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Einstein’s theory of General Relativity (1915)

(M, gαβ) a 1 + 3 dimensional Lorentzian manifold with signature (−,+,+,+)

Gαβ = Rαβ −
1

2
R · gαβ + Λgαβ = 8πTαβ ,

where Rαβ is Ricci tensor, R Ricci scalar, Λ cosmological constant, and Tαβ stress-energy
tensor.

The vacuum Einstein equation:

Tαβ = 0 ⇒ Rαβ = Λgαβ .

Second-order quasilinear PDE system for metric.
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Explicit solutions to Rαβ = 0 or Einstein–Maxwell

1 Minkowski: g = −(dt)2 + (dx1)2 + (dx2)2 + (dx3)2.

2 Schwarzschild (1915): gM = −µdt2 + µ−1dr 2 + r 2dσS2 , µ = 1− 2M
r

.
Spherically symmetric, asymptotically flat, contains a black hole;

3 Kerr (1963): subextremal family of axisymmetric, rotating spacetimes

gM,a =−
(

1− 2Mr

|q|2

)
dt2 − 2aMr sin2 θ

|q|2 (dtdφ+ dφdt)

+
|q|2

∆
dr 2 + |q|2dθ2 +

sin2 θ

|q|2
[
(r 2 + a2)2 − a2∆ sin2 θ

]
dφ2,

with 0 ≤ |a| < M, ∆(r) = r 2 − 2Mr + a2, |q|2 = r 2 + a2 cos2 θ.

4 Reissner–Nordström for Einstein–Maxwell: gM,e = −µdt2 + µ−1dr 2 + r 2dσS2 ,

where µ = 1− 2M
r

+ Q2

r2 , Q is the charge of the black hole and satisfies |Q| < M.

5 Kerr–Newman for Einstein–Maxwell
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Maximal Cauchy development and SCC

Maximal Cauchy development ( Choquet-Bruhat and Geroch 1969)

There exists a maximal Cauchy (or globally hyperbolic) development of the Cauchy data
(M̄, ḡ , K̄) with ḡ ∈ Hs , K̄ ∈ Hs−1, s > n

2
+ 1, which is unique up to isometry.

Strong Cosmic Censorship hypothesis, Penrose

For generic vacuum, asymptotically flat initial data, the maximal Cauchy development is
inextendible as a suitably regular Lorenztian manifold.
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Motivation of SCC: Kerr spacetimes
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0

There are infinitely many smooth extensions beyond the Cauchy horizon of Kerr (similarly
for RN).

SCC hypothesis about Kerr (or RN)

For sufficiently small perturbations of Kerr (or RN) initial data, the Cauchy horizon is
generically inextendible (thus, unstable) in a suitable regularity (say, H1

loc) sense.
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Literature on SCC for Einstein(-coupled) equation

Physics literature: Poisson–Israel, Ori, McNamara, · · ·
Weak null singularity (Christoffel symbols blow up and are not square integrable):
Luk (17’)

Spherically symmetric Einstein-Maxwell-(real) scalar: Dafermos (03’) and
Dafermos–Rodnianski (05’) for C 0-extendibility and mass inflation; Luk–Oh (19’) for
C 2-inextendibility and Sbierski (20’) for C 0,1

loc -inextendibility;
Costa–Girao–Natario–Silva (17’,18’) with a cosmological constant

Spherically symmetric Einstein-Maxwell-charged (massive) scalar field: Van de
Moortel (18’, 21’) proved C 0-extendibility and C 2-inextendibility under assumptions
on the decay for the massive scalar field on event horizon.

Dafermos–Luk (17’): C 0-stability of the Kerr CH assuming Kerr stability
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Literature on SCC for simplified models

Scalar field on RN and Kerr

C 0-extendibility: Franzen (16’) on RN; Hintz (17’) and Franzen (20’) on Kerr

H1
loc -inextendibility: Sbierski (15’) on Kerr using Gaussian beam approximation;

Luk–Oh (15’) on RN; Luk–Sbierski (16’) on Kerr; Luk–Oh–Shlapentokh-Rothman
(22’) on RN by the scattering map near 0 time-frequency

Spin-2 Teukolsky on Kerr

Sbierski (22’) showed the instability of Kerr CH for the Teukolsky equation for spin +2
component by the scattering map near 0 time-frequency
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Global asymptotics of linear perturbations
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SCC SCC

Cauchy problem for scalar field or linearized gravity in Kerr spacetimes.

Upper and lower bounds of decay in the exterior region: Price’s law

Asymptotics near event horizon

Asymptotics near Cauchy horizon (SCC)
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Spin s components

In the Newman–Penrose formalism, choose at each point a complex null tetrad
(l , n,m, m̄) s.t. g(l , n) = −1, g(m, m̄) = 1 and the other products being zero.

The spin s components, s = 0,±1,±2, are

Υ+1 = Flm, Υ−1 = Fm̄n,

Υ+2 = Wlmlm, Υ−2 = Wnm̄nm̄.

Hartle–Hawking tetrad (n is geodetic ∇nn = 0, l and n are principal null)

lν =
1√
2Σ

(r 2 + a2,∆, 0, a), nν =
1√
2∆

(r 2 + a2,−∆, 0, a),

mν =
1√

2(r + ia cos θ)
(ia sin θ, 0, 1,

i

sin θ
), m̄ν = c.c. of mν .
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Teukolsky Master Equation (TME, ’72)

TME for spin s components

Let s = |s| ∈ {0, 1
2
, 1, 2}. The spin s = ±s components

ψ+s
.

= |q|2sΥ+s ≈ r 2sΥ+s, ψ−s
.

= |q|−2s(r − ia cos θ)2sΥ−s ≈ Υ−s

solve a decoupled, separable spin-weighted wave eq:

0 = |q|2�gψs +
2is cos θ

sin2 θ
∂φψs − (s2 cot2 θ + s)ψs − 2ias cos θ∂tψs → |q|2�g,sψs

− 2s

(
r 3 − 3Mr 2 + a2r + a2M

∆
∂t + (r −M)∂r −

a(r −M)

∆
∂φ

)
ψs .

{ψs}s=±s govern the dynamics of scalar, Dirac, Maxwell and linearized gravity.
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Price’s Law: a law on the generically sharp decay rates for linear models

Price’s law for spin fields on Schw, RN, Kerr

1 On Schwarzschild. (and RN):

towards null infinity finite radius region

r−s−sψs ≈ Υs r−1−s−su−2−s+s u−3−2s

(r−s−sψs)` ≈ (Υs)` r−1−s−su−2−`+s u−3−2`

2 In Kerr, r−s−sψs ' u−1−s−sτ−2−s+s . In a finite region of Kerr: for scalar field,
(ψ)≥` has decay u−3−` for even ` and u−4−` for odd `; for s 6= 0, (r−s−sψs)≥` has
decay u−3−s−`.

Donninger–Schlag–Soffer (11’, 12’): Locally, t−2`−2 for a fixed ` mode for a
Regge–Wheeler eq, t−3 scalar, t−4 Maxwell, t−6 for linearized gravity on Schw.

Metcalfe–Tataru–Tohaneanu (12’, 13’, 17’): sharp decay for scalar and
u−2+|s|τ−2+|s| decay for Maxwell in a class of non-stationary AFST under
assumptions

Hintz (20’): For scalar, PL on Kerr and ≥ ` modes on Schw.

Angelopoulos–Aretakis–Gajic (18’,21’): PL for scalar field and its ≥ ` modes on RN,
and for ` = 0, ` = 1 and ` ≥ 2 modes of scalar field on Kerr

Ma (20’), Ma–Zhang (20’,21’): PL for Dirac on Schw., PL for spin-s fields and their
≥ ` modes on Schw, and PL for spin-s fields on Kerr
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Precise asymptotics for the scalar field on the Kerr (or RN) event horizon

Theorem 1 (Hintz; Angelopoulos-Aretakis-Gajic; Ma-Zhang)

For scalar field ψ arising from smooth, compactly supported initial data on a two-ended
hypersurface Σinit, then

ψ = c0u
−3 + O(u−3−ε), on H+ (1)

where

c0 =− 2M

π

(
(r 2

+ + a2)

∫
Σext∩H

ψdω −
∫

Σext

|q|2〈∇τ,∇ψ〉gM,adρdω

)
. (2)

Further, for generic such initial data, the constant c0 is non-zero.

Theorem 2 (Angelopoulos-Aretakis-Gajic)

Furthermore, ψ`≥1 ∼ u−5 on H+.

Remark

These estimates are also valid slightly inside the black hole.

S. Ma SCC for scalar field in Kerr LJLL, Dec 15 12 / 20



The Kerr black hole interior region

Let u = r∗ − t and u = r∗ + t, with dr∗ = µ−1dr , µ = ∆
r2+a2 . Let γ0 ∈ (0, 1

2
).
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Figure: Region rD+
init and its subregions
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Figure: Region lD+
init and its subregions
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Precise asymptotics for the scalar field in the interior of Kerr BH

Theorem 3 (Ma-Zhang 22’: on solution itself)

Assume ψ = c0u
−3 + O(u−3−ε) and |ψ`≥1| . u−4−δ on event horizon, δ > 0. Then there

exists a smooth function Ψ(u, ω), ω being the spherical coordinates on S2
u,u, such that

|ψ − c0u
−3| . u−3−ε in rD+

init ∩ {r
∗ ≤ uγ0}, (3a)∣∣∣∣ψ −Ψ(u, ω)− 1

2
c0

(
1 +

r 2
+ + a2

r 2 + a2

)
u−3

∣∣∣∣ . u−3−ε in rD+
init ∩ {r

∗ ≥ uγ0}, (3b)

where γ0 ∈ (0, 1
2
) is an arbitrary constant and∣∣∣∣Ψ(u, ω) +

1

2
c0

(
1− r 2

+ + a2

r 2
− + a2

)
u−3

∣∣∣∣ . |u|−3−ε as u → −∞, (3c)∣∣∣∣Ψ(u, ω)− 1

2
c ′0

(
1 +

r 2
+ + a2

r 2
− + a2

)
u−3

∣∣∣∣ . |u|−3−ε as u → +∞; (3d)
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Define two principal null directions

e3
.

=
1

2

(
r 2 + a2

∆
∂t +

a

∆
∂φ − ∂r

)
, e4

.
=

1

2

(
∂t +

a

r 2 + a2
∂φ +

∆

r 2 + a2
∂r

)
.

Also, define e′3
.

= (−µ)e3 and e′4
.

= (−µ)−1e4.

Theorem 4 (Ma-Zhang 22’: on the derivatives of the solution)

For e4ψ, we have ∣∣∣∣e4ψ +
3

2
c0

(
1 +

r 2
+ + a2

r 2 + a2

)
u−4

∣∣∣∣ . u−4−ε in rD+
init.

For (−µe3)ψ, we have∣∣∣∣(−µe3)ψ − 3

2
c0

(
1− r 2

+ + a2

r 2 + a2

)
u−4

∣∣∣∣ . (r+ − r)u−4−ε in rD+
init ∩ {r

∗ ≤ uγ0},∣∣(−µe3)ψ − (−µe3)|CH+ (Ψ(u, ω))
∣∣ . − µ in rD+

init ∩ {r
∗ ≥ 0},

where ∣∣∣∣(−µe3)|CH+ (Ψ(u, ω))− 3

2
c0

(
1− r 2

+ + a2

r 2
− + a2

)
u−4

∣∣∣∣ . |u|−4−ε as u → −∞.
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A few more comments

Also, |e3ψ + 3
2
c0

r+r+
r−r−

u−4| . u−4−ε in rD+
init ∩ {r0 ≤ r ≤ r+} for any given r0 ∈ (r−, r+).

Estimates in the left of black hole interior

Meanwhile, there exists a smooth function Ψ′(u, ω) such that the above estimates are
valid in lD+

init

.
= D+

init ∩ {u ≥ 1} if we make the replacements u → u, u → u,
e3 → e′4 = (−µ)−1e4, e4 → e′3 = −µe3, Ψ(u, ω)→ Ψ′(u, ω), rD+

init → lD+
init,

{r∗ ≤ uγ0} → {r∗ ≤ uγ0}, CH+ → CH′+, respectively.

The estimates are invariant under T = ∂t operation on both sides.

Globality of the estimates in black hole interior

since the remaining region D+
init ∩ {u ≤ 1} ∩ {u ≤ 1} is a compact region with both u and

u uniformly bounded from above and below.

Estimates in RN hold as well by let a = 0, ∆ = r 2 − 2Mr + Q2, and µ = ∆
r2 = r2−2Mr+Q2

r2 .
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H1
loc -inextendibility

Define w
.

= u − r + r−, w
.

= u − r + r+. The constant-w and -w hypersurfaces Cw and
Cw are spacelike.

H1
loc inextendibility

Since c0 is generically non-zero, we conclude

1 The regular derivative (−µ)−1e4ψ
generically blows up towards the right
Cauchy horizon CH+.

2 The nondegenerate energy of ψ on
hypersurface Cw ∩ {u ≥ u0}, which
bounds

∫
Cw∩{u≥u0}

|µ|−1|e4ψ|2du,

generically goes to +∞ as u0 → +∞.

3 One can examine the validity of SCC in
a weak regularity space.

S2
H

S2
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u
=

+∞
u

=
+
∞

u
=
−∞

u
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i+i ′+
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′
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c
′
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Sketch of the proof

S2
H

S2
CH

CH+CH′+

i+i ′+

IIΓ

I

II\IIΓ

r = rb

u
=

1

Γ

I: red-shift region

IIΓ: u ∼ urb
(u)

II\IIΓ: blue-shift region

ψ = ψ`=0 + ψ`≥1, spherically symmetric part and the
remaining part

Integrate along u = const starting from event horizon
+ fast energy decay

The equation satisfied by ψ`=0:

∂u

(
(r 2 + a2)∂uψ`=0 −

1

2
(r 2 + a2)Tψ`=0

)
=− 1

2
(r 2 + a2)∂uTψ`=0 −

1

4
a2µP`=0(sin2 θT 2ψ)
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Sketch of the proof (energy decay estimates)

Region I: red-shift estimate∫
u=const

(−µ)−1|∂uT jψ`=0|2du . u−8−2j ,

Region IIΓ: blue-shift estimate∫
u=const

| log(−µ)|−
1
2 |∂uT jψ`=0|2du . u−8−2j+γ ,

Region II\IIΓ: we only need boundedness,∫
u=const

| log(−µ)|−
5
2 |T jψ`=0|2du . 1

Since −µ has exponential decay in this region, the error terms are easily controlled.
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Thank you!
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