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Relativistic collisionless many-particle systems

This work is motivated by the dynamics of the solutions (M
1+3, g, f) to

the Einstein–Vlasov system (EV)

8
>><

>>:

Ric(g)µ⌫ �
1

2
R(g)gµ⌫ = 8⇡Tµ⌫(f),

Tµ⌫(f) :=
R
Px

fpµp⌫ dvol(p),

X(f) = 0.

The distribution function f(x, p) satisfies the relativistic Vlasov equation
X(f) = 0 on the set

P� :=

n
(x, p) 2 TM : gx(p, p) = ��2, where p is future directed

o
.

Theorem (Choquet-Bruhat 1971)

The Einstein–Vlasov system is locally well-posed in Sobolev regularity.
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The Schwarzschild solution

The simplest black hole spacetime is the so-called Schwarzschild solution
(Schw, gs), which solves the Einstein vacuum equations given by

Ric(g)µ⌫ = 0.

The exterior of Schwarzschild spacetime is described by the Lorentzian

metric

gs = �D(r)dt⌦ dt+
1

D(r)
dr ⌦ dr + r2d�S2 , D(r) := 1�

2M

r
,

where t 2 R, r 2 (2M,1), and d�S2 is the standard metric on the unit

sphere S2.
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The Einstein–Vlasov system under spherical symmetry

Let (M
3+1, g) be a spherically symmetric spacetime in double null

coordinates given by

g = �2⌦
2
(du⌦ dv + dv ⌦ du) + r2(u, v)d�S2 .

We introduce the spherically symmetric Einstein–Vlasov system by

8
>>>>>><

>>>>>>:

@u@vr = �
⌦2

4r �
@ur@vr

r + 4⇡rTuv,

@u@v log⌦ =
⌦2

4r2 +
@ur@vr

r2 � 4⇡Tuv � 4⇡⌦2gAB
TAB,

@u(⌦�2@ur) = �4⇡rTuu⌦
�2,

@v(⌦�2@vr) = �4⇡rTvv⌦
�2,

X(f) = 0,

where TAB, Tuu, Tuv and Tvv are components of the energy momentum

tensor.
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Previous results – On massless Vlasov

1 Stability of Minkowski for the spherically symmetric Einstein–massless

Vlasov system (Dafermos 2006).

2 Stability of Minkowski for the full Einstein–massless Vlasov system

(Taylor 2017, Bigorgne–Fajman–Joudioux–Smulevici–Thaller 2021).

3 Degenerated integrated energy estimate for the massless Vlasov

equation on slowly rotating Kerr (Andersson–Blue–Joudioux 2018).

4 Decay for the massless Vlasov equation on Schwarzschild (Bigorgne 2020,

Weissenbacher).
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Asymptotic stability of Schwarzschild spacetime

Theorem (V.R. 2022)

For all initial data for (sEV) close to Schwarzschild with mass Min with initial
distribution function compactly supported, the resulting solution

1 possesses a complete future null infinity I
+ whose past J�

(I
+
) is bounded

to the future by a complete event horizon H
+;

2 remains close to the Schwarzschild solution with mass Min in the exterior
region;

3 has a metric g that asymptotes, inverse polynomially, to gs with mass Mfin;

4 has a matter content Tµ⌫ that decays exponentially to zero.
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Decay for the massless Vlasov equation on Schwarzschild

Theorem (V.R. 2022)

Let f0 be a compactly supported initial data for (mV). Let � > 0, and
R > 2M be su�ciently large. Then, the stress energy momentum tensor
for the solution f of (mV) satisfies

Tuv 
C1

r4 exp(( 2
3
p
3M

� �)u)
,

for every x 2 {r � R}, and

Tuv 
C2(1�

2M
r )

exp((
2

3
p
3M

� �)v)
,

for every x 2 {r  R}, where C1 and C2 are positive constants depending
on f0, �, R, and M .
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The geodesic flow in spherically symmetric spacetimes I

The geodesic equations are given by

8
>>>><

>>>>:

dpu

ds = �@u log⌦2
(pu)2 � @vr

⌦2
l2

2r3 ,
dpv

ds = �@v log⌦2
(pv)2 � @ur

⌦2
l2

2r3 ,
dp✓

ds = �
2pr

r p✓ + sin ✓ cos ✓(p�)2,
dp�

ds = �
2pr

r p� � 2 cot ✓p✓p�.

We recall the standard particle energy E, the angular momentum l, and
the azimuthal angular momentum l� along a geodesic given by

E := �@urp
u
+ @vrp

v, l := r2
q

(p✓)2 + sin
2 ✓(p�)2, l� := r2 sin2 ✓p�.

Proposition

In a spherically symmetric spacetime (M, g), the quantities l and l� are
conserved along the geodesic flow.
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The geodesic flow in spherically symmetric spacetimes II

The geodesic equation for the area radius is given by

dpr

ds
=

l2

r4
(r � 3m)� 4⇡r

⇣
Tuu(p

u
)
2
� 2Tuvp

upv +Tvv(p
v
)
2
⌘
,

where the particle energy can be written as

E2
= (pr)2 +

l2

r2

⇣
1�

2m

r

⌘
.

The normalized angular momentum can be written as

l2

E2
� 27m2

=
r + 6m

r � 2m
(r � 3m)

2
�

r2

D3

⇣Dpr

E

⌘2
= '+'�.

Moreover, the derivative of '± along the geodesic flow is given by

d

dt
'± = ±

1

r1/2(r + 6m)1/2
'± + Err.
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The geodesic flow in a neighborhood of the trapped set

Proposition

Under the bootstrap assumptions, there exist ✏0 > 0 and C > 0 such that
for every (x, p) 2 supp(f) \ {|r � 3m| < ✏0} for which the corresponding
geodesic � has normalized angular momentum l

E � 3
p
3m 2 (�✏0, ✏0), we

have

���
Dpr

E
+

(r � 2m)
p
r + 6m

r
5
2

(r � 3m)

��� 
C

exp

⇣⇣
2

3
p
3m

�
�
2

⌘
v
⌘ .

This proposition is obtained using the stable manifold theorem for

dynamical systems with a normally hyperbolic trapped set by Hintz 2021

after Hirsch–Pugh–Shub 1977.
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The Sasaki metric

Let (M, g) be a Lorentzian manifold. We recall the geometric

decomposition

T(x,p)TM = H(x,p) � V(x,p),

defined by the horizontal lift Hor(x,p) : TxM ! T(x,p)TM and the vertical
lift Ver(x,p) : TxM ! T(x,p)TM given by

Hor(x,p)(Y
↵@x↵) := Y ↵@x↵�Y ↵p���

↵�@p� , Ver(x,p)(Y
↵@x↵) := Y ↵@p↵ .

We define the Sasaki metric ḡ on the tangent bundle TM by

ḡ(x,p)(Hor(x,p)(Y ),Hor(x,v)(Z)) = gx(Y,Z),

ḡ(x,p)(Hor(x,p)(Y ),Ver(x,v)(Z)) = 0,

ḡ(x,p)(Ver(x,p)(Y ),Ver(x,v)(Z)) = gx(Y,Z),

for every (x, p) 2 TM, and every Y, Z 2 TxM.
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Jacobi fields along the geodesic flow I

Let (M, g) be a Lorentzian manifold. Let ✏ > 0. Let �⌧ : I ! M be a one

parameter family of geodesics where ⌧ 2 (�✏, ✏), and � := �0. A vector

field J(t) 2 T�(t)M given by

J(t) :=
@�⌧
@⌧

(t)
���
⌧=0

is said to be a Jacobi field on (M, g) along the geodesic �. Consequently,
a Jacobi field J along � satisfies the so-called Jacobi equation

r�̇r�̇J = R(�̇, J)�̇.
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Jacobi fields along the geodesic flow I

Let (M, g) be a Lorentzian manifold. Let ✏ > 0. Let �̄⌧ : I ! TM be a

one parameter family of geodesics on TM where ⌧ 2 (�✏, ✏), and �̄ := �̄0.
A vector field J̄(t) 2 T�̄(t)TM given by

J̄(t) :=
@�̄⌧
@⌧

(t)
���
⌧=0

,

is said to be a Jacobi field on TM along the geodesic �̄. Consequently, a
Jacobi field J̄ along � satisfies the so-called Jacobi equation

rXrX J̄ = R̄(X, J̄)X.

Lemma

The di↵erential of the geodesic flow map �t : TM ! TM is given by

J̄(t) = Hor�t(x,p)(J(t)) + Ver�t(x,p)(r�̇J(t)),

for every t 2 R, every (x, p) 2 TM, and every vector V 2 T(x,p)TM.
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Jacobi fields along null geodesics in spacetime I

Let us consider a double null frame along a null geodesic � in M given by

FN , FG, FA, �̇,

where FG, FA are spacelike vector fields, and �̇, FN are null vector fields.

The Jacobi equation along � is given by an ode system where

d2

dt2

⇣
JG

�
2Es

l
JN

⌘
=

⇣
JG

�
2Es

l
JN

⌘⇣
3mD

r3
�

3m

r3D

⇣Dpr

E

⌘2⌘

+
d

dt

⇣
JG

�
2Es

l
JN

⌘⇣
2m

Dr2
Dpr

E

⌘
�

4D2

lE

dJN

ds
+ Err,

with respect to the time coordinate t.
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Jacobi fields in a neighborhood of the trapped set

Using the Riccati equation for JG
�

2Es
l JN

given by

d

dt

h d

dt
log

⇣
JG

�
2Es

l
JN

⌘i
+

h d

dt
log

⇣
JG

�
2Es

l
JN

⌘i2
=

3m(r � 2m)

r4

�
3m

r3D

⇣Dpr

E

⌘2
+

d

dt
log

⇣
JG

�
2Es

l
JN

⌘
2m

Dr2
Dpr

E

�
4D2

lE

dJN

ds

⇣
JG

�
2Es

l
JN

⌘�1
+ Err.

A standard argument using a family of closed invariant cones as in

Katok–Hasselblatt’s book, we obtain a solution q+ > 0 to the Riccati

equation.
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Improving the decay of @rTuv

Proposition

Under the bootstrap assumptions, the energy momentum tensor satisfies

|@rTuv| 
C✏

exp((
2

3
p
3m

�
�
2)v)

,

for every (u, v) 2 R3m, where C > 0 is a constant depending on f0, �, R.

The radial derivative of the energy momentum tensor satisfies

@rTuv(f) = ⇢(⌦2pu⌦2pvHor(x,p)(@r)(f)) + Err.

Decomposing the radial vector field

Hor(x,p)(@r) =
Er

lD
Hor(x,p)(FG)�

r2

2l2D

⇣
pr �

2E2s

r

⌘
Hor(x,p)(�̇),

we can use the unstable vector field.
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A Vlasov equation with a trapping potential

Let f : [0,1)⇥ Rx ⇥ Rp ! [0,1) be a distribution satisfying the Vlasov

equation with the potential
�|x2|

2 ,

@tf + p · @xf + x · @pf = 0. (1)

The distribution is transported along the Hamiltonian flow

ẋ = p, ṗ = x.

Proposition

Let f0 be a compactly supported data for (1). Then, the solution of the
Vlasov equation satisfies

|@n
x⇢(f)(t, x)| 

Ln(f0)

exp((n+ 1)t)
. (2)
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The massive Vlasov equation on Schwarzschild

Let us investigate the linear dynamics of a distribution f(x, p) satisfying
the massive Vlasov equation on Schwarzschild spacetime (Schw, gs) given
by

Xf = 0,

in terms of the generator of the geodesic flow X 2 TTSchw.

The distribution function f : P1 ! [0,1) is defined on the mass-shell P1,

given by

P1 :=

n
(x, p) 2 TSchw : gx(p, p) = �1, where p is future directed

o
.
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Previous results – On massive Vlasov

1 Stability of Minkowski spacetime for the Einstein–massive Vlasov

system (Lindblad–Taylor 2020, Fajman–Joudioux–Smulevici 2021, Wang 2022).

2 Static solutions for the spherically symmetric Einstein–massive Vlasov

system (Rein–Rendall 1993, Jabiri 2021).

3 Results on phase mixing for the massive Vlasov equation on

Schwarzschild (Rioseco–Sarbach 2018).
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Setup of the main result I

The standard particle energy E, the total angular momentum l, and the

azimuthal angular momentum l�, defined by

E := D(r)(pu + pv), l := r2
q

(p✓)2 + sin
2 ✓(p�)2, l� := r2 sin2 ✓p�,

are conserved quantities along the geodesic flow.

We define the invariant region D0 given by

D0 :=

n
(x, p) 2 P : l > 4M, E > 1

o
,

where almost every timelike geodesic either crosses the event horizon or is

unbounded. Let us define the subset ⌃0 given by

⌃0 =

n
(x, p) 2 P : x 2 Cin [ Cout, l > 4M, E > 1

o
,

where we will assume the initial distribution function is supported.
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The main result I

Theorem (V.R. 2022)

Let f0 be an initial data for (V) that is compactly supported on ⌃0. Then,
there exists R > 2M , such that the energy momentum tensor for the
solution f to (V) satisfies

Tuv 
C0

u3
,

for all x 2 {r � R}; and

Tuv 
C1(1�

2M
r )

exp(
1

4
p
2M

v)
,

for all x 2 {r  R}, where C0, and C1 are positive constants depending
on f0, R, and M .
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Setup of the main result II

Let l 2 [2
p
3M,1), there exist geodesics with angular momentum l that

are contained in the spheres {r = r±(l)} of radii r�(l) and r+(l), that are
determined by

r2 �
l2

M
r + 3l2 = 0,

where r�(l)  r+(l).

We define the invariant region D given by

D =

n
(x, p) 2 P : l � 4M such that if E < 1 then r < r�(l)

o

[

n
(x, p) 2 P : l < 4M such that if E < E�(l) then r < r�(l)

o
,

where almost every geodesic either crosses the event horizon or is

unbounded. We define the set ⌃ given by

⌃ =

n
(x, p) 2 D : x 2 Cin [ Cout

o

where we will assume the initial distribution function is supported.
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The main result II

Theorem (V.R. 2022)

Let f0 be an initial data for (V) that is compactly supported on ⌃. Then,
there exists R > 2M , such that the energy momentum tensor for the
solution f to (V) satisfies

Tuv 
C0

u
1
3 r2

,

for all x 2 {r � R}; and

Tuv 
C1

v
1
3

⇣
1�

2M

r

⌘
,

for all x 2 {r  R}, where C0, and C1 are positive constants depending
on f0, R, and M .
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The timelike geodesic flow in Schwarzschild I

The geodesic equation for the radial coordinate is given by

dr

ds
= pr,

dpr

ds
= �

M

r4

⇣
r2 �

l2

M
r + 3l2

⌘
,

where the particle energy can be written as

E2
= (pr)2 +

⇣
1�

2M

r

⌘⇣
1 +

l2

r2

⌘
, Vl(r) :=

⇣
1�

2M

r

⌘⇣
1 +

l2

r2

⌘
.

The radial geodesic equation for the radial coordinate with respect to the

time coordinate t is given by

d2r

dt2
= �

MD2

r4Vl

⇣
r2 �

l2

M
r + 3l2

⌘
+

3M

r4Vl

⇣
r2 �

l2

3M
r +

5l2

3

⌘⇣pr

pt

⌘2
.
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The timelike geodesic flow in Schwarzschild I
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The timelike geodesic flow in Schwarzschild II
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Key lemmata for the decay of Tuv

Lemma

Let R > rs > 2M . There exists C > 0 such that for every geodesic �
contained in {r > rs} with l  2

p
3M and E 2 [

95
100 , 1), we have

2M

r
�

l2

r2
+

2Ml2

r3
� (pr)2 

C

v
2
3 (s)

,

when the radial coordinate satisfies r(0) < R.

This lemma is obtained by integrating in time the radial geodesic equation

in a neighborhood of {(x, p) 2 P : E = 1}.

Thank you for your attention!
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