the linear stability of Kerr black holes

Dietrich Häfner (Université Grenoble Alpes) with Peter Hintz and András Vasy (as well as L. Andersson and B. Whiting (mode analysis))

> Seminar on Mathematical General Relativity Sorbonne Université, November 17 2022

Einstein vacuum equation

We are interested in the global behavior of solutions of

 $\operatorname{Ric}(g) = 0,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where g is a Lorentzian metric (+---) on a 4-manifold M.

Here: study perturbations of special solutions.

Special solutions of $\operatorname{Ric}(g) = 0$

1. Minkowski space.

$$egin{aligned} \mathcal{M} &= \mathbb{R}_t imes \mathbb{R}_x^3, \ \mathcal{g}_{(0,0)} &= dt^2 - dx^2 = dt^2 - dr^2 - r^2 \mathcal{g}_{\mathbb{S}^2}. \end{aligned}$$

2. Schwarzschild black holes (mass $\mathfrak{m} > 0$).

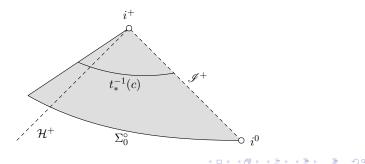
$$\begin{split} \mathcal{M} &= \mathbb{R}_t \times (0,\infty)_r \times \mathbb{S}^2, \\ g_{(\mathfrak{m},0)} &= \left(1 - \frac{2\mathfrak{m}}{r}\right) dt^2 - \left(1 - \frac{2\mathfrak{m}}{r}\right)^{-1} dr^2 - r^2 g_{\mathbb{S}^2} \\ &= g_{(0,0)} + \mathcal{O}(r^{-1}). \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Illustration of the Schwarzschild metric

$$b_0 = (\mathfrak{m}_0, 0), \quad g_{b_0} = \left(1 - \frac{2\mathfrak{m}_0}{r}\right) dt^2 - \left(1 - \frac{2\mathfrak{m}_0}{r}\right)^{-1} dr^2 - r^2 g_{\mathbb{S}^2}.$$

Regge-Wheeler coordinate : $r_* = r + 2\mathfrak{m}_0 \log(r - 2\mathfrak{m}_0)$. $t_* = t + r_*$ near \mathcal{H}^+ $(r = 2\mathfrak{m}_0)$, $t_* = t - r_*$ near \mathscr{I}^+ . $M = \mathbb{R}_{t_*} \times X$, $X = [r_-, \infty) \times \mathbb{S}^2$, $r_- \in (0, 2\mathfrak{m}_0)$.



Special solutions of $\operatorname{Ric}(g) = 0$, continued

3. Kerr black holes

(mass $\mathfrak{m} > 0$, angular momentum $\mathfrak{a} \in \mathbb{R}^3$, $a = |\mathfrak{a}|$).

$$g_{(\mathfrak{m},\mathfrak{a})} = \frac{\Delta_b - a^2 \sin^2 \theta}{\varrho_b^2} dt^2 + \frac{4 \operatorname{am} r \sin^2 \theta}{\varrho_b^2} dt d\varphi$$
$$- \frac{(r^2 + a^2)^2 - \Delta_b a^2 \sin^2 \theta}{\varrho_b^2} \sin^2 \theta d\varphi^2 - \varrho_b^2 \left(\frac{dr^2}{\Delta_b} + d\theta^2\right)$$
$$= g_{(\mathfrak{m},\mathfrak{0})} + \mathcal{O}(r^{-2}),$$
$$\Delta_{(\mathfrak{m},\mathfrak{a})} = r^2 - 2\mathfrak{m} r + a^2, \quad \varrho_{(\mathfrak{m},\mathfrak{a})}^2 = r^2 + a^2 \cos^2 \theta.$$

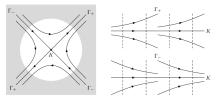
Consider slowly rotating Kerr black holes:

$$b := (\mathfrak{m}, \mathfrak{a}) \approx b_0 = (\mathfrak{m}_0, 0)$$
 on $M = \mathbb{R}_{t_*} \times X$.

 g_b for such b is a smooth family of stationary metrics on M.

Kerr solution continued

- ► The Kerr metric is asymptotically Minkowskian.
- There exist trapped null geodesics. r-normally hyperbolic trapping for each r (stable property with respect to perturbations).



There doesn't exist any global timelike Killing vector field outside the black hole. Consequence : no conserved positive quantity for the wave equation.

Analogous solution for positive cosmological constant : De Sitter Kerr metric. The De Sitter Kerr metric is asymptotically De Sitter.

Only special solutions or real ?

Initial value problem for $\operatorname{Ric}(g) = 0$

Given on $\Sigma = t^{-1}(0) \subset M$:

- γ: Riemannian metric on Σ,
- k: symmetric 2-tensor on Σ.

Find:

• Lorentzian metric g on M, $\operatorname{Ric}(g) = 0$,

•
$$\tau(g) := (-g|_{\Sigma}, \operatorname{II}_{\Sigma}^{\operatorname{g}}) = (\gamma, \operatorname{k}).$$

Necessary and sufficient for local existence: constraint equations on (γ, k) . (Choquet-Bruhat '52.)

Example

For $(\gamma, k) = (\gamma_b, k_b) := \tau(g_b)$, the solution of the initial value problem is g_b .

Kerr black hole stability

Kerr :

Theorem (Klainerman, Szeftel, Giorgi, Shen '22)

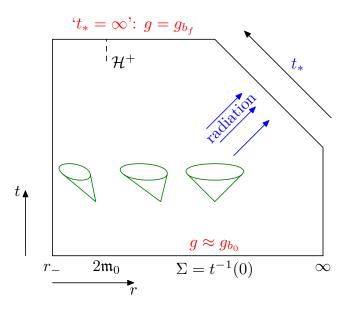
The future globally hyperbolic development of a general, asymptotically flat, initial data set, sufficiently close (in a suitable topology) to a Kerr $(\mathfrak{a}_0, \mathfrak{m}_0) = b_0$ initial data set, for sufficiently small $\frac{|\mathfrak{a}_0|}{\mathfrak{m}_0}$, has a complete future null infinity \mathscr{I}^+ and converges in its causal past $J^-(\mathscr{I}^+)$ to another nearby Kerr spacetime with parameters b_f close to the initial ones b_0 .

De Sitter Kerr:

Theorem (Hintz, Vasy '16)

In an equivalent situation for De Sitter Kerr there exists g such that

$$g = g_{b_f} + \tilde{g}, \quad |\tilde{g}| \lesssim e^{-\beta t_*}, \ \beta > 0.$$



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

$$\Lambda > 0$$
 versus $\Lambda = 0$.

Toy model of linearized Einstein equations around (De Sitter) Schwarzschild : wave equation on scalars :

$$(\partial_t^2 + P)u = 0.$$

- De Sitter Schwarzschild : P similar to a Laplace Beltrami operator on a manifold with two asymptotically hyperbolic ends : meromorphic extension of the resolvent on suitable spaces (Mazzeo-Melrose, Guillarmou).
- Schwarzschild : one asymptotically euclidean end : close to zero, resolvent only H^k down to the real axis (Bony-H., Guillarmou-Hassell, Wunsch-Vasy, Vasy,...)

Kerr stability: main issues

- 1. Find final black hole parameters $(\mathfrak{m}_f, \mathfrak{a}_f)$.
- 2. Diffeomorphism invariance: $\operatorname{Ric}(g) = 0 \Rightarrow \operatorname{Ric}(\Phi^*g) = 0$.
 - gauge fixing;
 - track location of black hole in chosen gauge.
- 3. Because of the weak decay for the linearized problem, the precise structure of the nonlinearity is needed.

In Hintz–Vasy: use Newton-type iteration scheme; naively $g_0 = g_{b_0}$,

$$egin{array}{ll} D_{g_0}{
m Ric}(h_0)=-{
m Ric}(g_0), \ {
m initial \ data \ for \ } h_0 \ {
m on} \ \Sigma, \end{array} \implies g_1=g_0+h_0, \ {
m etc.} \end{array}$$

Idea: read off improved guess of final black hole parameters and location/velocity from asymptotic behavior of h_0 .

Linear stability (modulo gauge)

Consider black hole parameters $b \approx b_0 = (\mathfrak{m}_0, 0)$.

Theorem (H.–Hintz–Vasy '19)

Let γ', k' be symmetric 2-tensors on $\Sigma = t^{-1}(0)$ satisfying the linearized constraint equations and

$$|\gamma'| \lesssim r^{-1-lpha}, |k'| \lesssim r^{-2-lpha}, 0 < lpha < 1,$$

(and similar bounds for derivatives). Then there exists a symmetric 2-tensor h on M such that

$$D_{g_b}\operatorname{Ric}(h) = 0, \quad D_{g_b}\tau(h) = (\gamma', k'),$$

which decays to a linearized Kerr metric,

$$h = g'_b(b') + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-\alpha+}, \quad \left(g'_b(b') := \frac{\mathrm{d}}{\mathrm{d}s}g_{b+sb'}\Big|_{s=0}\right)$$

Gauge fixing

Eliminate diffeomorphism invariance: impose extra condition on g:

$$W(g) = \Box_{g,g_b} \mathbf{1} \ (= 1 \text{-form in } g, \ \partial g) = 0.$$

Then ('DeTurck trick'):

$$\begin{cases} \operatorname{Ric}(g) = 0, \\ W(g) = 0, \\ \text{initial data} \end{cases} \text{ IVP for } P(g) := \operatorname{Ric}(g) - \delta_g^* W(g) = 0. \end{cases}$$

Linearized version:

$$\begin{cases} D_{g_b} \operatorname{Ric}(h) = 0, \\ D_{g_b} W(h) = 0, & \iff \text{IVP for } D_{g_b} P(h) \ \left(\approx \frac{1}{2} \Box_{g_b} h \right) = 0. \\ \text{initial data} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main theorem

Let $L_b := D_{g_b}P$. Study $L_b h = 0$ with general initial data. Theorem (H.-Hintz-Vasy '19) Let $\alpha \in (0,1)$, and let $h_0, h_1 \in C^{\infty}(\Sigma; S^2 T_{\Sigma}^* M)$,

$$|h_0| \lesssim r^{-1-lpha}, \quad |h_1| \lesssim r^{-2-lpha}, \quad 0 < lpha < 1$$

(and similar bounds for derivatives). Let

$$\left\{egin{aligned} L_b h &= 0, \ (h|_{\Sigma}, \ \mathcal{L}_{\partial_t} h|_{\Sigma}) &= (h_0, h_1). \end{aligned}
ight.$$

Then there exist $b' \in \mathbb{R} \times \mathbb{R}^3$ and $V \in fixed 8$ -dimensional space of vector fields on M such that

$$h = g_b'(b') + \mathcal{L}_V g_b + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-lpha+}.$$

Main theorem, continued

$$h = g_b'(b') + \mathcal{L}_V g_b + \tilde{h}, \quad |\tilde{h}| \lesssim t_*^{-1-lpha+}.$$

Here,

 $V \in \text{span} \{ \text{asymptotic translations: } \partial_{x^i} + \mathcal{O}(r^{-1}), \\$ asymptotic boosts: $t\partial_{x^i} - x^i\partial_t + \text{l.o.t.} \}$ + two non geometric vector fields.

Can read off:

- change of black hole parameters,
- movement of black hole in chosen gauge.

Remark: upon given up one order of decay one can choose V in a 6 dimensional space consisting only of the vector fields with clear geometric interpretation.

Prior work

► Andersson-Bäckdahl-Blue-Ma '19: initial data with fast decay (α > 5/2; then b' = 0)

- Dafermos–Holzegel–Rodnianski '16: b = b₀
- ▶ Johnson, Hung–Keller–Wang '16–'18: *b* = *b*₀
- Finster–Smoller '16 (no decay rate).

Strategy of proof

Recast as

$$L_b h = f$$
.

Work on spectral side:

$$h(t_*,x) = \frac{1}{2\pi} \int_{\operatorname{Im} \sigma = C} e^{-i\sigma t_*} \widehat{L_b}(\sigma)^{-1} \widehat{f}(\sigma,x) \, d\sigma.$$

Shift contour to C = 0.

Uses/is related to: Melrose, Vasy–Zworski, Vasy; Wunsch–Zworski, Dyatlov, Hintz, Vasy, Guillarmou–Hassell, Bony–H.

1st step: Fredholm setting.

Uses Melrose '93, radial point estimates Melrose '94, Vasy '13, non elliptic Fredholm framework Vasy '13.

Proposition

Let $0 \leq a < \mathfrak{m}$. There exists $s_2 > 0$ with the following property.

1. Let $s > s_2, \, \ell < -1/2, \, s+\ell > -1/2$. Then the operators

$$\widehat{L_b}(\sigma) \colon \{ u \in \bar{H}^{s,\ell}_{\mathrm{b}}(X) \colon \widehat{L_{g_b}}(\sigma) u \in \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X) \} \to \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X)$$

are Fredholm operators of index 0 for $\text{Im } \sigma \ge 0, \sigma \neq 0$.

2. If moreover $\ell \in (-3/2, -1/2)$, then

 $\widehat{L_b}(0)\colon \{u\in \bar{H}^{s,\ell}_{\mathrm{b}}(X)\colon \widehat{L_{g_b}}(0)u\in \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X)\}\to \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X)$

is Fredholm of index 0.

2nd step. Mode analysis for the gauged fixed linearized Einstein equations

- $\widehat{L_b}(\sigma)$ invertible for $\operatorname{Im} \sigma \geq 0, \ \sigma \neq 0$.
- Precise description of the kernel of $\widehat{L_b}(0), \ell \in (-3/2, -1/2)$.

- The mode analysis of $\widehat{L_b}(\sigma)$ follows from the mode analysis of
 - ungauged linearized Einstein equations,
 - ▶ the 1− form wave operator.

One also has to consider generalized mode solutions $h = \sum_{j=0}^{d} t_{*}^{j} h_{j}, h_{j} \in \overline{H}_{b}^{\infty,-1/2-}, L_{b_{0}}h = 0.$ There exist such solutions with $h_{d} \neq 0, d \geq 2$.

Mode stability without gauge

Theorem (Andersson-H-Whiting '22)

Let $0 \leq a < \mathfrak{m}$, $\sigma \in \mathbb{C}$, $\operatorname{Im} \sigma \geq 0$, and suppose $\dot{g} = e^{-i\sigma t_*}h$, $h \in \overline{H}_{\mathrm{b}}^{\infty,\ell}(X; S^{2_{\mathrm{sc}}}T^*X)$, $\ell \in (-3/2, -1/2)$ is an outgoing mode solution of the linearized Einstein equation

 $D_g \operatorname{Ric}(\dot{g}) = 0.$

If $\sigma = 0$, then there exist parameters $\mathfrak{m} \in \mathbb{R}$, $\mathfrak{a} \in \mathbb{R}^3$, and a 1-form $\omega \in \overline{H}_{\mathrm{b}}^{\infty,\ell-1}(X; \widetilde{\mathrm{sc}T}^*X)$, such that

 $\dot{g} - \dot{g}_{(\mathfrak{m},\mathfrak{a})}(\dot{\mathfrak{m}},\dot{\mathfrak{a}}) = \delta_g^* \omega.$

If $\sigma \neq 0$, then $\dot{g} = \delta_g^* \omega$ for a suitable outgoing 1- form ω .

Mode stability with gauge

Theorem (Andersson-H-Whiting '22) Let 0 < a < m.

1. For $\text{Im } \sigma \geq 0$, $\sigma \neq 0$, the operator

$$\begin{aligned} \widehat{L_{g_b}}(\sigma) \colon \{ u \in \bar{H}^{s,\ell}_{\mathrm{b}}(X; S^{2 \operatorname{sc}} \widetilde{T}^* X) \colon \widehat{L_{g_b}}(\sigma) u \in \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X; S^{2 \operatorname{sc}} \widetilde{T}^* X) \} \\ & \to \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X; S^{2 \operatorname{sc}} \widetilde{T}^* X) \end{aligned}$$

is invertible when $s > s_2$, $\ell < -\frac{1}{2}$, $s + \ell > -\frac{1}{2}$.

2. If moreover $\ell \in (-\frac{3}{2}, -\frac{1}{2})$, the zero energy operator

$$\begin{split} \widehat{L_{g_b}}(0) \colon \{ u \in \bar{H}^{s,\ell}_{\mathrm{b}}(X; S^{2} \, \widetilde{{}_{\mathrm{sc}}T}^*X) \colon \widehat{L_{g_b}}(0) u \in \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X; S^{2} \, \widetilde{{}_{\mathrm{sc}}T}^*X) \} \\ & \to \bar{H}^{s-1,\ell+2}_{\mathrm{b}}(X; S^{2} \, \widetilde{{}_{\mathrm{sc}}T}^*X) \end{split}$$

has 7-dimensional kernel and cokernel.

Mode analysis with and without gauge $\sigma \neq 0$

$$L_b h = D_{g_b} \operatorname{Ric}(h) - \delta^*_{g_b} D_{g_b} W(h) = 0, \quad h = e^{-i\sigma t_*} h_0, \quad (1)$$

 $h_0 = h_0(r, \omega)$ fulfills outgoing radiation condition. Apply linearized second Bianchi identity

$$\Box_{b,1}(D_{g_b}W(h))=0.$$

We show absence of modes for the 1- form wave operator :

$$D_{g_b}W(h)=0. (2)$$

Put into (1):

$$D_{g_b}\operatorname{Ric}(h)=0.$$

 \Rightarrow h is pure gauge $h = \delta^*_{g_b} \omega$. Putting this into (2) gives

$$\Box_{b,1}\omega=0.$$

It follows $\omega = 0$.

Proof of mode stability

 $\sigma = 0.$

- The Teukolsky scalars are zero (Whiting).
- ► Gauge invariants. For linearized perturbations of Kerr with vanishing Teukolsky scalars, the only non vanishing gauge invariants are I_ξ, I_ζ and they have in this case exactly the form they have for the linearized Plebanski-Demianski family.
- ► The set of gauge invariants {Teukolsky scalars, linearized Ricci tensor, I_ξ, I_ζ} is complete (Aksteiner, Andersson, Bäckdahl, Khavkine, Whiting '19), it follows that up to gauge the perturbation is a Plebanski-Demianski line element.
- ► For all $\dot{\mathfrak{a}} \in \mathbb{R}^3$, there exists $\lambda(\dot{\mathfrak{a}}) \in \mathbb{R}$, a 1-form $\omega \in \overline{H}_{\mathrm{b}}^{\infty,\ell-1}(X; \widetilde{sc}T^*X)$ and $g_0 \in C^{\infty}(\partial X; S^{2sc}T^*_{\partial X}X)$ such that

$$\dot{g} - \delta^*_{g_b} \omega - \dot{g}_b(\lambda(\dot{\mathfrak{a}}), \dot{\mathfrak{a}}) - rac{1}{r} g_0 \in \mathcal{O}(r^{-2+}).$$

Asymptotic behavior considerations eliminate the nut and acceleration parameters. Gauge freedom (Constraint dumping) Gundlach et al '05.

Zeroth order modification of δ_g^* :

$$ilde{\delta}^*_{g} = \delta^*_{g} + E, \ E\omega = \gamma(2c \otimes_{s} \omega - g^{-1}(c,\omega)g),$$

c being a stationary 1– form with compact spatial support. Replacing δ_g^* by $\tilde{\delta}_g^*$ gives a modified gauge fixed linear operator. For $\gamma \neq 0$ small no quadratically growing generalized modes exist. All other important properties of L_b remain unchanged.

4th step : Regularity of the resolvent at high frequencies

Proposition

Let $\ell < -\frac{1}{2}$, and $s > \frac{5}{2}$, $s + \ell > -\frac{1}{2} + m$, $m \in \mathbb{N}$. Let $\sigma_0 > 0$. Then for $\operatorname{Im} \sigma \ge 0$, $|\sigma| > \sigma_0$, $h = |\sigma|^{-1}$, the operator

$$\partial_{\sigma}^{m}\widehat{L_{b}}(\sigma)^{-1} \colon \overline{H}_{\mathrm{b},h}^{s,\ell+1} \to h^{-m}\overline{H}_{\mathrm{b},h}^{s-m,\ell}$$

is uniformly bounded.

Main issue at high frequencies ($|\operatorname{Re}\sigma| \to \infty$): Trapping, see Wunsch-Zworski '11, Dyatlov '16, Hintz '17. Remark : the trapping is r- normally hyperbolic for $0 \le a < \mathfrak{m}$ (Dytalov '15), therefore the above proposition should hold for $0 \le a < \mathfrak{m}$.

(日) (同) (三) (三) (三) (○) (○)

5th step: Structure of the resolvent at low frequencies

• There exists
$$V \in \Psi^{-\infty}(X^{\circ}; S^2T^*X^{\circ})$$
,

 $\check{L}_b(\sigma) := \widehat{L_b}(\sigma) + V \colon \mathcal{X}_b^{s,\ell}(\sigma) \to \bar{H}_b^{s-1,\ell+2}$

is invertible for $\sigma \in \mathbb{C}$, Im $\sigma \ge 0$, b close to b_0 . • Kernel of $\widehat{L_b}(0)$:

$$\mathcal{K}_{b} = \mathcal{K}_{b,s} \oplus \mathcal{K}_{b,v}, \quad \tilde{\mathcal{K}}_{b,\circ} = \check{L}_{b}(0)\mathcal{K}_{b,\circ}(0), \circ = s, v.$$

► There exists $\Pi_b^{\perp} : \bar{H}_b^{s-1,\ell+2} \to \bar{H}_b^{s-1,\ell+2}$ of rank 7 which depends continuously on *b* near b_0 , and satisfies

$$\langle \Pi_b f, h^* \rangle = 0 \quad \forall h^* \in \mathcal{K}_b^*, \, \Pi_b = 1 - \Pi_b^{\perp}.$$

► Consider $\widehat{L_b}(\sigma)\check{L}_b(\sigma)^{-1}: \overline{H}_b^{s-1,\ell+2} \to \overline{H}_b^{s-1,\ell+2}$. Decomposition

$$\begin{array}{ll} \text{domain:} & \bar{H}^{s-1,\ell+2}_{\mathrm{b}} \cong \widetilde{\mathcal{K}}^{\perp} \oplus \widetilde{\mathcal{K}}_{b,s} \oplus \widetilde{\mathcal{K}}_{b,\nu}, \\ \text{target:} & \bar{H}^{s-1,\ell+2}_{\mathrm{b}} \cong \operatorname{ran} \Pi_{b} \oplus \mathcal{R}^{\perp}_{s} \oplus \mathcal{R}^{\perp}_{\nu}. \end{array}$$

$$\widehat{L_b}(\sigma)\check{L}_b(\sigma)^{-1} = \begin{pmatrix} L_{00} & \sigma \tilde{L}_{01} & \sigma \tilde{L}_{02} \\ \sigma \tilde{L}_{10} & \sigma^2 \tilde{L}_{11} & \sigma^2 \tilde{L}_{12} \\ \sigma \tilde{L}_{20} & \sigma^2 \tilde{L}_{21} & \sigma \tilde{L}_{22} \end{pmatrix}.$$

We then obtain :

$$\widehat{L_b}(\sigma)^{-1} = \sigma^{-2}R_2 + \sigma^{-1}R_1 + L_b^-,$$

where the range of R_1 , R_2 is explicit (linearized Kerr, pure gauge). Regularity of L_b^- (uses Vasy'19):

Proposition

Let $\ell \in (-\frac{3}{2}, -\frac{1}{2})$, $\epsilon \in (0, 1)$, $\ell + \epsilon \in (-\frac{1}{2}, \frac{1}{2})$, and $s - \epsilon > \frac{7}{2}$. Then we have

$$L_b^- \in H^{3/2-\epsilon}\big((-\sigma_0,\sigma_0); \mathcal{L}(\bar{H}_{\mathrm{b}}^{s-1,\ell+2},\bar{H}_{\mathrm{b}}^{s-\max(\epsilon,1/2),\ell+\epsilon-1})\big).$$

Main issue : behavior of the metric at infinity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you for your attention !