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L Fourth order gravity

We study gravitational theories on globally hyperbolic
spacetimes (V**! g) = (M", g,) x R.

In GR the gravitational action in vacuum is described by the
Einstein-Hilbert functional

\%4
and the Einstein equation
. L
G; := Riceg — ERgg =0.

One can

» Formulate an evolution problem for (M, g;)
» Introduce meaningful conserved quantity : mapy



Energies in fourth order gravity
L Introduction

L Fourth order gravity

For «, 8 € R, we consider the Fourth Order Gravitational
Lagrangian :

S(g) = / (aR: + B(Ricz, Ricz)z) dvolg,
\%4




Energies in fourth order gravity
L Introduction
L Fourth order gravity

For «, 8 € R, we consider the Fourth Order Gravitational
Lagrangian :

S(g) = / (04R2 + B(Ricg, Ricg)z) dvolg,
v
with Euler-Lagrange equations :

1 _
Ag := fgRicg + (58 + 20)TgRg g — (20 + B)V?R; — 2(Ricg Riemg

1 1
aRgg = B(Ricg, Ricg)gg = 0.



Energies in fourth order gravity
L Introduction
L Fourth order gravity

For «, 8 € R, we consider the Fourth Order Gravitational
Lagrangian :

S(g) = /V (aR: + B(Ricz, Ricz)z) dvolg,

with Euler-Lagrange equations :

1 _
Ag := fgRicg + (58 + 20)TgRg g — (20 + B)V?R; — 2(Ricg Riemg
1 1
+ 2aRgRicg — 2aRgg §6<Rlcg’ Ricg)gg = 0.
We wish to :

» Formulate the fourth order evolution problem
» Introduce meaningful fourth order conserved quantities
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L Motivations

3a+ =0

3
S(g) = E/ |Wg\2dvolg + 4872y (V),
Vv
W is the Weyl tensor and (V) is topological. For n = 3,
B= |, |We|* dvoly is a conformal invariant, and so is .
» Conformal gravity/Bach-flat spaces

» Fiedler-Schimming-Mannheim-Kazanas (FSMK) metrics :

1
gFS(m’ A7 l"’) = _f(r)dtz =+ fwd}'z + rzggz

f(r)=1-=3mu— m — pu(Bmp —2)r — %rz
r

» . is linked to the rotational speed curves in conformal gravity.
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Working spaces

Definition
(V,g) is an AM spacetime of order 7 if there exists a coordinate
system at co @ : E; — R"\B such that in those coordinates

g,uu = f,uu + 0(|x|7ﬁr)'

Definition

(M, g) is an AE space of order 7 if there exists a coordinate system at
® : M\K — R"\B such that in those coordinates g; = d; + O(|]x| 7).

» to consider curvatures issues the decays must be differentiables

» Dynamical approach

» A Lagrangian approach
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Let (V, g) be an AM Einstein spacetime, and g another AM Einstein
metric with a Killing vector field ¢.

Let h:=g—gand P;(h,¢) = (DG; - h)(¢, ).

With Bianchi :

divg(Gg) = 0 = divy,;(Gs7) = divg(G;) + div;DG; - h + o(h)
= div;DG; - h + o(h),

and thus div; (P;(h,¢)) =0
If (v, g) is foliated by Riemannian manifolds (M, g;) :

/1<0< (h C) > dVO]g B /Kl <P§ (il’ C)’ ﬁ>§dVO1g M /exterior boundary P§ (h, Oﬁ

When the exterior boundary — oo, we get the conserved quantity

E,(C.H) = /M (Py(h, ), igdvoly = lim | Q(C, 7).

r—00 S,
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L RG approach

Taking ¢ = 9, + O(]x|~") (+ simplifying hypotheses) yields :

. ,
Mapy = Ton 111{.10 /s, (0igij — Ogii) V'dw,.

r—

Taking 9,, yields the momentum, rotations yields the angular
momentum etc. . .

These quantities are geometric and control the geometry of M.
> div(A) =07

» Bianchi is a consequence of Noether’s theorem applied with the
invariance by diffeomorphisms

» For any geometric Lagrangian div(4) = 0.

» Conserved quantities come from the invariance of the theory.
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LAu quatrieme ordre

Proposition

Given (M x R, g) an AM spacetime satisfying A; = 0 and
admitting a Killing field ¢, then the energy associated to a
perturbation 4 of g defined by

£,(7) = /M (P5(h, C), i) sdvol,

with Pz (h, ¢) = (DA; - h)((, -),is conserved, provided it is defined.
It can be written as an integral at infinity

E(M,h) = — lim | Q(h,#)d(9K,).

r—o0 Jak,
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LAu quatrieme ordre

Proposition
If g is Einstein with cosmological constant A , then

Qv = —{ BaPLR (1, ) + 28 (Rich sy V¥ = Rich V()
= a+B) (VR WG = Vo(RLR)E ) — (20— B)RLAT-G,
—2(4a+ BAQEK | (,¢) — 28A (An V(" — V") }.

» Constant sectional curvature case :

» S. Deser and B. Tekin, Energy in generic higher curvature gravity
theories, Phys. Rev. D 67, 084009 (2003).
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I—Au quatriéeme ordre

> With g
+

J 5
g=h

0°|>

Oo(r %) ¢=0+0(r _T)s
£+ 0(r-

™) in ADM formalism (N, X, g)
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LAu quatriéeme ordre

> Withg =+ 0(r7), (=8 +0(r7),
g=h+g=£¢+0(@(7)in ADM formalism (N, X, g) :

3 .
—Q(fl, ﬁ)lt:O = (56 + 2@) (ajaiaigaa - ajauaigui) v

+ g (0:gji — Oiigir)

3 . L B
5 (00X, — 9:0%) ¥ + (B + 20) 90,0

— (B +20)0%i +2(8 + 20)9,0: X,
10, (r—i-—3) + 0, (r—(?+r)—3).

_|_
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LAu quatriéeme ordre

Definition
When g an AM solution of Az = 0, we define its energy as

Ea5(g) = lim {<§B + 2a) / (0,0:0i84a — 0;0u0i8ui) Vdw,
’ r—00 2 s;‘_l
B . o\ B : SN
+ = (9i&ji — 0iga) Vdw, + = (010X — 8:0.X;) PV dw,
2 Jg 2 Jg

+(B +2a) ( 0,0,0:N* ¥ dw, — / gutdw, + 2 ajaiXiﬁdw,>}
st st st

when the limit exists.



Energies in fourth order gravity
I—Conserved quantities and Energy

L Etudes de cas particuliers

Testing itwhen3a+ 3 =0

» FSMK metrics:

grs(m, A, ) = —f(r)de* +

2
70 dar* + r’gs
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L Etudes de cas particuliers

Testing itwhen3a+ 3 =0

» FSMK metrics:

ng(m, Aa :u) = _f(r)dt2 +

2
f(r)dr +7'2g§2
f(r)il—3mp—g—,u(?,m,u_z)r_grz

» We can take 7 < 0! In particular n = 3 we can take 7 = —1.
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L Etudes de cas particuliers

Testing itwhen3a+ 3 =0

» FSMK metrics:

1
£(r)
f(r)=1-=3mpu— % — nBmp —2)r — %rz

gFS(m7 Aa :u) = _f(r)dt2 + dr2 + rzgSz

» We can take 7 < 0! In particular n = 3 we can take 7 = —1.

» With g = Schwarzschild, 7 = 1, 7 = —1, we compute

Ea,5(8rs) = 8mpu(3mp —2).
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L Positive energy theorem

If (M x R, g) is stationnary, that is

then

g=—N%’ +g,

Eap(8) = lim { <§ﬁ + 2a> / (0,0:018aa — 0;0,0i8ui) Pdw,
r—oo 2 5!
(B +20) / laja,.aiNzﬁdw,}
S
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L Positive energy theorem

If (M x R, g) is stationnary, that is
g=—-N%d +g,
then
Eapl) = m { (30+20) | (0008w~ 09,08) Vs
H+20) | a;a,-aiNZﬁdw,}
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L Positive energy theorem

If (M x R, g) is stationnary, that is
g=—Nd +g,
then
3 .
ga,ﬂ (g) = lim { <—ﬁ + 20[) / ((9,-8,-8,-gm — 8;8u8igui) f/’dwr
r—oo 2 st
+(B+20) [ @aiaiNZﬁdw,}
1=
and in the particular case 2a + g = 0, we get a fully Riemmannian

expression

S(g) = — lim (ajaiaigaa - ajauaigui) ’jdwr

r—o0 S:*’_]

= — lim B,Rgr”_ldw
r—00 S:xfl
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L Positive energy theorem

If (M x R, g) is stationnary, that is
g=—-N%d +g,
then
Easte) = jim { (30+20) | (0008w~ 09,08) Vs
H+20) | @aiaizvzﬁdw,}

and in the particular case 2a + g = 0, we get a fully Riemmannian
expression

S(g) = — lim (ajaiaigaa - ajauaigui) ’jdwr

r—o0 S:*‘_]

= — lim B,Rgr”_ldw
r—00 S:xfl

= —/ AgR,dvol,.
M
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L Positive energy theorem

We wish to work with the Q-curvature :
1
Qg = -

2(n — 1)A8Rg B

a2
ol

nd —4n® + 16n — 16
St 1) (n— 27t

8
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L Positive energy theorem

We wish to work with the Q-curvature :

n —4n* +16n—16 ,
8(n—1)2(n—-2)2 ¢

1 2
=——— AR, — ———|Ric,|?
Qg 2(7’1—1) 8718 (11—2)2| lcg|g+

Proposition
Let (M", g) an AE manifold such that

1 There exists a structure at infinity ® such that g;; = 6;; + 04(r~7),
with 7 > 7, = max{0, ”54};
2 0, € L'(M).

Then £(®)(g) exists and is geometric: it does not depend on the
spheres used to compute it nor on the charts.
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If in addition Q, > 0 and Y([g]) > 0, then £(g) > 0, with equality iff
(M, g) is euclidien.
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Idea of the proof :
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]
ut
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L Stationnary case

L Positive energy theorem

Positivity and Rigidity

Theorem
If in addition 0, > 0 and Y([g]) > 0, then £(g) > 0, with equality iff
(M, g) is euclidien.

Idea of the proof :

> Y([g]) >0:g=ur?gst Ry =0.
» Conformal deformations are predicted with the Paneitz operator :
n—4
forn#4,®=u 2, g=>org, then

n—4  ata
> (I)"*4Qg:Pg,(I>,

+——0;9.
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L Positive energy theorem

» Since R; =0, Q; =

— 2 ey IRicg[2

4

n+4

Dr

L

(n

—4)
2

r

E Ricg 3P dvg = / 2(VA;®P, 7)duw;

g (V(I), ﬁ)d(.Ug
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L Positive energy theorem

» Since R; =0, Q; =

—4
b, 2

(n

(n

— 2 ey IRicg[2

—4
+_—2)>2

"

Ricg 3 dv; = / 8(VA;D, 7)dw;
S,

+

4 . ~
p— /S, Ricz(V®, U)dw;

-4
- 4&7_1)5(8)

N
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L Positive energy theorem

» Since R; =0, Q; =

— 22|R1cg|
n—4 s
— P
/, 2

_4 -
0, + (n )|R1Cg,|g2,<I>dVg= /S Z(VALD, 7)duwy

(n—2) .

+

- /S, Ricz(V®, U)dw;

vt O
> £(g) > 0 with equality iff 9, = 0 and g is flat
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L Positive energy theorem

» Since R; = 0, Qg = 2 m—2)% |R1C8|

n_dp 0, + MWCE@ dvg = / 2(VA®, 7)dwg
3 2 (l’t - 2)2 8 S,

+

n_2 /Sr Ric§(V<I>, ﬁ)dwg

e

> £(g) > 0 with equality iff 0, = 0 and g is flat.

> Then "54®71Q, = P;® yields A2® = 0, which ensures g = 4.
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L Positive energy theorem

» Since R; = 0, Qg = 2 m—2)% |R1C8|

n—4 s n—4 . g .
/ T(I)"4Qg+ﬁ|R1Cg|§<I>dV§:/Sg(Vqu),V)dW§

+

n_2 /Sr Ric§(V<I>, ﬁ)dwg

e

> £(g) > 0 with equality iff 0, = 0 and g is flat.
> Then 554®iiQ, — P;® yields A2® — 0, which ensures g = 4.

» For n = 4 only the formula for Paneitz changes.
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L Fourth order Rigidity

Fourth order Einstein Curvature

» Y. Lin and Y. Wei, A Symmetric 2-Tensor canonically associated to
Q-curvature and its applications. In: Pacific Journal of Mathematics
291.2 (2017).

1 —4
B,— —"
n—2 4n—1)(n—-2)

1
Jg = ;Qgg - Tg7

1
Gy=J,— EQgg s.t. div,G; = 0 and Tr,G; = cst Q,
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Fourth order Einstein Curvature

» Y. Lin and Y. Wei, A Symmetric 2-Tensor canonically associated to
Q-curvature and its applications. In: Pacific Journal of Mathematics
291.2 (2017).

1 —4
B,— —"
n—2 4n—1)(n—-2)

1
Jg = ;Qgg - Tg7

1
Gy=J,— EQgg s.t. div,G; = 0 and Tr,G; = cst Q,

2" order 4™ order
Scalar curvature | Q curvature
Ric J
G Gy
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1
G](X, l/)dwg = E/ (GJ,EXg)gdvolg
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» One can write the ADM mass as a function of the Einstein tensor

J,

div,(Gy(X, -))dvol, :/ G/(X,v)dw, =
%
1

2/ (GJ,CXg)gdvolg
Qg

2/ <GJg7£g,coan>ngOIg—|—
Qg

2

—n )
I /Q ) Q,divgXdvol,




Energies in fourth order gravity
LSta\tionnary case

LFourth order Rigidity

J,

» One can write the ADM mass as a function of the Einstein tensor

dive(Gy(X, -))dvol, = /

Gy(X,v)dw, =
2197

5 / (Gy, Lxg)gdvol,
2 Ja,
1 2—n .
=5 A (Gy,s Ly contX)gdvol, + il A Q,div,Xdvol,
R R
=r0,:
Rlingo 5 Gy, (X,v)dw, ~ £(g).
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Theorem
If (M",g)is AE and J, =0, Y([g]) > 0 then (M",g) = (R",-).

Idea: rigidity in the positive mass theorem But: the decay
needs to be high enough

Qg = AR, + quadr. terms
1

Jo — =Tre(Jg) = ARic + V?R + quadr. terms
n

Ag = Ric + quadr. terms

Elliptic regularity on weighted spaces yield the result
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» M. Herzlich, Computing Asymptotic Invariants with the Ricci Tensor on
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With ¢ = 0 + h an AE metric, we linearize
R, =Rs +DR;s-h+R(h) =DR;s - h+ R(h).

/FRg:/D*R(;,FJH—/ [UR(F,h).v+/R(h)
Q Q o0 Q

With F =1 : Expu(g) = limo—oo [ Ur(1,h).v =1lim [[ R, — [ R(h)]
For the fourth order : R, ~ Q, :
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Riemannian formalism

» M. Herzlich, Computing Asymptotic Invariants with the Ricci Tensor on
Asymptotically Flat and Asymptotically Hyperbolic Manifolds. In: Ann.
Henri Poincaré 17 (2016).

With ¢ = 0 + h an AE metric, we linearize
R, =Rs +DR;s-h+R(h) =DR;s - h+ R(h).

/FRg:/D*R(;,FJH—/ [UR(F,h).v+/R(h)
Q Q o0 Q

With F =1 : Expu(g) = limo—oo [ Ur(1,h).v =1lim [[ R, — [ R(h)]
For the fourth order : R, ~ Q, :

U(h,F) = —(Fdu — udF + AsF(divsh — Otrsh) — h(dAsF, -) + trshd AsF),
u = divih — Astrsh.
D*Qs - F = —AXF § + 0’ AsF

With F = 1: £(g) = limge0 [5, Ur(1,h).v =1lim [ [ Qp — [ R(h)]
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Thank you for your attention!




	Introduction
	Fourth order gravity
	Motivations

	Conserved quantities and Energy
	RG approach
	Au quatrième ordre
	Études de cas particuliers

	Stationnary case
	Positive energy theorem
	Fourth order Rigidity


