Linear and non-linear stability of collisionless many-particle systems on black hole exteriors

Renato Velozo Ruiz

Sorbonne Université

Seminar on Mathematical General Relativity Laboratoire Jacques-Louis Lions Sorbonne Université December 15, 2022

< f⊒ >

< □ ▶

#### Relativistic collisionless many-particle systems

This work is motivated by the dynamics of the solutions  $(\mathcal{M}^{1+3}, g, f)$  to the *Einstein–Vlasov system* (EV)

$$\begin{cases} \operatorname{Ric}(g)_{\mu\nu} - \frac{1}{2} \operatorname{R}(g) g_{\mu\nu} = 8\pi \operatorname{T}_{\mu\nu}(f), \\ \operatorname{T}_{\mu\nu}(f) := \int_{\mathcal{P}_x} f p_\mu p_\nu \operatorname{dvol}(p), \\ X(f) = 0. \end{cases}$$

The distribution function f(x, p) satisfies the *relativistic Vlasov equation* X(f) = 0 on the set

$$\mathcal{P}_{\sigma} := \Big\{ (x, p) \in T\mathcal{M} : g_x(p, p) = -\sigma^2, \text{ where } p \text{ is future directed} \Big\}.$$

$$\downarrow i | \sigma = 0 \text{ massless}$$

$$\downarrow i | \sigma = 1 \text{ massive}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

3x

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

## Relativistic collisionless many-particle systems

This work is motivated by the dynamics of the solutions  $(\mathcal{M}^{1+3}, g, f)$  to the *Einstein–Vlasov system* (EV)

$$\begin{cases} \operatorname{Ric}(g)_{\mu\nu} - \frac{1}{2} \operatorname{R}(g) g_{\mu\nu} = 8\pi \operatorname{T}_{\mu\nu}(f), \\ \operatorname{T}_{\mu\nu}(f) := \int_{\mathcal{P}_x} f p_\mu p_\nu \operatorname{dvol}(p), \\ X(f) = 0. \end{cases}$$

The distribution function f(x, p) satisfies the *relativistic Vlasov equation* X(f) = 0 on the set

$$\mathcal{P}_{\sigma} := \left\{ (x, p) \in T\mathcal{M} : g_x(p, p) = -\sigma^2, \text{ where } p \text{ is future directed} \right\}$$

#### Theorem (Choquet-Bruhat 1971)

The Einstein-Vlasov system is locally well-posed in Sobolev regularity.

Renato Velozo Ruiz

- ₹ 主 🕨

< □ > < @ > <

2/26

500

### The Schwarzschild solution

The simplest black hole spacetime is the so-called *Schwarzschild solution*  $(Schw, g_s)$ , which solves the *Einstein vacuum equations* given by

$$\operatorname{Ric}(g)_{\mu\nu} = 0.$$

The exterior of Schwarzschild spacetime is described by the Lorentzian metric

$$g_s = -D(r)dt \otimes dt + \frac{1}{D(r)}dr \otimes dr + r^2 d\gamma_{\mathbb{S}^2}, \qquad D(r) := 1 - \frac{2M}{r},$$

where  $t \in \mathbb{R}$ ,  $r \in (2M, \infty)$ , and  $d\gamma_{\mathbb{S}^2}$  is the standard metric on the unit sphere  $\mathbb{S}^2$ .

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

### The Einstein–Vlasov system under spherical symmetry

Let  $(\mathcal{M}^{3+1}, g)$  be a *spherically symmetric spacetime* in double null coordinates given by

$$g = -2\Omega^2 (du \otimes dv + dv \otimes du) + r^2(u, v) d\gamma_{\mathbb{S}^2}.$$



We introduce the *spherically symmetric Einstein–Vlasov system* by

$$\begin{cases} \partial_u \partial_v r &= -\frac{\Omega^2}{4r} - \frac{\partial_u r \partial_v r}{r} + 4\pi r T_{uv}, \\ \partial_u \partial_v \log \Omega &= \frac{\Omega^2}{4r^2} + \frac{\partial_u r \partial_v r}{r^2} - 4\pi T_{uv} - 4\pi \Omega^2 g^{AB} T_{AB}, \\ \partial_u (\Omega^{-2} \partial_u r) &= -4\pi r T_{uu} \Omega^{-2}, \\ \partial_v (\Omega^{-2} \partial_v r) &= -4\pi r T_{vv} \Omega^{-2}, \\ X(f) &= 0, \end{cases}$$

where  $T_{AB}$ ,  $T_{uu}$ ,  $T_{uv}$  and  $T_{vv}$  are components of the energy momentum tensor.

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆 ─

#### Previous results – On massless Vlasov

- Stability of Minkowski for the spherically symmetric Einstein-massless Vlasov system (Dafermos 2006).
- Stability of Minkowski for the full Einstein–massless Vlasov system (Taylor 2017, Bigorgne–Fajman–Joudioux–Smulevici–Thaller 2021).

< A ▶

토 🕨 🗸 토 🕨 - 토

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

#### Previous results – On massless Vlasov

- Stability of Minkowski for the spherically symmetric Einstein-massless Vlasov system (Dafermos 2006).
- Stability of Minkowski for the full Einstein–massless Vlasov system (Taylor 2017, Bigorgne–Fajman–Joudioux–Smulevici–Thaller 2021).
- Observated integrated energy estimate for the massless Vlasov equation on slowly rotating Kerr (Andersson-Blue-Joudioux 2018).
- Decay for the massless Vlasov equation on Schwarzschild (Bigorgne 2020, Weissenbacher).

< ロ > < 同 > < 三 > < 三 >

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

## Asymptotic stability of Schwarzschild spacetime



#### Theorem (V.R. 2022)

For all initial data for (sEV) close to Schwarzschild with mass  $M_{in}$  with initial distribution function compactly supported, the resulting solution

- possesses a complete future null infinity  $\mathcal{I}^+$  whose past  $J^-(\mathcal{I}^+)$  is bounded to the future by a complete event horizon  $\mathcal{H}^+$ ;
- 2 remains close to the Schwarzschild solution with mass  $M_{in}$  in the exterior region;
- **③** has a metric g that asymptotes, inverse polynomially, to  $g_s$  with mass  $M_{fin}$ ;

• has a matter content  $T_{\mu\nu}$  that decays exponentially to zero.

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

< ロ > < 同 > < 回 > < 回 > < 回 > <

Decay for the massless Vlasov equation on Schwarzschild

#### Theorem (V.R. 2022)

Let  $f_0$  be a compactly supported initial data for (mV). Let  $\delta > 0$ , and R > 2M be sufficiently large. Then, the stress energy momentum tensor for the solution f of (mV) satisfies

$$\Gamma_{uv} \le \frac{C_1}{r^4 \exp((\frac{2}{3\sqrt{3}M} - \delta)u)}$$



for every  $x \in \{r \ge R\}$ , and

$$T_{uv} \le \frac{C_2(1 - \frac{2M}{r})}{\exp((\frac{2}{3\sqrt{3}M} - \delta)v)},$$

for every  $x \in \{r \leq R\}$ , where  $C_1$  and  $C_2$  are positive constants depending on  $f_0$ ,  $\delta$ , R, and M.

3

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

◆ □ ▶ ◆ 同 ▶ ◆ 三 ▶ ◆ 三 ▶

#### The geodesic flow in spherically symmetric spacetimes I The geodesic equations are given by

$$\begin{cases} \frac{dp^u}{ds} &= -\partial_u \log \Omega^2 (p^u)^2 - \frac{\partial_v r}{\Omega^2} \frac{l^2}{2r^3}, \\ \frac{dp^v}{ds} &= -\partial_v \log \Omega^2 (p^v)^2 - \frac{\partial_u r}{\Omega^2} \frac{l^2}{2r^3}, \\ \frac{dp^\theta}{ds} &= -\frac{2p^r}{r} p^\theta + \sin \theta \cos \theta (p^\phi)^2, \\ \frac{dp^\phi}{ds} &= -\frac{2p^r}{r} p^\phi - 2 \cot \theta p^\theta p^\phi. \end{cases}$$

We recall the standard *particle energy* E, the *angular momentum* l, and the *azimuthal angular momentum*  $l_{\phi}$  along a geodesic given by

$$E := -\partial_u r p^u + \partial_v r p^v, \quad l := r^2 \sqrt{(p^\theta)^2 + \sin^2 \theta (p^\phi)^2}, \quad l_\phi := r^2 \sin^2 \theta p^\phi.$$

#### Proposition

In a spherically symmetric spacetime  $(\mathcal{M}, g)$ , the quantities l and  $l_{\phi}$  are conserved along the geodesic flow.

Renato Velozo Ruiz

Collisionless many-particle systems on BH

December 15, 2022

8/26

#### The geodesic flow in spherically symmetric spacetimes II The geodesic equation for the area radius is given by

$$\frac{dp^{r}}{ds} = \frac{l^{2}}{r^{4}}(r - 3m) - 4\pi r \Big( T_{uu}(p^{u})^{2} - 2T_{uv}p^{u}p^{v} + T_{vv}(p^{v})^{2} \Big),$$

where the particle energy can be written as



▲ 글 ▶

< A ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

#### The geodesic flow in spherically symmetric spacetimes II The geodesic equation for the area radius is given by

$$\frac{dp^{r}}{ds} = \frac{l^{2}}{r^{4}}(r - 3m) - 4\pi r \Big( T_{uu}(p^{u})^{2} - 2T_{uv}p^{u}p^{v} + T_{vv}(p^{v})^{2} \Big),$$

where the particle energy can be written as

$$E^{2} = (p^{r})^{2} + \frac{l^{2}}{r^{2}} \left(1 - \frac{2m}{r}\right).$$

The normalized angular momentum can be written as

$$\frac{l^2}{E^2} - 27m^2 = \frac{r+6m}{r-2m}(r-3m)^2 - \frac{r^2}{D^3}\left(\frac{Dp^r}{E}\right)^2 = \varphi_+\varphi_-.$$

Moreover, the derivative of  $\varphi_\pm$  along the geodesic flow is given by

$$\frac{d}{dt}\varphi_{\pm} = \pm \frac{1}{r^{1/2}(r+6m)^{1/2}}\varphi_{\pm} + \text{Err.}$$

▲□▶▲□▶▲三▶▲三▶ ● のQ@

## The geodesic flow in a neighborhood of the trapped set

#### Proposition

Under the bootstrap assumptions, there exist  $\epsilon_0 > 0$  and C > 0 such that for every  $(x, p) \in \text{supp}(f) \cap \{|r - 3m| < \epsilon_0\}$  for which the corresponding geodesic  $\gamma$  has normalized angular momentum  $\frac{l}{E} - 3\sqrt{3}m \in (-\epsilon_0, \epsilon_0)$ , we have

$$\left|\frac{Dp^r}{E} + \frac{(r-2m)\sqrt{r+6m}}{r^{\frac{5}{2}}}(r-3m)\right| \le \frac{C}{\exp\left(\left(\frac{2}{3\sqrt{3m}} - \frac{\delta}{2}\right)v\right)}.$$

This proposition is obtained using the stable manifold theorem for dynamical systems with a normally hyperbolic trapped set by Hintz 2021 after Hirsch–Pugh–Shub 1977.

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □

## The Sasaki metric

Let  $(\mathcal{M},g)$  be a Lorentzian manifold. We recall the geometric decomposition

$$T_{(x,p)}T\mathcal{M} = \mathcal{H}_{(x,p)} \oplus \mathcal{V}_{(x,p)},$$

defined by the *horizontal lift*  $\operatorname{Hor}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}$  and the *vertical lift*  $\operatorname{Ver}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}$  given by

$$\operatorname{Hor}_{(x,p)}(Y^{\alpha}\partial_{x^{\alpha}}) := Y^{\alpha}\partial_{x^{\alpha}} - Y^{\alpha}p^{\beta}\Gamma^{\gamma}_{\alpha\beta}\partial_{p^{\gamma}}, \qquad \operatorname{Ver}_{(x,p)}(Y^{\alpha}\partial_{x^{\alpha}}) := Y^{\alpha}\partial_{p^{\alpha}}.$$

▲□▶▲□▶▲□▶▲□▶ = の�?

# The Sasaki metric

Let  $(\mathcal{M},g)$  be a Lorentzian manifold. We recall the geometric decomposition

$$T_{(x,p)}T\mathcal{M}=\mathcal{H}_{(x,p)}\oplus\mathcal{V}_{(x,p)},$$

defined by the *horizontal lift*  $\operatorname{Hor}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}$  and the *vertical lift*  $\operatorname{Ver}_{(x,p)}: T_x \mathcal{M} \to T_{(x,p)} T \mathcal{M}$  given by

$$\operatorname{Hor}_{(x,p)}(Y^{\alpha}\partial_{x^{\alpha}}) := Y^{\alpha}\partial_{x^{\alpha}} - Y^{\alpha}p^{\beta}\Gamma^{\gamma}_{\alpha\beta}\partial_{p^{\gamma}}, \qquad \operatorname{Ver}_{(x,p)}(Y^{\alpha}\partial_{x^{\alpha}}) := Y^{\alpha}\partial_{p^{\alpha}}.$$

We define the Sasaki metric  $\bar{g}$  on the tangent bundle  $T\mathcal{M}$  by

$$\begin{split} \bar{g}_{(x,p)}(\operatorname{Hor}_{(x,p)}(Y), \operatorname{Hor}_{(x,v)}(Z)) &= g_x(Y,Z), \\ \bar{g}_{(x,p)}(\operatorname{Hor}_{(x,p)}(Y), \operatorname{Ver}_{(x,v)}(Z)) &= 0, \\ \bar{g}_{(x,p)}(\operatorname{Ver}_{(x,p)}(Y), \operatorname{Ver}_{(x,v)}(Z)) &= g_x(Y,Z), \end{split}$$

for every  $(x, p) \in T\mathcal{M}$ , and every  $Y, Z \in T_x\mathcal{M}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● 三 ● ���

# Jacobi fields along the geodesic flow I

Let  $(\mathcal{M}, g)$  be a Lorentzian manifold. Let  $\epsilon > 0$ . Let  $\gamma_{\tau} : I \to \mathcal{M}$  be a one parameter family of geodesics where  $\tau \in (-\epsilon, \epsilon)$ , and  $\gamma := \gamma_0$ . A vector field  $J(t) \in T_{\gamma(t)}\mathcal{M}$  given by

0

$$T(t) := \frac{\partial \gamma_{\tau}}{\partial \tau}(t) \Big|_{\tau=0}$$

is said to be a Jacobi field on  $(\mathcal{M}, g)$  along the geodesic  $\gamma$ . Consequently, a Jacobi field J along  $\gamma$  satisfies the so-called Jacobi equation

$$\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} J = R(\dot{\gamma}, J) \dot{\gamma}.$$

( ロ ) ( 同 ) ( 三 ) ( 三 ) 三三

#### Jacobi fields along the geodesic flow I

Let  $(\mathcal{M}, g)$  be a Lorentzian manifold. Let  $\epsilon > 0$ . Let  $\bar{\gamma}_{\tau} : I \to T\mathcal{M}$  be a one parameter family of geodesics on  $T\mathcal{M}$  where  $\tau \in (-\epsilon, \epsilon)$ , and  $\bar{\gamma} := \bar{\gamma}_0$ . A vector field  $\bar{J}(t) \in T_{\bar{\gamma}(t)}T\mathcal{M}$  given by

$$\bar{J}(t) := \frac{\partial \bar{\gamma}_{\tau}}{\partial \tau}(t) \Big|_{\tau=0}$$

is said to be a Jacobi field on  $T\mathcal{M}$  along the geodesic  $\bar{\gamma}$ . Consequently, a Jacobi field  $\bar{J}$  along  $\gamma$  satisfies the so-called Jacobi equation

$$\overline{\nabla}_X \overline{\nabla}_X \overline{J} = \overline{R}(X, \overline{J}) X.$$

<ロト < 同ト < 三ト < 三ト 三 三 (二) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) < (-) <

 $\mathbb{Z}(t) = d\phi_{1}(\pi, p)(V)$ 

 $\land \land \land \land$ 

# Jacobi fields along the geodesic flow I

Let  $(\mathcal{M}, g)$  be a Lorentzian manifold. Let  $\epsilon > 0$ . Let  $\bar{\gamma}_{\tau} : I \to T\mathcal{M}$  be a one parameter family of geodesics on  $T\mathcal{M}$  where  $\tau \in (-\epsilon, \epsilon)$ , and  $\bar{\gamma} := \bar{\gamma}_0$ . A vector field  $\bar{J}(t) \in T_{\bar{\gamma}(t)}T\mathcal{M}$  given by

$$\bar{J}(t) := \frac{\partial \bar{\gamma}_{\tau}}{\partial \tau}(t)\Big|_{\tau=0},$$

is said to be a Jacobi field on  $T\mathcal{M}$  along the geodesic  $\bar{\gamma}$ . Consequently, a Jacobi field  $\bar{J}$  along  $\gamma$  satisfies the so-called Jacobi equation

$$\overline{\nabla}_X \overline{\nabla}_X \overline{J} = \overline{R}(X, \overline{J}) X.$$

#### Lemma

The differential of the geodesic flow map  $\phi_t : T\mathcal{M} \to T\mathcal{M}$  is given by

$$\bar{J}(t) = \operatorname{Hor}_{\phi_t(x,p)}(J(t)) + \operatorname{Ver}_{\phi_t(x,p)}(\nabla_{\dot{\gamma}}J(t)),$$

for every  $t \in \mathbb{R}$ , every  $(x, p) \in T\mathcal{M}$ , and every vector  $V \in T_{(x,p)}T\mathcal{M}$ .

#### Jacobi fields along null geodesics in spacetime I

Let us consider a double null frame along a null geodesic  $\gamma$  in  ${\mathcal M}$  given by

$$F_N, \quad F_G, \quad F_A, \quad \dot{\gamma},$$

where  $F_G$ ,  $F_A$  are spacelike vector fields, and  $\dot{\gamma}$ ,  $F_N$  are null vector fields.



|▲ 臣 ▶ | ▲ 臣 ▶ | = 臣

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

#### Jacobi fields along null geodesics in spacetime I

Let us consider a double null frame along a null geodesic  $\gamma$  in  ${\mathcal M}$  given by

$$F_N, \quad F_G, \quad F_A, \quad \dot{\gamma},$$

where  $F_G$ ,  $F_A$  are spacelike vector fields, and  $\dot{\gamma}$ ,  $F_N$  are null vector fields. The Jacobi equation along  $\gamma$  is given by an ode system where

$$\frac{d^2}{dt^2} \left( J^G - \frac{2Es}{l} J^N \right) = \left( J^G - \frac{2Es}{l} J^N \right) \left( \frac{3mD}{r^3} - \frac{3m}{r^3D} \left( \frac{Dp^r}{E} \right)^2 \right) + \frac{d}{dt} \left( J^G - \frac{2Es}{l} J^N \right) \left( \frac{2m}{Dr^2} \frac{Dp^r}{E} \right) - \frac{4D^2}{lE} \frac{dJ^N}{ds} + \text{Err},$$

with respect to the time coordinate t.

▲冊▶▲≣▶▲≣▶ ≣ のQ@

#### Jacobi fields in a neighborhood of the trapped set

Using the Riccati equation for  $J^G - \frac{2Es}{l}J^N$  given by

$$\frac{d}{dt} \left[ \frac{d}{dt} \log \left( J^G - \frac{2Es}{l} J^N \right) \right] + \left[ \frac{d}{dt} \log \left( J^G - \frac{2Es}{l} J^N \right) \right]^2 = \frac{3m(r-2m)}{r^4}$$
$$- \frac{3m}{r^3 D} \left( \frac{Dp^r}{E} \right)^2 + \frac{d}{dt} \log \left( J^G - \frac{2Es}{l} J^N \right) \frac{2m}{Dr^2} \frac{Dp^r}{E}$$
$$- \frac{4D^2}{lE} \frac{dJ^N}{ds} \left( J^G - \frac{2Es}{l} J^N \right)^{-1} + \text{Err.}$$

A standard argument using a family of closed invariant cones as in Katok–Hasselblatt's book, we obtain a solution  $q_+ > 0$  to the Riccati equation.

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ミ の へ ()

# Improving the decay of $\partial_r T_{uv}$

#### Proposition

Under the bootstrap assumptions, the energy momentum tensor satisfies

$$|\partial_r T_{uv}| \le \frac{C\epsilon}{\exp((\frac{2}{3\sqrt{3}m} - \frac{\delta}{2})v)},$$

for every  $(u, v) \in \mathcal{R}_{3m}$ , where C > 0 is a constant depending on  $f_0$ ,  $\delta$ , R.

The radial derivative of the energy momentum tensor satisfies

$$\partial_r T_{uv}(f) = \rho(\Omega^2 p^u \Omega^2 p^v \operatorname{Hor}_{(x,p)}(\partial_r)(f)) + \operatorname{Err.}$$

Decomposing the radial vector field

$$\operatorname{Hor}_{(x,p)}(\partial_r) = \frac{Er}{lD} \operatorname{Hor}_{(x,p)}(F_G) - \frac{r^2}{2l^2D} \left( p^r - \frac{2E^2s}{r} \right) \operatorname{Hor}_{(x,p)}(\dot{\gamma}),$$

we can use the unstable vector field.

< □ ▶ < 凸 ▶

■▶ ▲ ■ ▶ ■ ∽ � @

# A Vlasov equation with a trapping potential

Let  $f: [0,\infty) \times \mathbb{R}_x \times \mathbb{R}_p \to [0,\infty)$  be a distribution satisfying the Vlasov equation with the potential  $\frac{-|x^2|}{2}$ ,

$$\partial_t f + p \cdot \partial_x f + x \cdot \partial_p f = 0. \tag{1}$$

The distribution is transported along the Hamiltonian flow



Proposition

Let  $f_0$  be a compactly supported data for (1). Then, the solution of the Vlasov equation satisfies

$$|\partial_x^n \rho(f)(t,x)| \le \frac{L_n(f_0)}{\exp((n+1)t)} \operatorname{Kuefl-side}.$$
(2)

 $\mathcal{A}$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

#### The massive Vlasov equation on Schwarzschild

Let us investigate the linear dynamics of a distribution f(x, p) satisfying the massive Vlasov equation on Schwarzschild spacetime (Schw,  $g_s$ ) given by

$$Xf = 0,$$

in terms of the generator of the geodesic flow  $X \in TTSchw$ .

The distribution function  $f: \mathcal{P}_1 \to [0, \infty)$  is defined on the mass-shell  $\mathcal{P}_1$ , given by

$$\mathcal{P}_1 := \Big\{ (x, p) \in TSchw : g_x(p, p) = -1, \text{ where } p \text{ is future directed} \Big\}.$$



< □ ▶ < □ ▶

< ∃ > ∃

Previous results – On massive Vlasov

 Stability of Minkowski spacetime for the Einstein-massive Vlasov system (Lindblad-Taylor 2020, Fajman-Joudioux-Smulevici 2021, Wang 2022).

< 4 →

< □ ▶

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

19 / 26

Previous results – On massive Vlasov

- Stability of Minkowski spacetime for the Einstein-massive Vlasov system (Lindblad-Taylor 2020, Fajman-Joudioux-Smulevici 2021, Wang 2022).
- Static solutions for the spherically symmetric Einstein-massive Vlasov system (Rein-Rendall 1993, Jabiri 2021).
- Schwarzschild (Rioseco-Sarbach 2018).

▲ 글 ▶

3

### Setup of the main result I

The standard *particle energy* E, the *total angular momentum* l, and the *azimuthal angular momentum*  $l_{\phi}$ , defined by

$$E := D(r)(p^{u} + p^{v}), \quad l := r^{2}\sqrt{(p^{\theta})^{2} + \sin^{2}\theta(p^{\phi})^{2}}, \quad l_{\phi} := r^{2}\sin^{2}\theta p^{\phi},$$

are conserved quantities along the geodesic flow.

 $\mathcal{A} \mathcal{A} \mathcal{A}$ 

20 / 26

- ▲ □ ▶ ▲ □ ▶ - □ □

# Setup of the main result I

The standard *particle energy* E, the *total angular momentum* l, and the *azimuthal angular momentum*  $l_{\phi}$ , defined by

$$E := D(r)(p^{u} + p^{v}), \quad l := r^{2}\sqrt{(p^{\theta})^{2} + \sin^{2}\theta(p^{\phi})^{2}}, \quad l_{\phi} := r^{2}\sin^{2}\theta p^{\phi},$$

are conserved quantities along the geodesic flow. We define the invariant region  $\mathcal{D}_0$  given by

$$\mathcal{D}_0 := \Big\{ (x, p) \in \mathcal{P} : l > 4M, \quad E > 1 \Big\},$$

where almost every timelike geodesic either crosses the event horizon or is unbounded. Let us define the subset  $\Sigma_0$  given by

$$\Sigma_0 = \Big\{ (x, p) \in \mathcal{P} : x \in \underline{C}_{in} \cup C_{out}, \quad l > 4M, \quad E > 1 \Big\},\$$

where we will assume the initial distribution function is supported.

< 4 ► >

### The main result I

#### Theorem (V.R. 2022)

Let  $f_0$  be an initial data for (V) that is compactly supported on  $\Sigma_0$ . Then, there exists R > 2M, such that the energy momentum tensor for the solution f to (V) satisfies

$$T_{uv} \le \frac{C_0}{u^3},$$

for all 
$$x \in \{r \ge R\}$$
; and

$$T_{uv} \le \frac{C_1(1 - \frac{2M}{r})}{\exp(\frac{1}{4\sqrt{2}M}v)},$$



for all  $x \in \{r \leq R\}$ , where  $C_0$ , and  $C_1$  are positive constants depending on  $f_0$ , R, and M.

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト ・ ヨ

## Setup of the main result II

Let  $l \in [2\sqrt{3}M, \infty)$ , there exist geodesics with angular momentum l that are contained in the spheres  $\{r = r_{\pm}(l)\}$  of radii  $r_{-}(l)$  and  $r_{+}(l)$ , that are determined by

$$r^2 - \frac{l^2}{M}r + 3l^2 = 0,$$

where  $r_{-}(l) \leq r_{+}(l)$ .

22 / 26

◆□▶ ◆□▶ ◆ ミ ▶ ◆ ミ ▶ ● ミ の へ ()

# Setup of the main result II

Let  $l \in [2\sqrt{3}M, \infty)$ , there exist geodesics with angular momentum l that are contained in the spheres  $\{r = r_{\pm}(l)\}$  of radii  $r_{-}(l)$  and  $r_{+}(l)$ , that are determined by

$$r^2 - \frac{l^2}{M}r + 3l^2 = 0,$$

where  $r_{-}(l) \leq r_{+}(l)$ . We define the invariant region  $\mathcal{D}$  given by

$$\mathcal{D} = \Big\{ (x,p) \in \mathcal{P} : l \ge 4M \text{ such that if } E < 1 \text{ then } r < r_{-}(l) \Big\} \\ \cup \Big\{ (x,p) \in \mathcal{P} : l < 4M \text{ such that if } E < E_{-}(l) \text{ then } r < r_{-}(l) \Big\},$$

where almost every geodesic either crosses the event horizon or is unbounded. We define the set  $\Sigma$  given by

$$\Sigma = \left\{ (x, p) \in \mathcal{D} : x \in \underline{C}_{in} \cup C_{out} \right\}$$

where we will assume the initial distribution function is supported.

## The main result II

#### Theorem (V.R. 2022)

Let  $f_0$  be an initial data for (V) that is compactly supported on  $\Sigma$ . Then, there exists R > 2M, such that the energy momentum tensor for the solution f to (V) satisfies

$$\mathcal{T}_{uv} \le \frac{C_0}{u^{\frac{1}{3}}r^2},$$

$$\mathcal{U}^+$$
  
 $\mathcal{L}^+$   
 $\mathcal$ 

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

for all  $x \in \{r \ge R\}$ ; and

$$\mathcal{T}_{uv} \le \frac{C_1}{v^{\frac{1}{3}}} \Big( 1 - \frac{2M}{r} \Big),$$

for all  $x \in \{r \leq R\}$ , where  $C_0$ , and  $C_1$  are positive constants depending on  $f_0$ , R, and M.

 $\mathcal{A}$ 

#### The timelike geodesic flow in Schwarzschild I

The geodesic equation for the radial coordinate is given by

$$\frac{dr}{ds} = p^r, \qquad \frac{dp^r}{ds} = -\frac{M}{r^4} \left(r^2 - \frac{l^2}{M}r + 3l^2\right),$$

where the particle energy can be written as

$$E^{2} = (p^{r})^{2} + \left(1 - \frac{2M}{r}\right)\left(1 + \frac{l^{2}}{r^{2}}\right), \qquad V_{l}(r) := \left(1 - \frac{2M}{r}\right)\left(1 + \frac{l^{2}}{r^{2}}\right).$$

<ロト < 同ト < 巨ト < 巨ト = 三

 $\mathscr{O} \mathcal{Q} \mathcal{O}$ 

#### The timelike geodesic flow in Schwarzschild I

The geodesic equation for the radial coordinate is given by

$$\frac{dr}{ds} = p^r, \qquad \frac{dp^r}{ds} = -\frac{M}{r^4} \left( r^2 - \frac{l^2}{M}r + 3l^2 \right),$$

where the particle energy can be written as

$$E^{2} = (p^{r})^{2} + \left(1 - \frac{2M}{r}\right)\left(1 + \frac{l^{2}}{r^{2}}\right), \qquad V_{l}(r) := \left(1 - \frac{2M}{r}\right)\left(1 + \frac{l^{2}}{r^{2}}\right).$$

The radial geodesic equation for the radial coordinate with respect to the time coordinate t is given by

$$\frac{d^2r}{dt^2} = -\frac{MD^2}{r^4V_l} \left(r^2 - \frac{l^2}{M}r + 3l^2\right) + \frac{3M}{r^4V_l} \left(r^2 - \frac{l^2}{3M}r + \frac{5l^2}{3}\right) \left(\frac{p^r}{p^t}\right)^2$$

 $\mathcal{A}$ 

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● 豆!

The timelike geodesic flow in Schwarzschild II



Key lemmata for the decay of  $T_{uv}$ 

#### Lemma

Let  $R > r_s > 2M$ . There exists C > 0 such that for every geodesic  $\gamma$  contained in  $\{r > r_s\}$  with  $l \le 2\sqrt{3}M$  and  $E \in [\frac{95}{100}, 1)$ , we have

$$\frac{2M}{r} - \frac{l^2}{r^2} + \frac{2Ml^2}{r^3} - (p^r)^2 \le \frac{C}{v^{\frac{2}{3}}(s)},$$

when the radial coordinate satisfies r(0) < R.

This lemma is obtained by integrating in time the radial geodesic equation in a neighborhood of  $\{(x, p) \in \mathcal{P} : E = 1\}$ .

 $\mathcal{O} \mathcal{Q} \mathcal{O}$ 

26 / 26

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ■

Key lemmata for the decay of  $T_{uv}$ 

#### Lemma

Let  $R > r_s > 2M$ . There exists C > 0 such that for every geodesic  $\gamma$  contained in  $\{r > r_s\}$  with  $l \le 2\sqrt{3}M$  and  $E \in [\frac{95}{100}, 1)$ , we have

$$\frac{2M}{r} - \frac{l^2}{r^2} + \frac{2Ml^2}{r^3} - (p^r)^2 \le \frac{C}{v^{\frac{2}{3}}(s)},$$

when the radial coordinate satisfies r(0) < R.

This lemma is obtained by integrating in time the radial geodesic equation in a neighborhood of  $\{(x, p) \in \mathcal{P} : E = 1\}$ .

Thank you for your attention!

▲□▶▲□▶▲≡▶▲≡▶ = 少�?