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Einstein's theory of General Relativity (1915)

(M, gap) a 1+ 3 dimensional Lorentzian manifold with signature (—, +, +,+)

1
Gag = Rap — >R 8ap + Ngap = 8 Tag,

where R.g is Ricci tensor, R Ricci scalar, A cosmological constant, and T,g stress-energy

tensor.
w

The vacuum Einstein equation:

Tag =0 = Ra[; = Aga,8~

Second-order quasilinear PDE system for metric. J
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Explicit solutions to R,3 = 0 or Einstein—Maxwell

o
o

o

Minkowski: g = —(dt)? + (dx')? + (dx?)? 4 (dx®)?

Schwarzschild (1915): gy = —pdt® + p~tdr* 4 r’dog, p=1 — %
Spherically symmetric, asymptotically flat, contains a black hole;

Kerr (1963): subextremal family of axisymmetric, rotating spacetimes
(1 B 2M2r> 4 — 2al\/lr52in20
lql |4l

|q|2 D) D) 2 sin29
+19%472 4 |gPag? +
T

8M,a = — (dtd¢ + dedt)

BF+¥f—fA§¥ﬂd&,

with 0 < |a| < M, A(r) = r? —2Mr + a°, |q|> = r* + a® cos 6.

Reissner—Nordstrom for Einstein—Maxwell: gy, = —udt® + p*dr? + r’dog,

where p=1— 24 4 %2, Q is the charge of the black hole and satisfies |Q| < M.

Kerr—Newman for Einstein—Maxwell
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Maximal Cauchy development and SCC

Maximal Cauchy development ( Choquet-Bruhat and Geroch 1969)

There exists a maximal Cauchy (or globally hyperbolic) development of the Cauchy data
(M,g,K) with g € H*, K € H*™', s > 2 + 1, which is unique up to isometry.
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Maximal Cauchy development and SCC

Maximal Cauchy development ( Choquet-Bruhat and Geroch 1969)

There exists a maximal Cauchy (or globally hyperbolic) development of the Cauchy data
(M,g,K) with g € H*, K € H*™', s > 2 + 1, which is unique up to isometry.

Strong Cosmic Censorship hypothesis, Penrose

For generic vacuum, asymptotically flat initial data, the maximal Cauchy development is
inextendible as a suitably regular Lorenztian manifold.
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Motivation of SCC: Kerr spacetimes

2
Sen

There are infinitely many smooth extensions beyond the Cauchy horizon of Kerr (similarly
for RN).

v

SCC hypothesis about Kerr (or RN)

For sufficiently small perturbations of Kerr (or RN) initial data, the Cauchy horizon is
generically inextendible (thus, unstable) in a suitable regularity (say, Hi.) sense.

v
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Literature on SCC for Einstein(-coupled) equation

@ Physics literature: Poisson—lIsrael, Ori, McNamara, - - -

o Weak null singularity (Christoffel symbols blow up and are not square integrable):
Luk (17)

@ Spherically symmetric Einstein-Maxwell-(real) scalar: Dafermos (03') and
Dafermos—Rodnianski (05') for C°-extendibility and mass inflation; Luk-Oh (19') for
C2-inextendibility and Sbierski (20") for C2-inextendibility;
Costa—Girao—Natario—Silva (17',18") with a cosmological constant

@ Spherically symmetric Einstein-Maxwell-charged (massive) scalar field: Van de
Moortel (18, 21') proved C°-extendibility and C>-inextendibility under assumptions
on the decay for the massive scalar field on event horizon.

o Dafermos—Luk (17'): CP-stability of the Kerr CH assuming Kerr stability
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Literature on SCC for simplified models

Scalar field on RN and Kerr
o CPextendibility: Franzen (16') on RN; Hintz (17') and Franzen (20') on Kerr

o Hj, -inextendibility: Sbierski (15') on Kerr using Gaussian beam approximation;
Luk—Oh (15') on RN; Luk—Sbierski (16") on Kerr; Luk—Oh—Shlapentokh-Rothman
(22') on RN by the scattering map near 0 time-frequency

Spin-2 Teukolsky on Kerr

Sbierski (22') showed the instability of Kerr CH for the Teukolsky equation for spin +2
component by the scattering map near 0 time-frequency
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Global asymptotics of linear perturbations

Cauchy problem for scalar field or linearized gravity in Kerr spacetimes. J

o Upper and lower bounds of decay in the exterior region: Price's law
@ Asymptotics near event horizon

o Asymptotics near Cauchy horizon (SCC)
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Spin s components

In the Newman—Penrose formalism, choose at each point a complex null tetrad
(I,n,m, m) s.t. g(I,n) = —1, g(m, M) =1 and the other products being zero.

The spin s components, s = 0,41, 42, are

T+1 == F/m7 T
T+2 - Wlmlm7 T*Z - Wnrﬁnm«

Hartle-Hawking tetrad (n is geodetic V,n = 0, / and n are principal null)

P =

2, 2 ” L
r-+a 3A707a7 m=
\@:( ) V2A

1 i
Y= — ——  (iasin6,0,1, —),
ﬁ(r—f—iacos@)( sm9)

(r2 + 32,—A,07 a),

m” = c.c. of m”.
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Teukolsky Master Equation (TME, '72)

TME for spin s components
Let s = |s| € {0, %, 1,2}. The spin s = £5 components
Vis =[G s = P Tis, s = |q|72°(r — iacos0)*T_s = T_,

solve a decoupled, separable spin-weighted wave eq:

0 = |q|*Dgts + 2‘% C?Zg&pws — (5% cot® 0 + s)y)s — 2ias cos 00ps — |q|° Oy s0s
sin

<r3 —3Mr? + 2%r + a*°M
—2s

u B + (r — M), — w%)ws.

{ts}s=+s govern the dynamics of scalar, Dirac, Maxwell and linearized gravity.
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Price's Law: a law on the generically sharp decay rates for linear models

Price’s law for spin fields on Schw, RN, Kerr
@ On Schwarzschild. (and RN):

towards null infinity | finite radius region
rfs—sws ~ Ts r717575u7275+s H73725
(rfs—sws)e ~ (Ts)é r717575u727£+5 g7372£

Q In Kerr, r—" %15 ~ u P TS T275H5 | a finite region of Kerr: for scalar field,
(1)>¢ has decay u=3~* for even £ and u=*~* for odd ¢; for 5 # 0, (r ° “1s)>; has
decay u=3 %

o Donninger-Schlag-Soffer (11', 12'): Locally, t~¢=2 for a fixed £ mode for a
Regge-Wheeler eq, 2 scalar, t=* Maxwell, t=° for linearized gravity on Schw.

@ Metcalfe-Tataru-Tohaneanu (12', 13", 17'): sharp decay for scalar and
u~?*Isl=2%1s] decay for Maxwell in a class of non-stationary AFST under
assumptions

@ Hintz (20'): For scalar, PL on Kerr and > ¢ modes on Schw.

@ Angelopoulos—Aretakis—Gajic (18',21"): PL for scalar field and its > ¢ modes on RN,
and for £ =0, £ =1 and £ > 2 modes of scalar field on Kerr

@ Ma (20'), Ma—Zhang (20',21"): PL for Dirac on Schw., PL for spin-s fields and their
> ¢ modes on Schw, and PL for spin-s fields on Kerr
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Precise asymptotics for the scalar field on the Kerr (or RN) event horizon

Theorem 1 (Hintz; Angelopoulos-Aretakis-Gajic; Ma-Zhang)

For scalar field 1 arising from smooth, compactly supported initial data on a two-ended

hypersurface ¥ init, then
Y=cou >+ 0(u>), on Hy
where

2M
@=-— ((ri +3a°) Pdw — / lq*(Vr, w>gM,adpdw>.
o TetNH Text

Further, for generic such initial data, the constant ¢y is non-zero.

(1)

)

Theorem 2 (Angelopoulos-Aretakis-Gajic)

Furthermore, y>1 ~ u~> on H.
> u 4+

Remark

These estimates are also valid slightly inside the black hole.
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The Kerr black hole interior region

Let u=r*—tand u=r*+t with dr* = p dr, up = ,2+az
Sen

Let v € (0,

3)-

2
SC’H

Figure: Region ,D;.

imie @and its subregions

H
Figure: Region ’D|n|t

and its subregions
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Precise asymptotics for the scalar field in the interior of Kerr BH

Theorem 3 (Ma-Zhang 22": on solution itself)
Assume 1) = cou >+ O(u=3"°) and |¢he>1| < u=*=° on event horizon, § > 0. Then there
exists a smooth function W(u,w), w being the spherical coordinates on Sﬁ,g, such that
¥ —au| Sy in D n{r <u™},  (3a)
1 I'2 + 32 _ —3—¢ - *
’¢ —V(,w) - Eco(l tor e Ju [ SuT in D {rt =™}, (3b)
where o € (0, 1) is an arbitrary constant and
1 T+a ) - Za
‘\Il(u,w)—&-ECo(l—:;:i;)u < U asu— —oo, (3¢)
W(uw) - te(1+ ret+a -l < lu[ 737 as u — +oo; (3d)
’ 270 r? + a2 ~ '
v
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Define two principal null directions

L1/ 4+ a 1 a A
e3_§< A 6f+Za“’_8’)’ 64_5(8t+r2+a2a¢+r2+azar>.

Also, define e = (—p)es and € = (—u) 'es.

Theorem 4 (Ma-Zhang 22": on the derivatives of the solution)

For esp, we have

—4—€ - Ar
r2 i 32 5 u mn ’Dinit'

2 2
641l1+%€0(1+ ry +a >g74

For (—pes3)y, we have

3 f_%_ aF 32 —4| < —4—¢ 5 Nie * Yo
(—pes)y — 51— panl LIRS (ry —ru in \Dipie N {r" < u™},
|(—pes) — (—pes)lew, (W(u,w))| S — p in "D N {r" > 0},
where

<lul™* ¢ asu— —oo.

3 R+at\ s
(reler (vuw) - Seo(1- 55 )
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A few more comments

Also, |esth + 3oy S u™* < in D}

init

N{r < r < ry} for any given ro € (r—, ry.).

Estimates in the left of black hole interior

Meanwhile, there exists a smooth function W’(u,w) such that the above estimates are
valid in /Djf,, = D.t.t N {u > 1} if we make the replacements u — u, u — u,
& — e = (—p) e, & — & = —pes, V(u,w) = V' (y,w), D, — D

{r* <u™} — {r* <u™} CH;y — CH!., respectively.

init init?

The estimates are invariant under T = O; operation on both sides.

Globality of the estimates in black hole interior

since the remaining region Dt N {u < 1} N {u < 1} is a compact region with both u a
u uniformly bounded from above and below.

nd

r

Estimates in RN hold as well by let a=0, A = r?> —2Mr + Q?, and u = r% = %ﬁon
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HL -inextendibility

loc

Define w =u—r+r_, w=u—r—+ ri. The constant-w and -w hypersurfaces C,, and

C,, are spacelike.

H,

Since ¢ is generically non-zero, we conclude

inextendibility

1
oc

@ The regular derivative (—u) test)
generically blows up towards the right
Cauchy horizon CH .

@ The nondegenerate energy of 1) on
hypersurface C,, N {u > u,}, which
bounds fcwﬁ{ﬂzgo}mr”eﬂ/}‘zdg,
generically goes to 400 as u, — +oo.

© One can examine the validity of SCC in
a weak regularity space.
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Sketch of the proof

o |: red-shift region
o llr: u~u, (u)

o II\llr: blue-shift region

M) = ahy—o + he>1, spherically symmetric part and the
remaining part

Integrate along u = const starting from event horizon
+ fast energy decay

y
2
S’H

The equation satisfied by t,—:

1
Ay ((F + a%)Buthe—o — 5(r2 + a2)Tw:o>
1 1 .
== E(rz + 32)8u Tlﬁz:o - Zaz,u]PZ:o(Sln2 9T2¢)
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Sketch of the proof (energy decay estimates)

Region I: red-shift estimate

/ (—42) 180 TiaprmoPdus < w7,
u=const

Region Ilr: blue-shift estimate

/ | log(—12)| ™2 T/abe—ol*du < u™®"%+7,
u=const

Region I\l we only need boundedness,

_5 i
/ |log(—p)| ™2 | T/¢br—o|*du < 1
u=const

Since —p has exponential decay in this region, the error terms are easily controlled.
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Thank you!
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