_______

(not updated currently) RECENT PAPERS can be downloaded from ArXiv

_______

Books and lecture notes

  • P.G. LeFloch, Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues, published by the Centre for Advanced Study of the Norwegian Academy of Science and Letters, ed. H. Holden and K. Karlsen.
  • K.T. Joseph and P.G. LeFloch, Singular limits for the Riemann problem. General diffusion, relaxation, and boundary conditions, in “New analytical approach to multidimensional balance laws”, O. Rozanova ed., Nova Press, 2006, pp.~143–172.
  • P.G. LeFloch, Hyperbolic Systems of Conservation Laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002 (295 pages).
  • P.G. LeFloch, An introduction to nonclassical shocks of systems of conservation laws, International School on Hyperbolic Problems, Freiburg, Germany, Oct. 97, D. Kröner, M. Ohlberger and C. Rohde eds., Lect. Notes Comput. Eng., Vol.~5, Springer Verlag, 1999, pp.~28–72.
  • P.G. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, IMA Volumes in Math. and its Appl.,“Nonlinear evolution equations that change type”, ed.~B.L. Keyfitz and M. Shearer, Springer Verlag, Vol. 27, 1990, pp.~126–138.

_______

Preprints

Papers published in 2010

_______

Papers published in 2009

_______

Papers published in 2008

_______

Papers published in 2007 and earlier

  • K.T. Joseph and P.G. LeFloch, Singular limits in phase dynamics with physical viscosity and capillarity, Proc. Royal Soc. Edinburgh 137A (2007), 1287–1312.
  • P.G. LeFloch and M.D. Thanh, The Riemann problem for the shallow water equations with discontinuous topography, Comm. Math. Sci. 5 (2007), 865–885.
  • P.G. LeFloch and C. Mardare, Definition and weak stability of spacetimes with distributional curvature, Port. Math. 64 (2007), 535–573.
  • M. Ben-Artzi and P.G. LeFloch, The well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds, Ann. Inst. H. Poincaré : Nonlin. Anal. 24 (2007), 989–1008.
  • P.G. LeFloch and M. Westdickenberg, Finite energy solutions of the isentropic Euler equations, Jour. Math. Pures Appli. 88 (2007), 389–429.
  • O. Glass and P.G. LeFloch, Nonlinear hyperbolic systems : Non-degenerate flux, inner speed variation, and graph solutions, Arch. Rational Mech. Anal. 185 (2007), 409–480.
  • J. Hong and P.G. LeFloch, A version of the Glimm method based on generalized Riemann problems, Port. Math. 64 (2007), 199–236.
  • K.T. Joseph and P.G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions, C.R. Math. Acad. Sci. Paris 344 (2007), 59–64.
  • P.G. LeFloch and M. Yamazaki, Entropy solutions of the Euler equations for isothermal relativistic fluids, Intern. J. Dynamical Syst. Differential Equa. 1 (2007), 20–37.
  • P.G. LeFloch, Haar method, averaged matrix, wave cancellation, and {L^1} stability for hyperbolic systems, J. Hyperbolic Differ. Equ. 3 (2006), 701–739.
  • P.G. LeFloch and H. Frid, Uniqueness for multidimensional hyperbolic systems with commuting Jacobians, Arch. Rational Mech. Anal. 182 (2006), 25–47.
  • P. Amorim, M. Ben-Artzi and P.G. LeFloch, Hyperbolic conservation laws on manifolds: Total variation estimates and finite volume method, Meth. Appl. Analysis 12 (2005), 291–324.
  • N. Bedjaoui, C. Chalons, F. Coquel, and P.G. LeFloch, Non-monotonic traveling waves in Van der Waals fluids, Analysis Appl. 3 (2005), 419–446.
  • P.G. LeFloch and J.M. Stewart, Shock waves and gravitational waves in matter spacetimes with Gowdy symmetry, Portugal. Math. 62 (2005), 349–370.
  • P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the isothermal gas dynamics equations, Arch. Rational Mech. Anal. 175 (2005), 389–430.
  • P.G. LeFloch and K. Trivisa, Continuous Glimm-type functionals and spreading of rarefaction waves, Comm. Math. Sci. 2 (2004), 213–236.
  • P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the Cauchy problem for equations of the gas dynamics of isothermal flows, Doklady Math. Sc. 398 (2004), 300–305. Ê
  • N. Bedjaoui, C. Klingenberg, and P.G. LeFloch, On the validity of the Chapman-Enskog expansion for shock waves with small strength, Portugal. Math. 61 (2004). 479–499.
  • P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ. 1 (2004), 643–689.
  • A.P. Barnes, P.G. LeFloch, B.G. Schmidt, and J.M. Stewart, The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes, Classical Quantum Gravity 21 (2004), 5043–5074.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Existence theory for nonclassical entropy solutions: scalar conservation laws, Z. Angew. Math. Phys. 55 (2004),Ê 927–945.
  • P.G. LeFloch and M. Shearer, Nonclassical Riemann solvers with nucleation, Proc. Royal Soc. Edinburgh 134A (2004), 941–964.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. V. Singular diffusion and dispersion terms, Proc. Royal Soc. Edinburgh 134A (2004), 815–844.
  • P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincaré – Analyse Non-linéaire 21 (2004), 881–902.
  • P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci. 1 (2003), 763–796.
  • T. Iguchi and P.G. LeFloch, Existence theory for hyperbolic systems of conservation laws with general flux-functions, Arch. Rational Mech. Anal. 168 (2003), 165–244.
  • P.G. LeFloch and M.D. Thanh, Properties of Rankine-Hugoniot curves for Van der Waals fluids, Japan J. Indust. Applied Math. 20 (2003), 211–238.
  • C. Chalons and P.G. LeFloch, Computing undercompressive waves with the random choice scheme : nonclassical shock waves, Interfaces and Free Boundaries 5 (2003), 129–158.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. IV. Compressible Euler system, Chinese Ann. Appl. Math. 24 (2003), 17–34.
  • P. Goatin and P.G. LeFloch, {L^1} continuous dependence of entropy solutions for the compressible Euler equations, Comm. Pure Appl. Anal. 2 (2003), 107–137.
  • G.-Q. Chen and P.G. LeFloch, Existence theory for the compressible isentropic Euler equations, Arch. Rational Mech. Anal. 166 (2003), 81–98.
  • P.G. LeFloch, J.-M. Mercier, and C. Rohde, Fully discrete entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002), 1968–1992.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. III. Vanishing relaxation limits, Portugal. Math. 59 (2002), 453.
  • G. Crasta and P.G. LeFloch, A class of nonconservative and non strictly hyperbolic systems, Comm. Pure Appl. Anal. 1 (2002), 513–530.
  • J.-P. Dias and P.G. LeFloch, Some existence results on conservation laws with source-term, Math. Meth. Appl. Sc. 25 (2002), 1149-1160.
  • C. Kondo and P.G. LeFloch, Zero diffusion-dispersion limits for hyperbolic conservation laws, SIAM Math. Anal. 33 (2002), 1320–1329.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132 (2002), 545–565.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132A (2001), 181–219.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws, J. Differential Equations 178 (2002), 574–607.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. II. Self-similar vanishing diffusion limits, Comm. Pure Appl. Anal. 1 (2002), 51–76.
  • J.M. Correia, P.G. LeFloch, and M.D. Thanh, Hyperbolic conservation laws with Lipschitz continuous flux-functions. The Riemann problem, Bol. Soc. Bras. Mat. 32 (2001), 271–301.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. III. An hyperbolic model of nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat. 47 (2001), 117–144.
  • P.G. LeFloch and C. Rohde, The zero diffusion-dispersion limit for the Riemann problem, Indiana Univ. Math. J. 50 (2001), 1707–1743.
  • C. Chalons and P.G. LeFloch, A fully discrete scheme for diffusive-dispersive conservation laws, Numerische Math. 89 (2001), 493–509.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions, Z. Angew. Math. Phys. 52 (2001), 597–619.
  • C. Kondo and P.G. LeFloch, Measure-valued solutions and well-posedness of multi-dimensional conservation laws in a bounded domain, Port. Math. 58 (2001), 171–194.
  • G.-Q. Chen and P.G. LeFloch,Ê Entropies and entropy-flux splittings for the isentropic Euler equations, Chinese Annal. Math. 22 (2001), 1–14.
  • C. Chalons and P.G. LeFloch, High-order entropy conservative schemes and kinetic relations for van der Waals fluids, J. Comput. Phys. 167 (2001), 1–23.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems, J. Differential Equations 172 (2001), 59–82.
  • P. Goatin and P.G. LeFloch, Sharp L1 continuous dependence of solutions of bounded variation for hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 157 (2001), 35–73.
  • P. Goatin and P.G. LeFloch, Sharp L1 stability estimates for hyperbolic conservation laws, Port. Math. 58 (2001), 1–44.
  • J. Hu and P.G. LeFloch, L1 continuous dependence property for systems of conservation laws, Arch. Rational Mech. Anal. 151 (2000), 45–93.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. III. A nonconvex hyperbolic model for Van der Waals fluids, Electr. J. Diff. Equa. 72 (2000), 1–19.
  • G.-Q. Chen and P.G. LeFloch, Compressible Euler equations with general pressure law, Arch. Rational Mech Anal. 153 (2000), 221–259.
  • P.G. LeFloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal. 37 (2000), 2023–2060.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems, SIAM J. Math. Anal. 31 (2000), 941–991. (First appeared as : Preprint \# 357, CMAP, Ecole Polytechnique (France), November 1996.)
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Nonclassical shocks and the Cauchy problem. General conservation laws, Contemporary Math. 238 (1999), 1–25.
  • A. Bressan and P.G. LeFloch, Structural stability and regularity of entropy solutions to systems of conservation laws, Indiana Univ. Math. J. 48 (1999), 43–84.
  • P.G. LeFloch and A. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal. 30 (1999), 1309–1342.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions to hyperbolic conservation laws, Arch. Rational Mech Anal. 147 (1999), 47–88. (First appeared as: Preprint # 341, CMAP, Ecole Polytechnique (France), November 1996.)
  • T.Y. Hou, P. Rosakis, and P.G. LeFloch, A level set approach to the computation of twinning and phase transition dynamics, J. Comput. Phys. 150 (1999), 302–331.
  • P.G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Analysis 36 (1999), 213–230.
  • D. Amadori, P. Baiti, P.G. LeFloch and B. Piccoli, Nonclassical shocks and the Cauchy problem for nonconvex conservation laws, J. Differential Equations 151 (1999), 345–372.
  • P.G. LeFloch and J.-G. Liu, Generalized monotone schemes, extremum paths and discrete entropy conditions, Math. of Comput. 68 (1999), 1025–1055.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations. Finite difference schemes, SIAM J. Numer. Anal. 35 (1998), 2169–2194.
  • A. Bressan and P.G. LeFloch, Uniqueness of weak solutions to system of conservation laws, Arch. Rational Mech. Anal. 140 (1997), 301–331.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations. Scalar conservation laws, Arch. Rational Mech. Anal. 139 (1997), 1–56.
  • G.-Q. Chen and P.G. LeFloch, Entropies and weak solutions to the isentropic compressible Euler equations, C.R. Math. Acad. Sc. Paris 324 (1997), 1105–1110.
  • F. Bereux, E. Bonnetier, and P.G. LeFloch, Gas dynamics equations. Two special cases, SIAM J. Math. Anal. 28 (1997), 499–515.
  • B.T. Hayes and P.G. LeFloch, Measure-solutions to a strictly hyperbolic system of conservation laws, Nonlinearity 9 (1996), 1547–1563.
  • P.G. LeFloch and A. Tzavaras, Existence theory for the Riemann problem for non-conservative hyperbolic systems, C.R. Acad. Sc. Paris, Série 1, 323 (1996), 347–352.
  • F. Coquel and P.G. LeFloch, An entropy satisfying MUSCL scheme for systems of conservation laws, Numer. Math. 74 (1996), 1–33.
  • X.-G. Zhong, T.Y. Hou, and P.G. LeFloch, Computational methods for propagating phase boundaries, J. Comput. Phys. 124 (1996), 192–216.
  • G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), 483–548.
  • G.-Q. Chen and P.G. LeFloch, Entropy flux splittings for hyperbolic conservation laws. General framework, Comm. Pure Appl. Math. 48 (1995), 691–729.
  • F. Coquel and P.G. LeFloch, An entropy satisfying second order scheme for systems of conservation laws, C.R. Acad. Sc. Paris, Série 1, 320 (1995), 1263–1268.
  • B. Cockburn, F. Coquel, and P.G. LeFloch, Convergence of finite volume methods for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), 687–705.
  • P.G. LeFloch and J.-G. Liu, Discrete entropy and monotonicity criterion for hyperbolic conservation laws, C.R. Acad. Sc. Paris, Série I, 319 (1994), 881–886.
  • B. Cockburn, F. Coquel, and P.G. LeFloch, Error estimates for finite volume methods for multidimensional conservation laws, Math. of Comput. 63 (1994), 77–103. (First appeared as: Preprint 91-20, AHCRC Institute, Minneapolis (USA), 1991.)
  • T.Y. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions. Error analysis, Math. of Comput. 62 (1994), 497–530.
  • G.-Q. Chen and P.G. LeFloch, Entropy flux-splittings for hyperbolic conservation laws, C.R. Acad. Sc. Paris, Série 1, 317 (1993), 761–766.
  • P.G. LeFloch and Z.-P. Xin, Uniqueness via the adjoint problems for systems of conservation laws, Comm. Pure Appl. Math. 46 (1993), 1499–1533.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for scalar conservation laws in several space variables. General theory, SIAM J. Numer. Anal. 30 (1993), 675–700.
  • P.G. LeFloch, Propagating phase boundaries. Formulation of the problem and existence via the Glimm scheme, Arch. Rational Mech. Anal. 123 (1993), 153–197.
  • P.G. LeFloch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math. 5 (1993), 261–280.
  • A. Forestier and P.G. LeFloch, Multivalued solutions to some nonlinear and nonstrictly hyperbolic systems, Japan J. Indus. Appl. Math. 9 (1992), 1–23.
  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, Asymp. Analysis 3 (1991), 321-340.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for scalar conservation laws in several space variables. The corrected antidiffusive-flux approach, Math. of Comput. 57 (1991), 169–210.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions, C.R. Acad. Sc. Paris, Série 1, 310 (1990), 455–460.
  • P.G. LeFloch and F. Olsson, A second-order Godunov method for the conservation laws of nonlinear elastodynamics, Impact Comp. Sc. Eng. 2 (1990), 318–354 (Journal non longer distributed, see http://dx.doi.org/10.1016/0899-8248(90)90017-5).
  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 309 (1989), 807–810.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part II. Application to the gas dynamics equations, Ann. Inst. H. Poincaré, Nonlin. Anal. 6 (1989), 437-480.
  • P.G. LeFloch and J.-C. Nédélec, Asymptotic time-behavior for weighted scalar nonlinear conservation laws, RAIRO: Math. Model. Num. Anal. 22 (1988), 469–475.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part I. General theory, Ann. Inst. H. Poincaré, Nonlinear Analysis 5 (1988), 179–207.
  • P.G. LeFloch and J.-C. Nédélec, Explicit formula for weighted scalar nonlinear conservation laws, Trans. Amer. Math. Soc. 308 (1988), 667–683.
  • P.G. LeFloch, Explicit formula for scalar conservation laws with boundary condition, Math. Meth. Appl. Sc. 10 (1988), 265–287.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Part. Diff. Equa. 13 (1988), 669–727.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, C.R. Acad. Sc. Paris, Série 1, 306 (1988), 181–186.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations 71 (1988), 93–122.
  • F. Dubois and P.G. LeFloch, Boundary condition for a system of conservation laws, C.R. Acad. Sc. Paris, Serie 1, 304 (1987), 75–78.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 304 (1987), 119–122.
  • P.G. LeFloch and J.-C. Nédélec, Weighted conservation laws, C.R. Acad. Sc. Paris, Série 1, 301 (1985), 793–796.

Other papers in proceedings volumes

  • A. Ambroso, B. Boutin, F. Coquel, E. Godlewski and P.G. LeFloch, Coupling two scalar conservation laws via Dafermos self-similar regularization, in “Numerical Mathematics and Advanced Applications”, Proc. ENUMATH 2007, 7th European Conf. on Numer. Math. Adv. Appl., Graz, Austria, September 2007, Springer Verlag, Heidelberg, K. Kunisch, G. Of, and O. Steinbach (Eds.), 2008, pp.~209–216.
  • B. Boutin, C. Chalons, F. Lagoutière and P.G. LeFloch, A sharp interface and fully conservative scheme for computing nonclassical shocks, in “Numerical Mathematics and Advanced Applications”, Proc. ENUMATH 2007, 7th European Conf. on Numer. Math. Adv. Appl., Graz, Austria, September 2007, Springer Verlag, Heidelberg, K. Kunisch, G. Of, and O. Steinbach (Eds.), 2008, pp.~217–224.
  • P.G. LeFloch, Hyperbolic conservation laws and spacetimes with limited regularity, in “Hyperbolic problems. Theory, numerics and applications”, Proc. 11th Inter. Conf. on hyperbolic problems, Ecole Normale Supérieure, Lyon, France, July 17–21, 2006, Editors S. Benzoni-Gavage et al., Berlin: Springer, 2008, pp.~679–686.
  • P.G. LeFloch and M. Yamazaki, The dynamics of isothermal relativistic fluids, in Proc. of the RIMS Workshop on “Hyperfunctions and Linear Partial Differential Equations”, Kyoto, June 2006, Research Institute for Mathematical Sciences (RIMS), S\^urikaisekiken kyusho Kokyuroku No. 1648 (2009), 117–132.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, BV Stability via generalized characteristics for nonclassical solutions of conservation laws, EQUADIFF’99, Proc. Internat. Conf. Differ. Equ., Berlin, August 1999, B. Fiedler, K. Gröger, and J.Sprekels, editors, World Sc. Publ., River Edge, NY, 2000, pp.~289–294.
  • J.M. Correia and P.G. LeFloch, Nonlinear hyperbolic conservation laws, in “Nonlinear evolution equations and their applications” (Macau, 1998), World Sci. Publ., River Edge, NJ, 1999, pp.~21–44.
  • J.M. Correia and P.G. LeFloch, Nonlinear diffusive-dispersive limits for multidimensional conservation laws, in “Advances in Nonlinear P.D.E.’s and Related Areas”, (Beijing, 1997), World Sci. Publ., River Edge, NJ, 1998, pp.~103–123. Available at: http://arxiv.org/abs/0810.1880.
  • P.G. LeFloch, Existence of entropy solutions for the compressible Euler equations, Conf. on “Hyperbolic Problems: theory, numerics, and applications” (Zürich, 1998), International Series Numer. Math. Vol.~130, Birkäuser Verlag Bäsel, Switzerland, 1999, pp.~599–607.
  • P.G. LeFloch, Dynamics of solid-solid phase interfaces via a level set approach, Proc. Fifth Workshop on Partial Differential Equations (Rio de Janeiro, 1997), Mat. Contemp. 15 (1998), pp.~187–212.
  • P.G. LeFloch, An entropy diminishing criterion for hyperbolic conservation laws, in “Numerical methods for wave propagation” (Manchester, 1995), Fluid Mech. Appl. 47, Kluwer Acad. Publ., Dordrecht, 1998, pp.~275–295.
  • P.G. LeFloch, Computational Methods for propagating phase boundaries, in “Intergranular and Interphase Boundaries in Materials~: iib95”, Lisbon, June 1995, Eds. A.C. Ferro, J.P. Conde and M.A. Fortes. Material Science Forum Vols. 207–209, 1996, pp.~509–515.
  • P.G. LeFloch, Monotonicity consistent scheme for hyperbolic conservation laws, Proc. “Fifth International Colloquium on Numerical Analysis”, Plovdiv, August 1995, ed.~ D. Bainov.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, Approximate solution of the generalized Riemann problem, Inter. Conf. on Hyperbolic Problems, Saint-Etienne (France), January 1986, Lect. Notes in Math. , Vol.~1270, Springer Verlag, 1987, pp.~1–9.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in conservative form, Proc. Intern. Conf. on Hyperbolic problems, ed. J. Ballmann and R. Jeltsch, Note on Num. Fluid Mech., Vol.~24, Viewieg, Braunschweig, 1989, pp.~362–373.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Proc. Inter. Conf. on Hyperbolic problems, Aachen (Germany), March 1988, Notes on Numer. Fluid Mech., Vol.~24, Vieweg, 1989, pp.~96-106.