Main Editor: Philippe G. LeFloch

Laboratoire Jacques-Louis Lions
Centre National de la Recherche Scientifique (CNRS)
Université Pierre et Marie Curie
(Paris 6), 4 Place Jussieu
75252 Paris, FRANCE

Co-editor:  Jian-Guo Liu, Duke Univ.

Editorial Board

  • Lars Andersson (Potsdam)
  • François Bouchut (Paris-Est)
  • Shuxing Chen (Shanghai)
  • James Colliander (Toronto)
  • Rinaldo Colombo (Brescia)
  • Constantine Dafermos (Providence)
  • Helmut Friedrich (Potsdam)
  • Kenneth H Karlsen (Oslo)
  • Shuichi Kawashima (Fukuoka)
  • Sergiu Klainerman (Princeton)
  • Peter Lax (New York)
  • Tai-Ping Liu (Taipei)
  • Pierro Marcati (L’Aquila)
  • Nader Masmoudi (New York)
  • Frank Merle (Bures-sur-Yvette)
  • Cathleen S Morawetz (New York)
  • Tatsuo Nishitani (Osaka)
  • Alan Rendall (Potsdam)
  • Denis Serre (Lyon)
  • Eitan Tadmor (College Park)

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, especially on the theory and numerical analysis of hyperbolic conservation laws and on hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:

  • Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.
  • Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models.
  • Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.
  • Nonlinear hyperbolic systems arising in continuum physics such as hyperbolic models of fluid dynamics, mixed models of transonic flows.
  • General problems that are dominated by finite speed phenomena such as dissipative and dispersive perturbations of hyperbolic systems, and models relevant to the derivation of fluid dynamical equations.

JHDE aims to provide a forum for the community of researchers working in the very active area of nonlinear hyperbolic problems and nonlinear wave equations, and will also serve as a source of information for the applications.