Spacelike initial data for black hole stability

Arthur Touati (CNRS-Bordeaux)

Joint work with

Allen Juntao Fang (WWU) & Jérémie Szeftel (CNRS-LJLL)

Paris, March 20th 2025

Cauchy formulation of general relativity

• Cauchy data:

- $-(\Sigma, g)$ a Riemannian 3-manifold,
- $-\pi$ a symmetric 2-tensor on Σ .
- Cauchy formulation of EVE: find $(\mathcal{M}, \mathbf{g})$ with $\mathbf{Ricci}(\mathbf{g}) = 0$ and
 - $-\Sigma$ is a spacelike hypersurface in \mathcal{M} ,
 - $-(g,\pi)$ are the first and (reduced) second fundamental form $\pi = k (\operatorname{tr}_q k)g$.

Theorem (Choquet-Bruhat 1952, Choquet-Bruhat-Geroch 1969)

Cauchy problem locally solvable $\iff (\Sigma, g, \pi)$ solve constraint

$$\begin{cases} R(g) + \frac{1}{2} (\operatorname{tr}_g \pi)^2 - |\pi|_g^2 = 0, \\ \operatorname{div}_g \pi = 0. \end{cases} \iff \Phi(g, \pi) = 0 \tag{C}$$

Stability of Kerr

Theorem

Let |a| < m. Consider data on Σ of the form

$$(g,\pi) = (g_{m,a} + O(\varepsilon r^{-q-\delta}), \pi_{m,a} + O(\varepsilon r^{-q-\delta-1})).$$

Stability in **region** II holds with

- (Caciotta–Nicolò 2010) $q \ge 3$ and $0 < \delta < 1$.
- (Shen 2023) $q \ge 1$ and $0 < \delta < 1$.

Stability in region III holds with

- (Klainerman–Szeftel 2018) $a = 0, q = 1 \text{ and } \delta = \left(\frac{1}{2}\right)_{+}$.
- (D-H-R-T 2021) $a = 0, q = 2 \text{ and } \delta = (\frac{1}{2})_{+}.$
- (K–S + G–K–S + S 2021) $|a| \ll m, \ q = 1 \ and \ \delta = \left(\frac{1}{2}\right)_{+}$.

A brief review of the constraint literature

Conformal method(s):

• reduces the constraint equations to elliptic system for (φ, W)

$$\begin{cases} 8\Delta_{\gamma}\varphi = R(\gamma)\varphi + \frac{2}{3}\tau^{2}\varphi^{5} - |\sigma + K_{\gamma}W|_{\gamma}^{2}\varphi^{-7}, \\ \Delta_{\gamma,conf}W = \frac{2}{3}\varphi^{6}d\tau. \end{cases}$$

• get solutions with weak decay (q = 0) but far from CMC.

Gluing construction:

- glue any inner AF solution to exact Kerr,
- linear obstructions due to Minkowski symmetries.

General perturbative recipe I

- 1. Start from an AF exact solution $(\Sigma, \bar{g}, \bar{\pi})$.
- **2.** Add a decaying perturbation $|\check{g}| + r|\check{\pi}| \lesssim \varepsilon r^{-q-\delta}$:

$$g = \bar{g} + \check{g}$$
 $\pi = \bar{\pi} + \check{\pi}$

3. Correct it with Corvino-Schoen conformal method:

$$g = (1+u)^4(\bar{g} + \check{g}), \qquad \pi = \bar{\pi} + \check{\pi} + L_{\bar{g}}X.$$

For such (g,π) the constraint equations $\Phi(g,\pi)=0$ become

$$P(u,X) = D\Phi[\bar{g},\bar{\pi}](\check{g},\check{\pi}) + NL$$

with the required decay

$$|u| + |X| \lesssim \varepsilon r^{-q-\delta}$$

General perturbative recipe II

$$P(u,X) = D\Phi[\bar{g},\bar{\pi}](\check{g},\check{\pi}) + NL, \qquad |u| + |X| \lesssim \varepsilon r^{-q-\delta}$$

4. Consider $P: H^2_{-q-\delta}(\Sigma) \longrightarrow L^2_{-q-\delta-2}(\Sigma)$.

$$D\Phi[\bar{g},\bar{\pi}](\check{g},\check{\pi}) + NL \in \operatorname{im}(P) \iff D\Phi[\bar{g},\bar{\pi}](\check{g},\check{\pi}) + NL \perp \ker(P^*)$$

Modify the ansatz with compactly supported $(\breve{g}, \breve{\pi})$:

$$g = (1+u)^4 (\bar{g} + \check{g} + \check{g}), \qquad \pi = \bar{\pi} + \check{\pi} + \bar{\pi} + L_{\bar{g}}X.$$

5. Orthogonality conditions to ensure solvability become

$$\left\langle (\breve{g},\breve{\pi}), D\Phi[\bar{g},\bar{\pi}]^*(W) \right\rangle = -\left\langle D\Phi[\bar{g},\bar{\pi}](\widecheck{g},\breve{\pi}) + NL, W \right\rangle, \quad \forall \ W \in \ker(P^*)$$

Question: what is $\ker(D\Phi[\bar{g},\bar{\pi}]^*) \cap \ker(P^*)$?

Cultural break

Theorem (McOwen 1979)

Consider $q \in \mathbb{N}$, $0 < \delta < 1$ and $\Delta : H^2_{-q-\delta}(\mathbb{R}^3) \longrightarrow L^2_{-q-\delta-2}(\mathbb{R}^3)$.

- If q = 0, Δ is an isomorphism.
- If $q \geq 1$, Δ is injective with

$$\ker(\Delta^*) = \left\{ \text{harmonic polynomials of degree} \le q - 1 \right\}.$$

Theorem (Moncrief 1975)

If $(\Sigma, \bar{g}, \bar{\pi})$ gives rise to $(\mathcal{M}, \mathbf{g})$ solving the Einstein vacuum equations, then

$$\ker (D\Phi[\bar{g},\bar{\pi}]^*) \simeq \Big\{ Killing \ vector \ fields \ of (\mathcal{M},\mathbf{g}) \Big\}.$$

Elements of ker $(D\Phi[\bar{g}, \bar{\pi}]^*)$ are called the KIDS.

General perturbative recipe III

Question: what is $\ker(D\Phi[\bar{g},\bar{\pi}]^*) \cap \ker(P^*)$?

Bad news:

$$P(u,X) = D\Phi[\bar{g},\bar{\pi}](4u\bar{g},2u\bar{\pi} + L_{\bar{g}}X) \Longrightarrow \ker(D\Phi[\bar{g},\bar{\pi}]^*) \subset \ker(P^*)...$$

...but the boundary condition for the elliptic system is not prescribed by the constraint equations!

For $\Sigma \simeq \mathbb{R}^3 \setminus \{r < 1\}$, consider the elliptic operator with Robin boundary condition

$$P_F := \left((P, B + F) : H^2_{-q-\delta}(\Sigma) \longrightarrow L^2_{-q-\delta-2}(\Sigma) \times H^{\frac{1}{2}}(\partial \Sigma) \right)$$

where $P = \Delta_{\bar{g}} + \text{l.o.t}$ and $B = \partial_{\nu} + \text{l.o.t.}$

Choice of F

$$P_F = \left((P, B + F) : H^2_{-q-\delta}(\Sigma) \longrightarrow L^2_{-q-\delta-2}(\Sigma) \times H^{\frac{1}{2}}(\partial \Sigma) \right)$$

Proposition

- There exists $F \in C^{\infty}(\partial \Sigma)$ such that

 1. if $q \geq 0$ then P_F is injective,

 2. $F_{|_{\mathcal{U}}} = 0$ and $F_{|_{\mathcal{V}}} = 1$ for $\mathcal{U}, \mathcal{V} \subset \partial \Sigma$ two open subsets.

- First part \longrightarrow characterize $\ker(P_F^*)$.
- Second part \longrightarrow distinguish $\ker(P_F^*)$ and $\ker(D\Phi[\bar{g},\bar{\pi}]^*)$.

Choice of F

$$P_F = \left((P, B + F) : H^2_{-q - \delta}(\Sigma) \longrightarrow L^2_{-q - \delta - 2}(\Sigma) \times H^{\frac{1}{2}}(\partial \Sigma) \right)$$

Proposition

- There exists $F \in C^{\infty}(\partial \Sigma)$ such that

 1. if $q \geq 0$ then P_F is injective,

 2. $F_{|_{\mathcal{U}}} = 0$ and $F_{|_{\mathcal{V}}} = 1$ for $\mathcal{U}, \mathcal{V} \subset \partial \Sigma$ two open subsets.

Let F_0 such that dim $(\ker(P_{F_0})) > 0$ and $\mathcal{W} \subset \partial \Sigma$ open and not dense. Using (Bartnik 1986) there exists F_1 such that

$$\dim (\ker(P_{F_1})) < \dim (\ker(P_{F_0})) \quad \text{and} \quad F_{1|_{\mathcal{W}}} = F_{0|_{\mathcal{W}}}.$$

Start from F_0 satisfying $F_{0|_{\mathcal{U}}} = 0$ and $F_{0|_{\mathcal{V}}} = 1$ and iterate with $\mathcal{W} = \mathcal{U} \cup \mathcal{V}$.

Characterization of $ker(P_F^*)$

Corollary

We have dim $(\ker(P_F^*)) = 4q^2$ and

$$(\mathbb{Y},0) \in \operatorname{im}(P_F) \iff \mathbb{Y} \perp \ker(P_F^*).$$

Consider

 $\mathbb{W}_{j,\ell}^{(e)}=$ harmonic polynomials of degree j-1 for the Euclidean metric and solve

$$P_F^*\left(\widetilde{\mathbb{W}}_{j,\ell}\right) = -P_F^*\left(\mathbb{W}_{j,\ell}^{(e)}\right) \in L_{j-4}^2$$

Injectivity for $P_F \Longrightarrow \text{surjectivity for } P_F^*$. Then

$$\left\{ \mathbb{W}_{j,\ell}^{(e)} + \widetilde{\mathbb{W}}_{j,\ell} \; \middle| \; 1 \leq j \leq q, -(j-1) \leq \ell \leq j-1 \right\}$$

is a basis of dim $(\ker(P_F^*))$.

The KIDS are alright

Lemma

If $\mathbb{W} \in \ker(P_F^*)$, then

$$D\Phi[\bar{g},\bar{\pi}]^*(\mathbb{W}) = 0 \text{ on } \{r \in I\} \Longrightarrow \mathbb{W} = 0 \text{ on } \Sigma.$$

- 1. Analyticity on a NBH of $\partial \Sigma \Longrightarrow D\Phi[\bar{g}, \bar{\pi}]^*(\mathbb{W}) = 0$ on a NBH of $\partial \Sigma$.
- 2. Overdetermination of the KIDS $\Longrightarrow \mathbb{W}$ and $B^*(\mathbb{W})$ analytic on $\partial \Sigma$.
- 3. By construction $F_{|_{\mathcal{U}}} = 0$ and $F_{|_{\mathcal{V}}} = 1$.
 - $(B^* + F^*)(\mathbb{W}) = 0 \Longrightarrow B^*(\mathbb{W})_{|_{\mathcal{U}}} = 0 \Longrightarrow B^*(\mathbb{W}) = 0 \text{ on } \partial \Sigma$
 - $F^* \mathbb{W} = 0 \Longrightarrow \mathbb{W}|_{\mathcal{V}} = 0 \Longrightarrow \mathbb{W} = 0 \text{ on } \partial \Sigma$
- 4. Thanks to unique continuation:

$$\begin{cases} P^*(\mathbb{W}) = 0 & \text{on } \Sigma \\ B^*(\mathbb{W}) = \mathbb{W} = 0 & \text{on } \partial \Sigma \end{cases} \Longrightarrow \mathbb{W} = 0 \quad \text{on } \Sigma$$

Solving the constraint

• We want to solve

$$P_F(u,X) = \left(D\Phi[\bar{g},\bar{\pi}]\big((\check{g},\check{\pi}) + (\check{g},\check{\pi})\big) + NL(u,X,\check{g},\check{\pi}),0\right)$$

• Solvable \iff orthogonality conditions against $\ker(P_F^*) = \operatorname{span}(\mathbb{W}_{j,\ell})$

$$\left\langle (\breve{g}, \breve{\pi}), D\Phi[\bar{g}, \bar{\pi}]^*(\mathbb{W}_{j,\ell}) \right\rangle = -\left\langle D\Phi[\bar{g}, \bar{\pi}](\check{g}, \breve{\pi}) + NL(u, X, \breve{g}, \breve{\pi}), \mathbb{W}_{j,\ell} \right\rangle$$

Consider

$$(\breve{g}, \breve{\pi}) \in \operatorname{span}\left(\chi(r)D\Phi[\bar{g}, \bar{\pi}]^*(\mathbb{W}_{j,\ell})\right)$$

where χ is supported in the analyticity region away from the boundary.

• Orthogonality conditions are solvable: the matrix

$$\left(\left\langle \chi(r)D\Phi[\bar{g},\bar{\pi}]^*(\mathbb{W}_{j,\ell}),D\Phi[\bar{g},\bar{\pi}]^*(\mathbb{W}_{j',\ell'})\right\rangle\right)_{j,j',\ell,\ell'}$$

is invertible thanks to the KIDS Lemma.

The result

Theorem (Fang–Szeftel–T 2024)

Let $(\Sigma, \bar{g}, \bar{\pi})$ be AF initial data set with $\Sigma \simeq \mathbb{R}^3 \setminus \{r < 1\}$.

Assume analyticity near and at $\partial \Sigma$.

For all $(\check{g}, \check{\pi})$ such that

$$\|\check{g}\|_{H^2_{-q-\delta}(\Sigma)} + \|\check{\pi}\|_{H^1_{-q-\delta-1}(\Sigma)} \le \varepsilon,$$

there exists a solution of the constraint equations of the form

$$(g,\pi) = ((1+u)^4 (\bar{g} + \check{g} + \check{g}), \bar{\pi} + \check{\pi} + \check{\pi} + L_{\bar{g}}X),$$

with $(\breve{g}, \breve{\pi})$ compactly supported and in a space of dimension $4q^2$ and with

$$\|(u,X)\|_{H^2_{-q-\delta}(\Sigma)} + \|(\breve{g},\breve{\pi})\| \lesssim \varepsilon.$$

In particular $|\bar{g} - g| + r|\bar{\pi} - \pi| \lesssim \varepsilon r^{-q-\delta}$.

Conclusive remarks

• Analyticity of the KIDS: at leading order

$$D\Phi[\bar{g}, \bar{\pi}](h, \varpi) = \left(\Delta_{\bar{g}} \operatorname{tr}_{\bar{g}} h - \operatorname{div}_{\bar{g}} \operatorname{div}_{\bar{g}} h, \operatorname{div}_{\bar{g}} \varpi\right)$$

$$\downarrow \downarrow$$

$$D\Phi[\bar{g}, \bar{\pi}]^*(f, X) = \left(\operatorname{Hess}_{\bar{g}} f - (\Delta_{\bar{g}} f)\bar{g}, \mathcal{L}_{X}\bar{g}\right)$$

Therefore KIDS satisfy an elliptic system on Σ and on $\partial \Sigma$.

- **Application to gluing:** glue to arbitrarily decaying perturbations of Kerr.
- Application to black holes: need careful choice of the initial hypersurface entering the horizon.
- Link with Allen's talk!