### Revisiting the Strong Cosmic Censorship for scalar field in Kerr interior

Siyuan Ma

#### Joint work with Lin Zhang

GR seminar, LJLL, Sorbonne December 15, 2022

LJLL, Dec 15 1 / 20

## Einstein's theory of General Relativity (1915)

 $(\mathcal{M}, g_{lphaeta})$  a 1+3 dimensional Lorentzian manifold with signature (-,+,+,+)

$$G_{\alpha\beta} = R_{\alpha\beta} - \frac{1}{2}R \cdot g_{\alpha\beta} + \Lambda g_{\alpha\beta} = 8\pi T_{\alpha\beta},$$

where  $R_{\alpha\beta}$  is Ricci tensor, R Ricci scalar,  $\Lambda$  cosmological constant, and  $T_{\alpha\beta}$  stress-energy tensor.

The vacuum Einstein equation:

$$T_{\alpha\beta} = 0 \Rightarrow R_{\alpha\beta} = \Lambda g_{\alpha\beta}.$$

Second-order quasilinear PDE system for metric.

Explicit solutions to  $R_{\alpha\beta} = 0$  or Einstein–Maxwell

**Olympice Set Solution** Minkowski: 
$$g = -(dt)^2 + (dx^1)^2 + (dx^2)^2 + (dx^3)^2$$
.

**Schwarzschild** (1915):  $g_M = -\mu dt^2 + \mu^{-1} dr^2 + r^2 d\sigma_{S^2}$ ,  $\mu = 1 - \frac{2M}{r}$ . Spherically symmetric, asymptotically flat, contains a black hole;

**6** Kerr (1963): subextremal family of axisymmetric, rotating spacetimes

$$\begin{split} g_{M,a} &= -\left(1 - \frac{2Mr}{|q|^2}\right) \mathrm{d}t^2 - \frac{2aMr\sin^2\theta}{|q|^2} (\mathrm{d}t\mathrm{d}\phi + \mathrm{d}\phi\mathrm{d}t) \\ &+ \frac{|q|^2}{\Delta} \mathrm{d}r^2 + |q|^2 \mathrm{d}\theta^2 + \frac{\sin^2\theta}{|q|^2} \left[ (r^2 + a^2)^2 - a^2\Delta\sin^2\theta \right] \mathrm{d}\phi^2, \end{split}$$

with  $0 \le |a| < M$ ,  $\Delta(r) = r^2 - 2Mr + a^2$ ,  $|q|^2 = r^2 + a^2 \cos^2 \theta$ .

Reissner-Nordström for Einstein-Maxwell: g<sub>M,e</sub> = -μdt<sup>2</sup> + μ<sup>-1</sup>dr<sup>2</sup> + r<sup>2</sup>dσ<sub>5<sup>2</sup></sub>, where μ = 1 - 2M/r + Q<sup>2</sup>/r<sup>2</sup>, Q is the charge of the black hole and satisfies |Q| < M.</li>
 Kerr-Newman for Einstein-Maxwell

イロト 不得 トイヨト イヨト

### Maximal Cauchy development (Choquet-Bruhat and Geroch 1969)

There exists a maximal Cauchy (or globally hyperbolic) development of the Cauchy data  $(\overline{M}, \overline{g}, \overline{K})$  with  $\overline{g} \in H^s$ ,  $\overline{K} \in H^{s-1}$ ,  $s > \frac{n}{2} + 1$ , which is unique up to isometry.

### Maximal Cauchy development (Choquet-Bruhat and Geroch 1969)

There exists a maximal Cauchy (or globally hyperbolic) development of the Cauchy data  $(\overline{M}, \overline{g}, \overline{K})$  with  $\overline{g} \in H^s$ ,  $\overline{K} \in H^{s-1}$ ,  $s > \frac{n}{2} + 1$ , which is unique up to isometry.

#### Strong Cosmic Censorship hypothesis, Penrose

For generic vacuum, asymptotically flat initial data, the maximal Cauchy development is inextendible as a suitably regular Lorenztian manifold.

### Motivation of SCC: Kerr spacetimes



There are infinitely many smooth extensions beyond the Cauchy horizon of Kerr (similarly for RN).

### SCC hypothesis about Kerr (or RN)

For sufficiently small perturbations of Kerr (or RN) initial data, the Cauchy horizon is generically inextendible (thus, unstable) in a suitable regularity (say,  $H_{loc}^1$ ) sense.

S. Ma

## Literature on SCC for Einstein(-coupled) equation

- Physics literature: Poisson–Israel, Ori, McNamara, · · ·
- Weak null singularity (Christoffel symbols blow up and are not square integrable): Luk (17')
- Spherically symmetric Einstein-Maxwell-(real) scalar: Dafermos (03') and Dafermos-Rodnianski (05') for C<sup>0</sup>-extendibility and mass inflation; Luk-Oh (19') for C<sup>2</sup>-inextendibility and Sbierski (20') for C<sup>0,1</sup><sub>loc</sub>-inextendibility; Costa-Girao-Natario-Silva (17',18') with a cosmological constant
- Spherically symmetric Einstein-Maxwell-charged (massive) scalar field: Van de Moortel (18', 21') proved C<sup>0</sup>-extendibility and C<sup>2</sup>-inextendibility under assumptions on the decay for the massive scalar field on event horizon.
- Dafermos-Luk (17'): C<sup>0</sup>-stability of the Kerr CH assuming Kerr stability

## Literature on SCC for simplified models

#### Scalar field on RN and Kerr

- C<sup>0</sup>-extendibility: Franzen (16') on RN; Hintz (17') and Franzen (20') on Kerr
- H<sup>1</sup><sub>loc</sub>-inextendibility: Sbierski (15') on Kerr using Gaussian beam approximation; Luk–Oh (15') on RN; Luk–Sbierski (16') on Kerr; Luk–Oh–Shlapentokh-Rothman (22') on RN by the scattering map near 0 time-frequency

### Spin-2 Teukolsky on Kerr

Sbierski (22') showed the instability of Kerr CH for the Teukolsky equation for spin +2 component by the scattering map near 0 time-frequency

イロト イヨト イヨト

## Global asymptotics of linear perturbations



Cauchy problem for scalar field or linearized gravity in Kerr spacetimes.

- Upper and lower bounds of decay in the exterior region: Price's law
- Asymptotics near event horizon
- Asymptotics near Cauchy horizon (SCC)

### Spin s components

In the Newman–Penrose formalism, choose at each point a complex null tetrad  $(l, n, m, \bar{m})$  s.t. g(l, n) = -1,  $g(m, \bar{m}) = 1$  and the other products being zero.

The spin s components,  $s=0,\pm 1,\pm 2$ , are

$$\begin{split} \Upsilon_{+1} &= \mathsf{F}_{\mathit{lm}}, & & \Upsilon_{-1} &= \mathsf{F}_{\textit{\bar{m}}n}, \\ \Upsilon_{+2} &= \mathsf{W}_{\mathit{lm}\mathit{lm}}, & & & \Upsilon_{-2} &= \mathsf{W}_{\mathit{n\bar{m}}\mathit{n\bar{m}}.} \end{split}$$

Hartle–Hawking tetrad (*n* is geodetic  $\nabla_n n = 0$ , *l* and *n* are principal null)

$$I^{\nu} = \frac{1}{\sqrt{2}\Sigma} (r^{2} + a^{2}, \Delta, 0, a), \qquad n^{\nu} = \frac{1}{\sqrt{2}\Delta} (r^{2} + a^{2}, -\Delta, 0, a),$$
$$m^{\nu} = \frac{1}{\sqrt{2}(r + ia\cos\theta)} (ia\sin\theta, 0, 1, \frac{i}{\sin\theta}), \qquad \bar{m}^{\nu} = \text{c.c. of } m^{\nu}.$$

## Teukolsky Master Equation (TME, '72)

### TME for spin *s* components

Let  $\mathfrak{s} = |s| \in \{0, \frac{1}{2}, 1, 2\}$ . The spin  $s = \pm \mathfrak{s}$  components

$$\psi_{+\mathfrak{s}}\doteq |\pmb{q}|^{2\mathfrak{s}}\Upsilon_{+\mathfrak{s}}pprox r^{2\mathfrak{s}}\Upsilon_{+\mathfrak{s}}, \quad \psi_{-\mathfrak{s}}\doteq |\pmb{q}|^{-2\mathfrak{s}}(r-\mathit{ia}\cos heta)^{2\mathfrak{s}}\Upsilon_{-\mathfrak{s}}pprox\Upsilon_{-\mathfrak{s}}$$

solve a decoupled, separable spin-weighted wave eq:

$$D = |\mathbf{q}|^2 \Box_{\mathbf{g}} \psi_{\mathbf{s}} + \frac{2 \mathrm{i} \mathrm{s} \cos \theta}{\mathrm{sin}^2 \theta} \partial_{\phi} \psi_{\mathbf{s}} - (\mathbf{s}^2 \cot^2 \theta + \mathbf{s}) \psi_{\mathbf{s}} - 2 \mathrm{i} \mathrm{a} \mathrm{s} \cos \theta \partial_{\mathbf{t}} \psi_{\mathbf{s}} \rightarrow |\mathbf{q}|^2 \Box_{\mathbf{g},\mathbf{s}} \psi_{\mathbf{s}} \\ - 2 \mathrm{s} \bigg( \frac{r^3 - 3Mr^2 + a^2r + a^2M}{\Delta} \partial_t + (r - M) \partial_r - \frac{a(r - M)}{\Delta} \partial_{\phi} \bigg) \psi_{\mathbf{s}}.$$

 $\{\psi_s\}_{s=\pm s}$  govern the dynamics of scalar, Dirac, Maxwell and linearized gravity.

## Price's Law: a law on the generically sharp decay rates for linear models

### Price's law for spin fields on Schw, RN, Kerr

On Schwarzschild. (and RN):

|                                                            | towards null infinity                        | finite radius region               |
|------------------------------------------------------------|----------------------------------------------|------------------------------------|
| $r^{-\mathfrak{s}-s}\psi_spprox \Upsilon_s$                | $r^{-1-\mathfrak{s}-s}u^{-2-\mathfrak{s}+s}$ | $\underline{u}^{-3-2\mathfrak{s}}$ |
| $(r^{-\mathfrak{s}-s}\psi_s)_\ell pprox (\Upsilon_s)_\ell$ | $r^{-1-\mathfrak{s}-s}u^{-2-\ell+s}$         | $\underline{u}^{-3-2\ell}$         |

- O In Kerr, r<sup>-s-s</sup>ψ<sub>s</sub> ≃ <u>u</u><sup>-1-s-s</sup>τ<sup>-2-s+s</sup>. In a finite region of Kerr: for scalar field, (ψ)≥<sub>ℓ</sub> has decay <u>u</u><sup>-3-ℓ</sup> for even ℓ and <u>u</u><sup>-4-ℓ</sup> for odd ℓ; for s ≠ 0, (r<sup>-s-s</sup>ψ<sub>s</sub>)≥<sub>ℓ</sub> has decay <u>u</u><sup>-3-s-ℓ</sup>.
- Donninger-Schlag-Soffer (11', 12'): Locally,  $t^{-2\ell-2}$  for a fixed  $\ell$  mode for a Regge-Wheeler eq,  $t^{-3}$  scalar,  $t^{-4}$  Maxwell,  $t^{-6}$  for linearized gravity on Schw.
- Metcalfe–Tataru–Tohaneanu (12', 13', 17'): sharp decay for scalar and  $\underline{u}^{-2+|s|}\tau^{-2+|s|}$  decay for Maxwell in a class of non-stationary AFST under assumptions
- Hintz (20'): For scalar, **PL** on Kerr and  $\geq \ell$  modes on Schw.
- Angelopoulos–Aretakis–Gajic (18',21'): **PL** for scalar field and its  $\geq \ell$  modes on RN, and for  $\ell = 0$ ,  $\ell = 1$  and  $\ell \geq 2$  modes of scalar field on Kerr

### Precise asymptotics for the scalar field on the Kerr (or RN) event horizon

#### Theorem 1 (Hintz; Angelopoulos-Aretakis-Gajic; Ma-Zhang)

For scalar field  $\psi$  arising from smooth, compactly supported initial data on a two-ended hypersurface  $\Sigma_{init}$ , then

$$\psi = c_0 \underline{u}^{-3} + O(\underline{u}^{-3-\epsilon}), \quad \text{on } \mathcal{H}_+$$
(1)

where

$$c_{0} = -\frac{2M}{\pi} \left( (r_{+}^{2} + a^{2}) \int_{\Sigma_{ext} \cap \mathcal{H}} \psi d\omega - \int_{\Sigma_{ext}} |q|^{2} \langle \nabla \tau, \nabla \psi \rangle_{g_{M,a}} d\rho d\omega \right).$$
(2)

Further, for generic such initial data, the constant  $c_0$  is non-zero.

### Theorem 2 (Angelopoulos-Aretakis-Gajic)

Furthermore,  $\psi_{\ell \geq 1} \sim \underline{u}^{-5}$  on  $\mathcal{H}_+$ .

#### Remark

These estimates are also valid slightly inside the black hole.

S. Ma

イロト イヨト イヨト イヨト

#### The Kerr black hole interior region

Let  $u = r^* - t$  and  $\underline{u} = r^* + t$ , with  $dr^* = \mu^{-1} dr$ ,  $\mu = \frac{\Delta}{r^2 + a^2}$ . Let  $\gamma_0 \in (0, \frac{1}{2})$ .







Figure: Region  ${}_{I}\mathcal{D}_{init}^{+}$  and its subregions

< □ > < □ > < □ > < □ > < □ >

SCC for scalar field in Kerr

LJLL, Dec 15 13 / 20

#### Theorem 3 (Ma-Zhang 22': on solution itself)

Assume  $\psi = c_0 \underline{u}^{-3} + O(\underline{u}^{-3-\epsilon})$  and  $|\psi_{\ell \ge 1}| \le \underline{u}^{-4-\delta}$  on event horizon,  $\delta > 0$ . Then there exists a smooth function  $\Psi(u, \omega)$ ,  $\omega$  being the spherical coordinates on  $\mathbb{S}^2_{u,u}$ , such that

$$|\psi - c_0 \underline{u}^{-3}| \lesssim \underline{u}^{-3-\epsilon} \text{ in } {}_r \mathcal{D}^+_{init} \cap \{r^* \leq \underline{u}^{\gamma_0}\},$$
 (3a)

$$\psi - \Psi(u,\omega) - \frac{1}{2}c_0 \left( 1 + \frac{r_+^2 + a^2}{r^2 + a^2} \right) \underline{u}^{-3} \bigg| \lesssim \underline{u}^{-3-\epsilon} \quad \text{in } _r \mathcal{D}_{\text{init}}^+ \cap \{ r^* \ge \underline{u}^{\gamma_0} \}, \tag{3b}$$

where  $\gamma_0 \in (0, \frac{1}{2})$  is an arbitrary constant and

$$\left|\Psi(u,\omega)+rac{1}{2}c_0igg(1-rac{r_+^2+a^2}{r_-^2+a^2}igg)u^{-3}
ight|\lesssim |u|^{-3-\epsilon} ext{ as }u
ightarrow -\infty, ext{ (3c)}$$

$$\Psi(u,\omega) - rac{1}{2}c_0' \left( 1 + rac{r_+^2 + a^2}{r_-^2 + a^2} 
ight) u^{-3} \bigg| \lesssim |u|^{-3-\epsilon} \text{ as } u \to +\infty;$$
 (3d)

Define two principal null directions

$$\mathbf{e}_{3} \doteq \frac{1}{2} \left( \frac{r^{2} + \mathbf{a}^{2}}{\Delta} \partial_{t} + \frac{\mathbf{a}}{\Delta} \partial_{\phi} - \partial_{r} \right), \qquad \mathbf{e}_{4} \doteq \frac{1}{2} \left( \partial_{t} + \frac{\mathbf{a}}{r^{2} + \mathbf{a}^{2}} \partial_{\phi} + \frac{\Delta}{r^{2} + \mathbf{a}^{2}} \partial_{r} \right).$$

Also, define  $e'_3 \doteq (-\mu)e_3$  and  $e'_4 \doteq (-\mu)^{-1}e_4$ .

Theorem 4 (Ma-Zhang 22': on the derivatives of the solution)

For  $e_4\psi$ , we have

$$\left|e_4\psi+\frac{3}{2}c_0\left(1+\frac{r_+^2+a^2}{r^2+a^2}\right)\underline{u}^{-4}\right|\lesssim\underline{u}^{-4-\epsilon} \ \text{ in } _r\mathcal{D}_{\text{init}}^+.$$

For  $(-\mu e_3)\psi$ , we have

$$\begin{split} \left| (-\mu e_3)\psi - \frac{3}{2}c_0 \left( 1 - \frac{r_+^2 + a^2}{r^2 + a^2} \right) \underline{u}^{-4} \right| \lesssim (r_+ - r) \underline{u}^{-4-\epsilon} & \text{ in } _r \mathcal{D}_{\text{init}}^+ \cap \{r^* \leq \underline{u}^{\gamma_0}\}, \\ \left| (-\mu e_3)\psi - (-\mu e_3) \right|_{\mathcal{CH}_+} (\Psi(u, \omega)) \right| \lesssim -\mu & \text{ in } _r \mathcal{D}_{\text{init}}^+ \cap \{r^* \geq 0\}, \end{split}$$

where

$$\left|(-\mu e_3)|_{\mathcal{CH}_+}(\Psi(u,\omega))-\frac{3}{2}c_0\left(1-\frac{r_+^2+a^2}{r_-^2+a^2}\right)u^{-4}\right|\lesssim |u|^{-4-\epsilon} \ \text{ as } u\to -\infty.$$

## A few more comments

Also,  $|e_3\psi + \frac{3}{2}c_0\frac{r+r_+}{r-r_-}\underline{u}^{-4}| \lesssim \underline{u}^{-4-\epsilon}$  in  $_r\mathcal{D}^+_{\text{init}} \cap \{r_0 \leq r \leq r_+\}$  for any given  $r_0 \in (r_-, r_+)$ .

#### Estimates in the left of black hole interior

Meanwhile, there exists a smooth function  $\Psi'(\underline{u}, \omega)$  such that the above estimates are valid in  ${}_{l}\mathcal{D}^{+}_{init} \doteq \mathcal{D}^{+}_{init} \cap \{u \ge 1\}$  if we make the replacements  $u \to \underline{u}, \underline{u} \to u$ ,  $e_3 \to e_4' = (-\mu)^{-1}e_4$ ,  $e_4 \to e_3' = -\mu e_3$ ,  $\Psi(u, \omega) \to \Psi'(\underline{u}, \omega)$ ,  ${}_{r}\mathcal{D}^{+}_{init} \to {}_{l}\mathcal{D}^{+}_{init}$ ,  $\{r^* \le \underline{u}^{\gamma_0}\} \to \{r^* \le u^{\gamma_0}\}$ ,  $\mathcal{CH}_+ \to \mathcal{CH}'_+$ , respectively.

The estimates are invariant under  $T = \partial_t$  operation on both sides.

#### Globality of the estimates in black hole interior

since the remaining region  $\mathcal{D}_{init}^+ \cap \{\underline{u} \leq 1\} \cap \{u \leq 1\}$  is a compact region with both u and  $\underline{u}$  uniformly bounded from above and below.

Estimates in RN hold as well by let a = 0,  $\Delta = r^2 - 2Mr + Q^2$ , and  $\mu = \frac{\Delta}{r^2} = \frac{r^2 - 2Mr + Q^2}{r^2}$ .

# $H^1_{loc}$ -inextendibility

Define  $w \doteq u - r + r_-$ ,  $\underline{w} \doteq \underline{u} - r + r_+$ . The constant-*w* and -<u>*w*</u> hypersurfaces  $C_w$  and  $\underline{C}_w$  are spacelike.

## $H^1_{loc}$ inextendibility

Since  $c_0$  is generically non-zero, we conclude

- The regular derivative  $(-\mu)^{-1}e_4\psi$ generically blows up towards the right Cauchy horizon  $C\mathcal{H}_+$ .
- Phe nondegenerate energy of ψ on hypersurface C<sub>w</sub> ∩ {<u>u</u> ≥ <u>u</u><sub>0</sub>}, which bounds ∫<sub>C<sub>w</sub>∩{<u>u</u>≥<u>u</u><sub>0</sub>} |μ|<sup>-1</sup>|e<sub>4</sub>ψ|<sup>2</sup>d<u>u</u>, generically goes to +∞ as <u>u</u><sub>0</sub> → +∞.</sub>
- One can examine the validity of SCC in a weak regularity space.



イロト イヨト イヨト イヨト

### Sketch of the proof



- I: red-shift region
- II<sub> $\Gamma$ </sub>:  $\underline{u} \sim \underline{u}_{r_{\rm b}}(u)$
- $\bullet$  II \II\_{\Gamma}: blue-shift region

 $\psi=\psi_{\ell=0}+\psi_{\ell\geq 1},$  spherically symmetric part and the remaining part

Integrate along  $\underline{u} = const$  starting from event horizon + fast energy decay

イロト イヨト イヨト イヨー

The equation satisfied by  $\psi_{\ell=0}$ :

$$\partial_{u} \left( (r^{2} + a^{2}) \partial_{\underline{u}} \psi_{\ell=0} - \frac{1}{2} (r^{2} + a^{2}) T \psi_{\ell=0} \right)$$
  
=  $-\frac{1}{2} (r^{2} + a^{2}) \partial_{u} T \psi_{\ell=0} - \frac{1}{4} a^{2} \mu \mathbb{P}_{\ell=0} (\sin^{2} \theta T^{2} \psi)$ 

LJLL, Dec 15 18 / 20

### Sketch of the proof (energy decay estimates)

Region I: red-shift estimate

$$\int_{\underline{u}=const} (-\mu)^{-1} |\partial_u \, \mathcal{T}^j \psi_{\ell=0}|^2 \mathrm{d} u \lesssim \underline{u}^{-8-2j},$$

Region  $II_{\Gamma}$ : blue-shift estimate

$$\int_{\underline{u}=const} |\log(-\mu)|^{-\frac{1}{2}} |\partial_u T^j \psi_{\ell=0}|^2 \mathrm{d} u \lesssim \underline{u}^{-8-2j+\gamma}$$

Region II $\II_{\Gamma}$ : we only need boundedness,

$$\int_{\underline{u}=const} |\log(-\mu)|^{-\frac{5}{2}} |\mathcal{T}^j\psi_{\ell=0}|^2 \mathrm{d} u \lesssim 1$$

Since  $-\mu$  has exponential decay in this region, the error terms are easily controlled.

# Thank you!

メロト メロト メヨト メヨト