

Stability of Gravitational Collapse

M.R.I. SCHRECKER

Department of Mathematics University of Bath

Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- As gas burns, balance shifts;

Newtonian stars

Classical model of a star: sphere of gas under Newtonian gravity.

- Balance between pressure and gravity in a static star;
- · As gas burns, balance shifts;
- Possible collapse? Supernova?

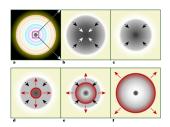


Figure: Image credit: R.J. Hall

Euler-Poisson equations

Euler-Poisson equations (gas dynamics with Newtonian gravity):

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = 0, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \rho \big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \big) + \nabla_{\mathbf{x}} \rho(\rho) = -\rho \nabla \Phi, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \Delta \Phi = 4\pi \rho, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3. \end{cases}$$

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, Φ is gravitational potential.

We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Euler-Poisson equations

Euler-Poisson equations (gas dynamics with Newtonian gravity):

$$\begin{cases} \partial_t \rho + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{u}) = 0, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \rho \big(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \big) + \nabla_{\mathbf{x}} p(\rho) = -\rho \nabla \Phi, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3, \\ \Delta \Phi = 4\pi \rho, & (t, \mathbf{x}) \in \mathbb{R} \times \mathbb{R}^3. \end{cases}$$

 ρ is density, ${\bf u}$ is velocity, ${\bf p}$ is pressure, Φ is gravitational potential.

We assume the equation of state

$$p = p(\rho) = \rho^{\gamma}, \quad \gamma \in (1, \frac{4}{3}).$$

Example adiabatic exponents

 $\gamma=\frac{5}{3}$ – monatomic gas, used for fully convective star cores (e.g. red giants);

 $\gamma = \frac{4}{3}$ – high mass white dwarf stars, main-sequence stars (e.g. the Sun).

Collapse

Collapse is the formation of a *singularity* at the origin, i.e.

$$\rho(t,0) \to \infty \quad \text{as} \quad t \to 0 - .$$

- For $\gamma > \frac{4}{3}$, no finite mass and energy collapse possible.
- For $\gamma = \frac{4}{3}$, Goldreich–Weber collapse unsuitable model for outer core.

Similarity Hypothesis

Hypothesis

On approach to singularity, isolated stars generically adopt an (approximately) self-similar form.

- Astrophysical literature: Harada, Maeda, Ori, Piran, Gundlach,...
- Requires full nonlinear stability
- Newtonian/relativistic gravity

Similarity Hypothesis

Hypothesis

On approach to singularity, isolated stars generically adopt an (approximately) self-similar form.

- Astrophysical literature: Harada, Maeda, Ori, Piran, Gundlach....
- Requires full nonlinear stability
- Newtonian/relativistic gravity

Key Features:

- Non-linearity;
- Intertwining of spatial and time scales;
- Good initial data leads to badly behaved solutions!

Scaling and Criticality

Scaling

Let $\rho=\rho(t,r),$ $\mathbf{u}=u(t,r)\frac{\mathbf{x}}{|\mathbf{x}|},$ $r=|\mathbf{x}|,$ solve Euler-Poisson, $\lambda>0.$ Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right)$$

is also a solution. (NB: This is a unique scaling!)

Scaling and Criticality

Scaling

Let $\rho=\rho(t,r)$, $\mathbf{u}=u(t,r)\frac{\mathbf{x}}{|\mathbf{x}|}$, $r=|\mathbf{x}|$, solve Euler-Poisson, $\lambda>0$. Then

$$\rho_{\lambda}(t,r) = \lambda^{-\frac{2}{2-\gamma}} \rho\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right), \quad u_{\lambda}(t,r) = \lambda^{-\frac{\gamma-1}{2-\gamma}} u\left(\frac{t}{\lambda^{\frac{1}{2-\gamma}}}, \frac{r}{\lambda}\right)$$

is also a solution. (NB: This is a unique scaling!)

Natural notions of mass and energy for Euler-Poisson:

$$M[\rho] = \int_0^\infty \rho \, r^2 \mathrm{d}r, \quad E[\rho, u] = \int_0^\infty \left(\frac{1}{2}\rho u^2 + \frac{\rho^\gamma}{\gamma - 1} + \frac{1}{2}\rho\Phi\right) r^2 \mathrm{d}r.$$

Under scaling,

$$M[\rho_{\lambda}] = \lambda^{\frac{4-3\gamma}{2-\gamma}} M[\rho], \quad E[\rho_{\lambda}, u_{\lambda}] = \lambda^{\frac{6-5\gamma}{2-\gamma}} E[\rho, u].$$

Thus $\gamma = \frac{4}{3}$ is mass-critical, $\gamma = \frac{6}{5}$ is energy-critical.

Existing results I

Classical and numerical work

- Taylor, Von Neumann, Sedov, Güderley '40s: study implosion and explosion for Euler equations;
- Larson–Penston '69: numerical solution for $\gamma = 1$;
- Hunter '77: family of numerical solutions for $\gamma = 1$;
- Yahil '83: numerical solutions for $\gamma \in [\frac{6}{5}, \frac{4}{3})$;
- Maeda–Harada '01: numerical evidence towards mode stability of Larson–Penston;
- Luo–Shi '14: numerical solutions for non-isentropic dynamics with $\gamma > \frac{4}{3}$.

Existing results II

Rigorous works

- Merle–Raphaël–Rodnianski–Szeftel '22: existence of a imploding self-similar solutions for Euler;
- Guo–Hadžić–Jang '21: construction of LP solution;
- Guo–Hadžić–Jang '23: construction of relativistic analogue of LP;
- Alexander–Hadžić–S. '23: existence of non-isentropic collapse solutions with $\gamma > \frac{4}{3}$;
- Sandine '23: existence of a sub-family of highly oscillatory Hunter solutions;
- Jang-Liu-S. '23, '24: existence of Guderley solution

Main Results

Self-similar ansatz: let $y = r(-t)^{-(2-\gamma)}$,

$$\rho(t,r) = (-t)^{-2} \tilde{\rho}(y), \quad u(t,r) = (-t)^{1-\gamma} \tilde{u}(y).$$

Theorem (Guo-Hadžić-Jang-S. '22)

For all $\gamma \in [1, \frac{4}{3})$, there exists a smooth, self-similar collapse solution to the Euler-Poisson system satisfying the sign and monotonicity properties for y > 0,

$$\tilde{u}(y) < 0 < \tilde{\rho}(y), \qquad \tilde{\rho}'(y) < 0 < (\frac{\tilde{u}(y)}{v})'.$$

NB: Existence for $\gamma = 1$ due to Guo–Hadžić–Jang '21

Main Results

Self-similar ansatz: let $y = r(-t)^{-(2-\gamma)}$,

$$\rho(t,r) = (-t)^{-2} \tilde{\rho}(y), \quad u(t,r) = (-t)^{1-\gamma} \tilde{u}(y).$$

Theorem (Guo-Hadžić-Jang-S. '22)

For all $\gamma \in [1, \frac{4}{3})$, there exists a smooth, self-similar collapse solution to the Euler-Poisson system satisfying the sign and monotonicity properties for y > 0,

$$\tilde{u}(y) < 0 < \tilde{\rho}(y), \qquad \tilde{\rho}'(y) < 0 < (\frac{\tilde{u}(y)}{v})'.$$

NB: Existence for $\gamma = 1$ due to Guo–Hadžić–Jang '21

Theorem (Guo-Hadžić-Jang-S. '24)

The Larson-Penston solution ($\gamma = 1$) is nonlinearly stable in the class of radially symmetric solutions.

Existence: ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{y \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{y} - \frac{y \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

Existence: ODE system

Defining a convenient variable $\omega(y) = \tilde{u}(y)/y + 2 - \gamma$, self-similar Euler-Poisson becomes

$$\begin{split} \tilde{\rho}' &= \frac{y \tilde{\rho} h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \\ \omega' &= \frac{4 - 3\gamma - 3\omega}{y} - \frac{y \omega h(\tilde{\rho}, \omega)}{\gamma \tilde{\rho}^{\gamma - 1} - y^2 \omega^2}, \end{split}$$

where $h(\tilde{\rho}, \omega)$ is a quadratic function.

Initial/boundary conditions

For a regular solution, we require

$$ilde{
ho}(0)>0,\quad \omega(0)=rac{4-3\gamma}{3},$$
 $ilde{
ho}(y)\sim y^{-rac{2}{2-\gamma}} ext{ as } y o\infty,\quad \lim_{y o\infty}\omega(y)=2-\gamma.$

NB: this forces the existence of a point where $\gamma \rho^{\gamma-1} - y^2 \omega^2 = 0!$

Overview of key difficulties

Sonic point

Let $(\tilde{\rho}(\cdot),\omega(\cdot))$ be a C^1 -solution to the self-similar Euler-Poisson system on the interval $(0,\infty)$. A point $y_* \in (0,\infty)$ such that

$$\gamma \tilde{\rho}^{\gamma-1}(y_*) - y_*^2 \omega^2(y_*) = 0$$

is called a sonic point.

Regularity

Expect stability tied to regularity (MRRS '22). Requires smoothness through sonic point.

Overview of key difficulties

Sonic point

Let $(\tilde{\rho}(\cdot),\omega(\cdot))$ be a C^1 -solution to the self-similar Euler-Poisson system on the interval $(0,\infty)$. A point $y_* \in (0,\infty)$ such that

$$\gamma \tilde{\rho}^{\gamma-1}(y_*) - y_*^2 \omega^2(y_*) = 0$$

is called a sonic point.

Regularity

Expect stability tied to regularity (MRRS '22). Requires smoothness through sonic point.

Non-linear, non-autonomous system

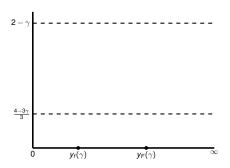
No general recipe for solving such problems. No fixed phase portrait analysis for invariant regions.

Two explicit solutions

Far-field solution (ρ_f, ω_f) and Friedman solution (ρ_F, ω_F) :

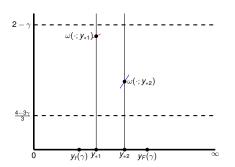
$$(\rho_f(y),\omega_f(y))=(k_{\gamma}y^{-\frac{2}{2-\gamma}},2-\gamma), \qquad (\rho_F(y),\omega_F(y))=(\frac{1}{6\pi},\frac{4}{3}-\gamma).$$

Sonic points at $y_f(\gamma) < y_F(\gamma)$.



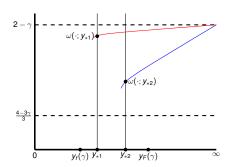
Proposition (Local Solution)

For all $\gamma \in (1, \frac{4}{3})$, there exists $\nu > 0$ such that for all $y_* \in [y_f(\gamma), y_F(\gamma)]$, there exists an analytic solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ to self-similar Euler-Poisson on $(y_* - \nu, y_* + \nu)$ with a single sonic point at y_* .



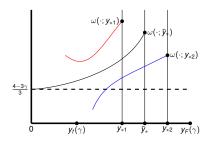
Lemma (Solving to the right)

For each $\gamma \in (1, \frac{4}{3})$, each $y_* \in [y_f(\gamma), y_F(\gamma)]$, the local solution $(\rho(\cdot; y_*), \omega(\cdot; y_*))$ obtained by Taylor expansion extends globally to the right on $[y_*, \infty)$, remains supersonic, and satisfies the asymptotic boundary conditions.



Aim: Find \bar{y}_* such that local solution $(\rho(\cdot; \bar{y}_*), \omega(\cdot; \bar{y}_*))$ extends smoothly to y=0. Look for solution with

$$\frac{4}{3} - \gamma \leq \omega(\mathbf{y}; \bar{\mathbf{y}}_*) < 2 - \gamma, \qquad \lim_{\mathbf{y} \to \mathbf{0}} \omega(\mathbf{y}; \bar{\mathbf{y}}_*) = \frac{4}{3} - \gamma.$$



Stability of Larson-Penston

Isothermal Euler-Poisson ($\gamma = 1$)

$$\begin{aligned} &\partial_t \rho + \mathsf{div} \left(\rho \mathbf{u} \right) = 0, \\ &\rho \left(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) + \nabla \rho = -\rho \nabla \phi, \\ &\Delta \phi = 4\pi \rho, \ \lim_{|x| \to \infty} \phi(t, x) = 0, \end{aligned}$$

Larson-Penston self-similar solution:

$$\overline{\rho}(t,r) = \frac{1}{(T-t)^2} \widetilde{\rho}\left(\frac{r}{T-t}\right), \ \overline{u}(t,r) = \widetilde{u}\left(\frac{r}{T-t}\right)$$

Theorem (Guo-Hadzic-Jang-S., '24)

The Larson-Penston solution (Euler-Poisson, $\gamma = 1$) is nonlinearly stable against radial perturbations.

Variables for stability

Eulerian

Self-similar variables for stability:

$$s(t) = -\log(T - t), \quad y = r(T - t)^{-1},$$

 $\varrho(t, r) = (T - t)^{-2}\rho(s, y), \quad u(t, r) = v(s, y) - y$

Perturb density and 'momentum':

$$\rho = \bar{\rho} + \epsilon \mathbf{R}, \qquad \rho \mathbf{V} = \bar{\rho} \bar{\mathbf{V}} + \epsilon \mathbf{P}.$$

Variables for stability

Eulerian

Self-similar variables for stability:

$$s(t) = -\log(T - t), \quad y = r(T - t)^{-1},$$

 $\rho(t, r) = (T - t)^{-2}\rho(s, y), \quad u(t, r) = v(s, y) - y$

Perturb density and 'momentum':

$$\rho = \bar{\rho} + \epsilon R, \qquad \rho \mathbf{v} = \bar{\rho} \bar{\mathbf{v}} + \epsilon P.$$

Lagrangian

Lagrangian flow map η solves

$$\partial_t \eta(t,r) = u(t,\eta(t,r)),$$

then

$$z = r(T-t)^{-1}, \qquad \zeta(s,z) = (T-t)^{-1}\eta(t,r).$$

For Larson–Penston flow map given as $\overline{\zeta}$, perturbation is

$$\theta = \zeta - \overline{\zeta}$$
.

Comparison to existing results

Euler implosion

Merle-Raphaël-Rodnianski-Szeftel '22 and subsequent works (Buckmaster-Cao-Labora-Gomez-Serrano-Shi-Staffilani, Chen-Cialdea-Shkoller-Vicol)

- Finite co-dimension stability: accretivity in small backwards cones, finitely many unstable directions (Biasi '22)
- Non self-adjoint linearised operator, non-explicit coefficients
- Smoothness across sonic line essential
- High-low order energy method

Comparison to existing results

Euler implosion

Merle-Raphaël-Rodnianski-Szeftel '22 and subsequent works (Buckmaster-Cao-Labora-Gomez-Serrano-Shi-Staffilani, Chen-Cialdea-Shkoller-Vicol)

- Finite co-dimension stability: accretivity in small backwards cones, finitely many unstable directions (Biasi '22)
- Non self-adjoint linearised operator, non-explicit coefficients
- Smoothness across sonic line essential
- High-low order energy method

Semi-linear blowups

Glogic-Donninger-Schörkhuber-Costin (wave maps, hyperbolic Yang-Mills)

- Full stability
- Explicit self-similar solutions
- Fixed sound/null cone

Eulerian vs Lagrangian

Larson-Penston solution

In Lagrangian framework, Larson-Penston flow map $\bar{\zeta}$ satisfies

$$\bar{\zeta}(z) \sim_{z \to 0^+} z^{\frac{1}{3}}, \qquad \bar{\zeta}(z) \sim_{z \to \infty} z.$$

Relates to Eulerian Larson-Penston pseudo-velocity $\overline{\omega}(y) = \overline{u}(y)/y + 1$ by

$$z\partial_z \bar{\zeta}(z) = \overline{\omega}(\bar{\zeta}(z))\bar{\zeta}(z).$$

- Lagrangian: convenient for nonlinear analysis
- Eulerian: convenient for linear analysis

Linear Stability

Let ϕ be such that $D_y \phi = R$ ($D_y = \partial_y + \frac{2}{y}$ is divergence). In suitable first order formulation, linearised problem is

$$\partial_{\mathbf{s}} \begin{pmatrix} \phi \\ \psi \end{pmatrix} = \mathcal{L} \begin{pmatrix} \phi \\ \psi \end{pmatrix} + \mathbf{N} \begin{pmatrix} \phi \\ \psi \end{pmatrix}.$$

- Non-self-adjoint problem (complex eigenvalues);
- Sonic degeneracy and issues with dissipativity (monotonicity);
- Growing mode with $\lambda = 1$ (time-translation).

Linear Stability II

Accretivity

Relatively compact perturbation $\widetilde{\mathcal{L}}$ of \mathcal{L} admits energy-type estimates on interval $z \in [0, Z_0]$ for large Z_0 . Yields

$$\left\|e^{\widetilde{\mathcal{L}}s}\begin{pmatrix}\phi_0\\\psi_0\end{pmatrix}\right\|_{\mathcal{H}_{low}}\leq Ce^{-2\delta s}\left\|\begin{pmatrix}\phi_0\\\psi_0\end{pmatrix}\right\|_{\mathcal{H}_{low}}\tag{*}$$

Linear Stability II

Accretivity

Relatively compact perturbation $\widetilde{\mathcal{L}}$ of \mathcal{L} admits energy-type estimates on interval $z \in [0, Z_0]$ for large Z_0 . Yields

$$\left\|e^{\widetilde{\mathcal{L}}s}\begin{pmatrix}\phi_0\\\psi_0\end{pmatrix}\right\|_{\mathcal{H}_{\text{low}}}\leq Ce^{-2\delta s}\left\|\begin{pmatrix}\phi_0\\\psi_0\end{pmatrix}\right\|_{\mathcal{H}_{\text{low}}}\tag{*}$$

Mode Stability

There exists $\delta > 0$ such that the spectrum of the linearised operator,

$$\sigma_{\mathcal{L}} \setminus \{1\} \subset \{ \text{Re}\lambda \leq -\delta \}.$$

Conclusion: After projecting away time-translation mode, (*) holds for \mathcal{L} with δ .

Mode Stability

Difficulties

- Non-explicit coefficients (depend on LP solution) elegant argument of Glogic unavailable
- Existence of trivial mode seems to prevent virial-type arguments (but can exclude eigenvalues with Reλ > 1).

Mode Stability

Difficulties

- Non-explicit coefficients (depend on LP solution) elegant argument of Glogic unavailable
- Existence of trivial mode seems to prevent virial-type arguments (but can exclude eigenvalues with $Re \lambda > 1$).

Strategies

- Energy arguments exclude high and low frequency eigenvalues (monotonicity crucial)
- Interval arithmetic to handle intermediate (compact) region

Nonlinear stability

Established in Lagrangian formulation

- High-order energy method with polynomial weights (H_{high})
- Use H_{low} to squeeze some exponential decay to treat bad errors in the interior zone
- Total energy incorporating pointwise control of Lagrangian flow map
- Asymptotic dampening (finite mass and energy) easy via Lagrangian formulation

Nonlinear stability

Established in Lagrangian formulation

- High-order energy method with polynomial weights (H_{high})
- Use H_{low} to squeeze some exponential decay to treat bad errors in the interior zone
- Total energy incorporating pointwise control of Lagrangian flow map
- Asymptotic dampening (finite mass and energy) easy via Lagrangian formulation

Estimates combine with fixed point argument to establish existence of $|T| \ll 1$, such that solution with $s(t) = -\log(T-t)$ exists globally in s-time and decays

Thank you!

