Recent publications also posted on arXiv

Contents

List of books

Years

2026 2025 2024 2023 2022 2021 2020 2019 2018 2017
2016 2015 2014 2013 2012 2011 2010 2009 2008 2007
2006 2005 2004 2003 2002 2001 2000 1999 1998 1997
1996 1995 1994 1993 1992 1991 1990 1989 1988 1987
1985

Themes

List by year

2026

  • B. Le Floch and P.G. LeFloch, Scattering laws for interfaces in self-gravitating matter flows, in preparation.

 

2025

 

2024

 

2023

 

2022

 

2021

2020

 

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

  • P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the Cauchy problem for equations of the gas dynamics of isothermal flows, Doklady Math. Sc. 398 (2004), 300–305.
  • P.G. LeFloch, Graph solutions of nonlinear hyperbolic systems, J. Hyperbolic Differ. Equ. 1 (2004), 643–689.
  • P.G. LeFloch and K. Trivisa, Continuous Glimm-type functionals and spreading of rarefaction waves, Comm. Math. Sci. 2 (2004), 213–236.
  • N. Bedjaoui, C. Klingenberg, and P.G. LeFloch, On the validity of the Chapman-Enskog expansion for shock waves with small strength, Portugal. Math. 61 (2004). 479–499. Also available at ArXiv: https://arxiv.org/abs/0812.3985.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. V. Singular diffusion and dispersion terms, Proc. Royal Soc. Edinburgh 134A (2004), 815–844.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. IV. Compressible Euler system, Chinese Ann. Appl. Math. 24 (2003), 17–34.
  • P.G. LeFloch and M. Shearer, Nonclassical Riemann solvers with nucleation, Proc. Royal Soc. Edinburgh 134A (2004), 941–964.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Existence theory for nonclassical entropy solutions: scalar conservation laws, Z. Angew. Math. Phys. 55 (2004), 927–945.
  • A.P. Barnes, P.G. LeFloch, B.G. Schmidt, and J.M. Stewart, The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes, Class. Quantum Grav. 21 (2004), 5043–5074.
  • P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincaré – Analyse Non-linéaire 21 (2004), 881–902.

2003

  • G.-Q. Chen and P.G. LeFloch, Existence theory for the compressible isentropic Euler equations, Arch. Rational Mech. Anal. 166 (2003), 81–98.
  • T. Iguchi and P.G. LeFloch, Existence theory for hyperbolic systems of conservation laws with general flux-functions, Arch. Rational Mech. Anal. 168 (2003), 165–244.
  • P. Goatin and P.G. LeFloch, L1 continuous dependence of entropy solutions for the compressible Euler equations, Comm. Pure Appl. Anal. 2 (2003), 107–137.
  • P.G. LeFloch and M.D. Thanh, The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci. 1 (2003), 763–796.
  • C. Chalons and P.G. LeFloch, Computing undercompressive waves with the random choice scheme. Nonclassical shock waves, Interfaces and Free Boundaries 5 (2003), 129–158.
  • P.G. LeFloch and M.D. Thanh, Properties of Rankine-Hugoniot curves for Van der Waals fluids, Japan J. Indust. Applied Math. 20 (2003), 211–238.

2002

  • P.G. LeFloch, Hyperbolic Systems of Conservation Laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002 (300 pages).
  • J.-P. Dias and P.G. LeFloch, Some existence results on conservation laws with source-term, Math. Meth. Appl. Sc. 25 (2002), 1149–1160.
  • G. Crasta and P.G. LeFloch, A class of nonconservative and non strictly hyperbolic systems, Comm. Pure Appl. Anal. 1 (2002), 513–530.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. III. Vanishing relaxation limits, Portugal. Math. 59 (2002), 453.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. II. Self-similar vanishing diffusion limits, Comm. Pure Appl. Anal. 1 (2002), 51–76.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132 (2002), 545–565.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws, J. Differential Equations 178 (2002), 574–607.
  • C. Kondo and P.G. LeFloch, Zero diffusion-dispersion limits for hyperbolic conservation laws, SIAM Math. Anal. 33 (2002), 1320–1329. Also available at ArXiv: https://arxiv.org/abs/0712.0094.
  • P.G. LeFloch, J.-M. Mercier, and C. Rohde, Fully discrete entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002), 1968–1992.
  • J.M. Correia, P.G. LeFloch, and M.D. Thanh, Hyperbolic conservation laws with Lipschitz continuous flux-functions. The Riemann problem, Bol. Soc. Bras. Mat. 32 (2001), 271–301.

2001

  • P. Goatin and P.G. LeFloch, Sharp L1 continuous dependence of solutions of bounded variation for hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 157 (2001), 35–73.
  • P. Goatin and P.G. LeFloch, Sharp L1 stability estimates for hyperbolic conservation laws, Portugal Math. 58 (2001), 1–44. Also available at ArXiv: https://arxiv.org/abs/math/0006109.
  • C. Kondo and P.G. LeFloch, Measure-valued solutions and well-posedness of multi-dimen\-sional conservation laws in a bounded domain, Portugal Math. 58 (2001), 171–194.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems, J. Differential Equations 172 (2001), 59–82.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. III. An hyperbolic model of nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat. 47 (2001), 117–144.
  • P.G. LeFloch and C. Rohde, The zero diffusion-dispersion limit for the Riemann problem, Indiana Univ. Math. J. 50 (2001), 1707–1743.
  • C. Chalons and P.G. LeFloch, High-order entropy conservative schemes and kinetic relations for van der Waals fluids, J. Comput. Phys. 167 (2001), 1–23.
  • G.-Q. Chen and P.G. LeFloch, Entropies and entropy-flux splittings for the isentropic Euler equations, Chinese Annal. Math. 22 (2001), 1–14.
  • C. Chalons and P.G. LeFloch, A fully discrete scheme for diffusive-dispersive conservation laws, Numerische Math. 89 (2001), 493–509.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions, Z. Angew. Math. Phys. 52 (2001), 597–619.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132A (2001), 181–219.

2000

  • G.-Q. Chen and P.G. LeFloch, Compressible Euler equations with general pressure law, Arch. Rational Mech Anal. 153 (2000), 221–259.
  • J. Hu and P.G. LeFloch, L1 continuous dependence property for systems of conservation laws, Arch. Rational Mech. Anal. 151 (2000), 45–93.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, BV Stability via generalized characteristics for nonclassical solutions of conservation laws, EQUADIFF’99, Proc. Internat. Conf. Differ. Equ., Berlin, August 1999, B. Fiedler, K. Gröger, and J.Sprekels, editors, World Sc. Publ., River Edge, NY, 2000, pp. 289–294.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems, SIAM J. Math. Anal. 31 (2000), 941–991. (First appeared as : \# 357, CMAP, Ecole Polytechnique (France), November 1996.).
  • P.G. LeFloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks , SIAM J. Numer. Anal. 37 (2000), 2023–2060.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. III. A nonconvex hyperbolic model for Van der Waals fluids, Electr. J. Diff. Equa. 72 (2000), 1–19.

1999

1998

1997

  • G.-Q. Chen and P.G. LeFloch, Entropies and weak solutions to the isentropic compressible Euler equations, C.R. Math. Acad. Sc. Paris 324 (1997), 1105–1110.
  • F. Bereux, E. Bonnetier, and P.G. LeFloch, Gas dynamics equations. Two special cases, SIAM J. Math. Anal. 28 (1997), 499–515.
  • A. Bressan and P.G. LeFloch, Uniqueness of weak solutions to system of conservation laws, Arch. Rational Mech. Anal. 140 (1997), 301–331.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations. Scalar conservation laws, Arch. Rational Mech. Anal. 139 (1997), 1–56.

1996

  • B.T. Hayes and P.G. LeFloch, Measure-solutions to a strictly hyperbolic system of conservation laws, Nonlinearity 9 (1996), 1547–1563.
  • P.G. LeFloch and A. Tzavaras, Existence theory for the Riemann problem for non-conservative hyperbolic systems, C.R. Acad. Sc. Paris, Série 1, 323 (1996), 347–352.
  • P.G. LeFloch, Computational Methods for propagating phase boundaries, in “Intergranular and Interphase Boundaries in Materials : iib95”, Lisbon, June 1995, Eds. A.C. Ferro, J.P. Conde and M.A. Fortes. Material Science Forum Vols. 207–209, 1996, pp. 509–515.
  • X.-G. Zhong, T.Y. Hou, and P.G. LeFloch, Computational methods for propagating phase boundaries, J. Comput. Phys. 124 (1996), 192–216.
  • F. Coquel and P.G. LeFloch, An entropy satisfying MUSCL scheme for systems of conservation laws, Numer. Math. 74 (1996), 1–33.

1995

  • G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), 483–548.
  • G.-Q. Chen and P.G. LeFloch, Entropy flux splittings for hyperbolic conservation laws. General framework, Comm. Pure Appl. Math. 48 (1995), 691–729.
  • F. Coquel and P.G. LeFloch, An entropy satisfying second order scheme for systems of conservation laws, C.R. Acad. Sc. Paris, Série 1, 320 (1995), 1263–1268.
  • B. Cockburn, F. Coquel, and P.G. LeFloch, Convergence of finite volume methods for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), 687–705.
  • P.G. LeFloch, Monotonicity consistent scheme for hyperbolic conservation laws, Proc. “Fifth International Colloquium on Numerical Analysis”, Plovdiv, August 1995, ed. D. Bainov.

1994

  • T.Y. Hou and P.G. LeFloch, Why nonconservative schemes converge to wrong solutions. Error analysis, Math. of Comput. 62 (1994), 497–530.
  • B. Cockburn, F. Coquel, and P.G. LeFloch, Error estimates for finite volume methods for multidimensional conservation laws, Math. of Comput. 63 (1994), 77–103. (First appeared as: 91-20, AHCRC Institute, Minneapolis, USA, 1991.).
  • P.G. LeFloch and J.-G. Liu, Discrete entropy and monotonicity criterion for hyperbolic conservation laws, C.R. Acad. Sc. Paris, Série I, 319 (1994), 881–886.

1993

1992

  • A. Forestier and P.G. LeFloch, Multivalued solutions to some nonlinear and nonstrictly hyperbolic systems, Japan J. Indus. Appl. Math. 9 (1992), 1–23.

1991

  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, Asymp. Analysis 3 (1991), 321-340.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for scalar conservation laws in several space variables. The corrected antidiffusive-flux approach, Math. of Comput. 57 (1991), 169–210.

1990

  • P.G. LeFloch and F. Olsson, A second-order Godunov method for the conservation laws of nonlinear elastodynamics, Impact Comp. Sc. Eng. 2 (1990), 318–354.
  • P.G. LeFloch, (unpublished)., On some nonlinear hyperbolic problems, Memoir of “Habilitation à Diriger des Recherches”, Université Pierre et Marie Curie (Paris 6), July 1990.
  • P.G. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, IMA Volumes in Math. and its Appl.,“Nonlinear evolution equations that change type”, ed. B.L. Keyfitz and M. Shearer, Springer Verlag, Vol. 27, 1990, pp. 126–138.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions, C.R. Acad. Sc. Paris, Série 1, 310 (1990), 455–460.

1989

  • P.G. LeFloch, Existence of entropy solutions for the compressible Euler equations, Conf. on “Hyperbolic Problems: theory, numerics, and applications” (Zürich, 1998), International Series Numer. Math. Vol. 130, Birkäuser Verlag Bäsel, Switzerland, 1999, pp. 599–607.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in conservative form, Proc. Intern. Conf. on Hyperbolic problems, ed. J. Ballmann and R. Jeltsch, Notes on Num. Fluid Mech., Vol. 24, Viewieg, Braunschweig, 1989, pp. 362–373.
  • P.G. LeFloch, (unpublished)., Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, IMA, \# 593, 1989 Available at:.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Proc. Inter. Conf. on Hyperbolic problems, Aachen (Germany), March 1988, Notes on Numer. Fluid Mech., Vol. 24, Vieweg, 1989, pp. 96-106.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part II. Application to the gas dynamics equations, Ann. Inst. H. Poincaré, Nonlin. Anal. 6 (1989), 437-480.
  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 309 (1989), 807–810.

1988

  • P.G. LeFloch, (unpublished)., Theory and numerical approximation of nonlinear hyperbolic systems, Ph.D. Memoir in Applied Mathematics, Ecole Polytechnique, Palaiseau, France, January 1988..
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Part. Diff. Equa. 13 (1988), 669–727.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, C.R. Acad. Sc. Paris, Série 1, 306 (1988), 181–186.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations 71 (1988), 93–122.
  • P.G. LeFloch and J.-C. Nédélec, Asymptotic time-behavior for weighted scalar nonlinear conservation laws, RAIRO: Math. Model. Num. Anal. 22 (1988), 469–475.
  • P.G. LeFloch and J.-C. Nédélec, Explicit formula for weighted scalar nonlinear conservation laws, Trans. Amer. Math. Soc. 308 (1988), 667–683.
  • P.G. LeFloch, Explicit formula for scalar conservation laws with boundary condition, Math. Meth. Appl. Sc. 10 (1988), 265–287.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part I. General theory, Ann. Inst. H. Poincaré, Nonlinear Analysis 5 (1988), 179–207.

1987

  • F. Dubois and P.G. LeFloch, Boundary condition for a system of conservation laws, C.R. Acad. Sc. Paris, Serie 1, 304 (1987), 75–78.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, Approximate solution of the generalized Riemann problem, Inter. Conf. on Hyperbolic Problems, Saint-Etienne (France), January 1986, Lect. Notes in Math., Vol. 1270, Springer Verlag, 1987, pp. 1–9.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 304 (1987), 119–122.

1985

  • P.G. LeFloch and J.-C. Nédélec, Weighted conservation laws, C.R. Acad. Sc. Paris, Série 1, 301 (1985), 793–796.

List by theme

Models from Continuum Physics and Mathematical Physics

Reviews and monographs

 

Fluid models, interfaces in materials, and rod linkage

  • B. Boutin, F. Coquel, and P.G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. II. Resonant interfaces with internal structure, Networks Heter. Media 16 (2021), 283–315. [HAL]. Also available at HAL: https://hal.archives-ouvertes.fr/hal-02962629. Journal (DOI)
  • Q. Du, Z. Huang, and P.G. LeFloch, Nonlocal conservation laws. A new class of monotonicity-preserving models, SIAM J. Numer. Anal. 55 (2017), 2465–2489. Journal (DOI)
  • B. Boutin, F. Coquel, and P.G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. IV. Well-balanced schemes for scalar multidimensional and multi-component laws, Math. Comp. 84 (2015), 1663–1702.
  • B. Boutin, F. Coquel, and P.G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. III. The well–balanced approximation of thick interfaces, SIAM J. Numer. Anal. 51 (2013), 1108–1133.
  • B. Boutin, F. Coquel, and P.G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces, Proc. Royal Soc. Edinburgh 141A (2011), 921–956.
  • P.G. LeFloch and S. Mishra, Kinetic functions in magnetohydrodynamics with resistivity and Hall effects, Acta Math. Scientia 29B (2009), 1684–1702.
  • A. Ambroso, B. Boutin, F. Coquel, E. Godlewski, and P.G. LeFloch, Coupling two scalar conservation laws via Dafermos self-similar regularization, Proc. ENUMATH 2007, 7th European Conf. on Numer. Math. Adv. Appl., Springer Verlag, Heidelberg, 2008, pp. 209–216.
  • P.G. LeFloch, Propagating phase boundaries. Formulation of the problem and existence via the Glimm scheme, Arch. Rational Mech. Anal. 123 (1993), 153–197. Also available at ArXiv: https://arxiv.org/abs/math/0701646.
  • P.G. LeFloch and F. Olsson, A second-order Godunov method for the conservation laws of nonlinear elastodynamics, Impact Comp. Sc. Eng. 2 (1990), 318–354.

 

Geometric flows, strings, and membranes

 

Einstein gravity models and generalizations

 

Lorentzian geometry and spacetime foliations

 

Self-gravitating compressible fluids and the Einstein equations

 

Perfect fluid flows in three space dimensions

 

Perfect fluid flows with symmetry

  • P. Germain and P.G. LeFloch, The finite energy method for compressible fluids: the Navier-Stokes-Korteweg model, Comm. Pure Appl. Math. 64 (2016), 3–61.
  • S. Georgiev and P.G. LeFloch, Generalized time-periodic solutions to the Euler equations of compressible fluids, Different. Equa. Appl. (DEA) 1 (2009), 413–426.
  • P.G. LeFloch and M. Yamazaki, The dynamics of isothermal relativistic fluids, in Proc. of the RIMS Workshop on “Hyperfunctions and Linear Partial Differential Equations”, Kyoto, June 2006, Research Institute for Mathematical Sciences (RIMS), Sûrikaisekiken kyûsho Kôkyûroku No. 1648 (2009), 117–132.
  • P.G. LeFloch and M. Yamazaki, Entropy solutions of the Euler equations for isothermal relativistic fluids, Intern. J. Dynamical Syst. Differential Equa. 1 (2007), 20–37. Also available at ArXiv: https://arxiv.org/abs/math/0701042.
  • P.G. LeFloch and M. Westdickenberg, Finite energy solutions of the isentropic Euler equations, J. Math. Pures Appl. 88 (2007), 389–429. Also available at ArXiv: https://arxiv.org/abs/0812.2688.
  • P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the isothermal gas dynamics equations, Arch. Rational Mech. Anal. 175 (2005), 389–430. Also available at ArXiv: https://arxiv.org/abs/math/0701100.
  • P.G. LeFloch and V. Shelukhin, Symmetries and global solvability of the Cauchy problem for equations of the gas dynamics of isothermal flows, Doklady Math. Sc. 398 (2004), 300–305.
  • G.-Q. Chen and P.G. LeFloch, Existence theory for the compressible isentropic Euler equations, Arch. Rational Mech. Anal. 166 (2003), 81–98.
  • G.-Q. Chen and P.G. LeFloch, Compressible Euler equations with general pressure law, Arch. Rational Mech Anal. 153 (2000), 221–259.
  • G.-Q. Chen and P.G. LeFloch, Entropies and weak solutions to the isentropic compressible Euler equations, C.R. Math. Acad. Sc. Paris 324 (1997), 1105–1110.
  • F. Bereux, E. Bonnetier, and P.G. LeFloch, Gas dynamics equations. Two special cases, SIAM J. Math. Anal. 28 (1997), 499–515.
  • P.G. LeFloch and Z.P. Xin, (unpublished)., Formation of singularities in periodic solutions to gas dynamics equations, \# 287, CMAP, Ecole Polytechnique (France), October 1993.
  • P.G. LeFloch, Existence of entropy solutions for the compressible Euler equations, Conf. on “Hyperbolic Problems: theory, numerics, and applications” (Zürich, 1998), International Series Numer. Math. Vol. 130, Birkäuser Verlag Bäsel, Switzerland, 1999, pp. 599–607.

 

The Burgers model and its generalizations

 

Mathematical Analysis of Partial Differential Equations

Reviews and monographs

  • P.G. LeFloch and Y. Ma, The hyperboloidal foliation method for nonlinear wave equations,, World Scientific Press, Singapore, 2014 (150 pages). Also available at ArXiv: https://arxiv.org/abs/1411.4910.
  • P.G. LeFloch, Hyperbolic Systems of Conservation Laws. The theory of classical and nonclassical shock waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002 (300 pages).
  • P.G. LeFloch, (unpublished)., On some nonlinear hyperbolic problems, Memoir of “Habilitation à Diriger des Recherches”, Université Pierre et Marie Curie (Paris 6), July 1990.
  • P.G. LeFloch, (unpublished)., Theory and numerical approximation of nonlinear hyperbolic systems, Ph.D. Memoir in Applied Mathematics, Ecole Polytechnique, Palaiseau, France, January 1988..

 

The Euclidian-Hyperboloidal method and the stability of Minkowski space

 

Fuchsian methods and the Big Bang singularity

 

Methods for impulsive gravitational waves and cosmological singularities

 

The theory of weak solutions to nonlinear hyperbolic systems

 

The DLM theory for nonconservative hyperbolic systems

  • G. Crasta and P.G. LeFloch, A class of nonconservative and non strictly hyperbolic systems, Comm. Pure Appl. Anal. 1 (2002), 513–530.
  • P.G. LeFloch and A. Tzavaras, Representation of weak limits and definition of nonconservative products, SIAM J. Math. Anal. 30 (1999), 1309–1342.
  • P.G. LeFloch and A. Tzavaras, Existence theory for the Riemann problem for non-conservative hyperbolic systems, C.R. Acad. Sc. Paris, Série 1, 323 (1996), 347–352.
  • G. Dal Maso, P.G. LeFloch, and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), 483–548.
  • P.G. LeFloch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math. 5 (1993), 261–280.
  • A. Forestier and P.G. LeFloch, Multivalued solutions to some nonlinear and nonstrictly hyperbolic systems, Japan J. Indus. Appl. Math. 9 (1992), 1–23.
  • P.G. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, IMA Volumes in Math. and its Appl.,“Nonlinear evolution equations that change type”, ed. B.L. Keyfitz and M. Shearer, Springer Verlag, Vol. 27, 1990, pp. 126–138.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in conservative form, Proc. Intern. Conf. on Hyperbolic problems, ed. J. Ballmann and R. Jeltsch, Notes on Num. Fluid Mech., Vol. 24, Viewieg, Braunschweig, 1989, pp. 362–373.
  • P.G. LeFloch, (unpublished)., Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, IMA, \# 593, 1989 Available at:.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Part. Diff. Equa. 13 (1988), 669–727.
  • P.G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, C.R. Acad. Sc. Paris, Série 1, 306 (1988), 181–186.

 

The theory of boundary conditions for hyperbolic systems

  • A.P. Choudhury, K.T. Joseph, and P.G. LeFloch, The mathematical theory of self–similar boundary layers for nonlinear hyperbolic systems with viscosity and capillarity, Bull. Inst. Math. Acad. Sinica 10 (2015), 639–693.
  • K.T. Joseph and P.G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary conditions, C.R. Math. Acad. Sci. Paris 344 (2007), 59–64. Also available at ArXiv: https://arxiv.org/abs/0812.2680.
  • K.T. Joseph and P.G. LeFloch, Singular limits for the Riemann problem. General diffusion, relaxation, and boundary conditions, in “New analytical approach to multidimensional balance laws”, O. Rozanova ed., Nova Press, 2006, pp. 143–172.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. III. Vanishing relaxation limits, Portugal. Math. 59 (2002), 453.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions of hyperbolic conservation laws. II. Self-similar vanishing diffusion limits, Comm. Pure Appl. Anal. 1 (2002), 51–76.
  • C. Kondo and P.G. LeFloch, Measure-valued solutions and well-posedness of multi-dimen\-sional conservation laws in a bounded domain, Portugal Math. 58 (2001), 171–194.
  • K.T. Joseph and P.G. LeFloch, Boundary layers in weak solutions to hyperbolic conservation laws, Arch. Rational Mech Anal. 147 (1999), 47–88. (First appeared as: \# 341, CMAP, Ecole Polytechnique (France), November 1996.). Also available at ArXiv: https://arxiv.org/abs/math/0702024.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, Proc. Inter. Conf. on Hyperbolic problems, Aachen (Germany), March 1988, Notes on Numer. Fluid Mech., Vol. 24, Vieweg, 1989, pp. 96-106.
  • F. Dubois and P.G. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws, J. Differential Equations 71 (1988), 93–122.
  • F. Dubois and P.G. LeFloch, Boundary condition for a system of conservation laws, C.R. Acad. Sc. Paris, Serie 1, 304 (1987), 75–78.

 

The mathematical theory of kinetic relations

  • E. Kardhashi, M. Laforest, and P.G. LeFloch, The mathematical theory of splitting-merging patterns in phase transition dynamics, Comm. Partial Differential Equations 47 (2022), 1339–1393. Also available at ArXiv: https://arxiv.org/abs/2105.06664. Journal (DOI)
  • C. Berthon, F. Coquel, and P.G. LeFloch, Why many theories of shock waves are necessary. Kinetic relations for nonconservative systems, Proc. Royal Soc. Edinburgh 137 (2012), 1–37.
  • M. Laforest and P.G. LeFloch, Diminishing functionals for nonclassical entropy solutions selected by kinetic relations, Portugal Math. 67 (2010), 279–319. Also available at ArXiv: https://arxiv.org/abs/0812.4021.
  • P.G. LeFloch, Existence and qualitative properties of kinetic functions generated by diffusive-dispersive regularizations, Contemp. Mat. 37 (2009), 43–89. Also available at ArXiv: https://arxiv.org/abs/1005.2479.
  • N. Bedjaoui, C. Chalons, F. Coquel, and P.G. LeFloch, Non-monotonic traveling waves in Van der Waals fluids, Analysis Appl. 3 (2005), 419–446.
  • N. Bedjaoui, C. Klingenberg, and P.G. LeFloch, On the validity of the Chapman-Enskog expansion for shock waves with small strength, Portugal. Math. 61 (2004). 479–499. Also available at ArXiv: https://arxiv.org/abs/0812.3985.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. V. Singular diffusion and dispersion terms, Proc. Royal Soc. Edinburgh 134A (2004), 815–844.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. IV. Compressible Euler system, Chinese Ann. Appl. Math. 24 (2003), 17–34.
  • P.G. LeFloch and M. Shearer, Nonclassical Riemann solvers with nucleation, Proc. Royal Soc. Edinburgh 134A (2004), 941–964.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Existence theory for nonclassical entropy solutions: scalar conservation laws, Z. Angew. Math. Phys. 55 (2004), 927–945.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132 (2002), 545–565.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. I. Nonconvex hyperbolic conservation laws, J. Differential Equations 178 (2002), 574–607.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Uniqueness of classical and nonclassical solutions for nonlinear hyperbolic systems, J. Differential Equations 172 (2001), 59–82.
  • N. Bedjaoui and P.G. LeFloch, Diffusive-dispersive traveling waves and kinetic relations. III. An hyperbolic model of nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat. 47 (2001), 117–144.
  • P. Baiti, P.G. LeFloch, and B. Piccoli, BV Stability via generalized characteristics for nonclassical solutions of conservation laws, EQUADIFF’99, Proc. Internat. Conf. Differ. Equ., Berlin, August 1999, B. Fiedler, K. Gröger, and J.Sprekels, editors, World Sc. Publ., River Edge, NY, 2000, pp. 289–294.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shock waves and kinetic relations. Strictly hyperbolic systems, SIAM J. Math. Anal. 31 (2000), 941–991. (First appeared as : \# 357, CMAP, Ecole Polytechnique (France), November 1996.).
  • P. Baiti, P.G. LeFloch, and B. Piccoli, Nonclassical shocks and the Cauchy problem. General conservation laws, Contemporary Math. 238 (1999), 1–25.
  • D. Amadori, P. Baiti, P.G. LeFloch and B. Piccoli, Nonclassical shocks and the Cauchy problem for nonconvex conservation laws, J. Differential Equations 151 (1999), 345–372.
  • B.T. Hayes and P.G. LeFloch, Nonclassical shocks and kinetic relations. Scalar conservation laws, Arch. Rational Mech. Anal. 139 (1997), 1–56.

 

The vanishing diffusive-dispersive limits

 

The Hopf-Lax-Oleinik formula and its generalizations

  • Y. Bakhtin and P.G. LeFloch, Ergodicity of spherically symmetric fluid flows outside of a Schwarzschild black hole with random boundary forcing, Stoch PDE: Anal. Comp. 6 (2018), 746–785. Also available at ArXiv: https://arxiv.org/abs/1706.01004.
  • P.G. LeFloch and S. Xiang, Existence and uniqueness results for the pressureless Euler-Poisson system, Portugal Math. 72 (2015), 229–246.
  • P.G. LeFloch and J.-C. Nédélec, Asymptotic time-behavior for weighted scalar nonlinear conservation laws, RAIRO: Math. Model. Num. Anal. 22 (1988), 469–475.
  • P.G. LeFloch and J.-C. Nédélec, Explicit formula for weighted scalar nonlinear conservation laws, Trans. Amer. Math. Soc. 308 (1988), 667–683.
  • P.G. LeFloch, Explicit formula for scalar conservation laws with boundary condition, Math. Meth. Appl. Sc. 10 (1988), 265–287.
  • P.G. LeFloch and J.-C. Nédélec, Weighted conservation laws, C.R. Acad. Sc. Paris, Série 1, 301 (1985), 793–796.

 

Structure-Preserving Approximation of Partial Differential Equations

Machine Learning

 

Entropy-preserving approximation

  • P.G. LeFloch, J.-M. Mercier, and C. Rohde, Fully discrete entropy conservative schemes of arbitrary order, SIAM J. Numer. Anal. 40 (2002), 1968–1992.
  • C. Chalons and P.G. LeFloch, High-order entropy conservative schemes and kinetic relations for van der Waals fluids, J. Comput. Phys. 167 (2001), 1–23.
  • G.-Q. Chen and P.G. LeFloch, Entropies and entropy-flux splittings for the isentropic Euler equations, Chinese Annal. Math. 22 (2001), 1–14.
  • P.G. LeFloch and C. Rohde, High-order schemes, entropy inequalities, and nonclassical shocks, SIAM J. Numer. Anal. 37 (2000), 2023–2060.
  • P.G. LeFloch, An entropy diminishing criterion for hyperbolic conservation laws, in “Numerical methods for wave propagation” (Manchester, 1995), Fluid Mech. Appl. 47, Kluwer Acad. Publ., Dordrecht, 1998, pp. 275–295.
  • G.-Q. Chen and P.G. LeFloch, Entropy flux splittings for hyperbolic conservation laws. General framework, Comm. Pure Appl. Math. 48 (1995), 691–729.
  • F. Coquel and P.G. LeFloch, An entropy satisfying second order scheme for systems of conservation laws, C.R. Acad. Sc. Paris, Série 1, 320 (1995), 1263–1268.
  • G.-Q. Chen and P.G. LeFloch, Entropy flux-splittings for hyperbolic conservation laws, C.R. Acad. Sc. Paris, Série 1, 317 (1993), 761–766.

 

Geometry-preserving approximation

 

Small-scale preserving approximation

 

Time-asymptotics preserving approximation

 

Front-tracking and random-choice methods

  • B. Boutin, C. Chalons, F. Lagoutière, and P.G. LeFloch, Convergent and conservative schemes for nonclassical solutions based on kinetic relations, Interfaces and Free Boundaries 10 (2008), 399–421.
  • B. Boutin, C. Chalons, F. Lagoutière and P.G. LeFloch, A sharp interface and fully conservative scheme for computing nonclassical shocks, in “Numerical Mathematics and Advanced Applications”, Proc. ENUMATH 2007, 7th European Conf. on Numer. Math. Adv. Appl., Graz, Austria, September 2007, Springer Verlag, Heidelberg, K. Kunisch, G. Of, and O. Steinbach (Eds.), 2008, pp. 217–224.
  • A.P. Barnes, P.G. LeFloch, B.G. Schmidt, and J.M. Stewart, The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes, Class. Quantum Grav. 21 (2004), 5043–5074.
  • C. Chalons and P.G. LeFloch, Computing undercompressive waves with the random choice scheme. Nonclassical shock waves, Interfaces and Free Boundaries 5 (2003), 129–158.
  • T.Y. Hou, P. Rosakis, and P.G. LeFloch, A level set approach to the computation of twinning and phase transition dynamics, J. Comput. Phys. 150 (1999), 302–331.
  • P.G. LeFloch, Dynamics of solid-solid phase interfaces via a level set approach, Proc. Fifth Workshop on Partial Differential Equations (Rio de Janeiro, 1997), Mat. Contemp. 15 (1998), pp. 187–212.
  • P.G. LeFloch, Computational Methods for propagating phase boundaries, in “Intergranular and Interphase Boundaries in Materials: iib95”, Lisbon, June 1995, Eds. A.C. Ferro, J.P. Conde and M.A. Fortes. Material Science Forum Vols. 207–209, 1996, pp. 509–515.
  • X.-G. Zhong, T.Y. Hou, and P.G. LeFloch, Computational methods for propagating phase boundaries, J. Comput. Phys. 124 (1996), 192–216.

 

Explicit Riemann solvers

  • P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincaré – Analyse Non-linéaire 21 (2004), 881–902.
  • P.G. LeFloch and M.D. Thanh, Properties of Rankine-Hugoniot curves for Van der Waals fluids, Japan J. Indust. Applied Math. 20 (2003), 211–238.
  • J.M. Correia, P.G. LeFloch, and M.D. Thanh, Hyperbolic conservation laws with Lipschitz continuous flux-functions. The Riemann problem, Bol. Soc. Bras. Mat. 32 (2001), 271–301.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations I. A nonconvex hyperbolic model of phase transitions, Z. Angew. Math. Phys. 52 (2001), 597–619.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. II. An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh 132A (2001), 181–219.
  • P.G. LeFloch and M.D. Thanh, Nonclassical Riemann solvers and kinetic relations. III. A nonconvex hyperbolic model for Van der Waals fluids, Electr. J. Diff. Equa. 72 (2000), 1–19.
  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, Asymp. Analysis 3 (1991), 321-340.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part II. Application to the gas dynamics equations, Ann. Inst. H. Poincaré, Nonlin. Anal. 6 (1989), 437-480.
  • P.G. LeFloch and T.-T. Li, A global in time asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 309 (1989), 807–810.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem. Part I. General theory, Ann. Inst. H. Poincaré, Nonlinear Analysis 5 (1988), 179–207.
  • A. Bourgeade, P.G. LeFloch, and P.-A. Raviart, Approximate solution of the generalized Riemann problem, Inter. Conf. on Hyperbolic Problems, Saint-Etienne (France), January 1986, Lect. Notes in Math., Vol. 1270, Springer Verlag, 1987, pp. 1–9.
  • P.G. LeFloch and P.-A. Raviart, An asymptotic expansion for the solution of the generalized Riemann problem, C.R. Acad. Sc. Paris, Série 1, 304 (1987), 119–122.

 

First-order accuracy in hyperbolic conservation laws

 

Second-order accuracy in hyperbolic conservation laws

  • P.G. LeFloch and J.-G. Liu, Generalized monotone schemes, extremum paths and discrete entropy conditions, Math. of Comput. 68 (1999), 1025–1055. Also available at ArXiv: https://arxiv.org/abs/0711.0406.
  • F. Coquel and P.G. LeFloch, An entropy satisfying MUSCL scheme for systems of conservation laws, Numer. Math. 74 (1996), 1–33.
  • P.G. LeFloch, Monotonicity consistent scheme for hyperbolic conservation laws, Proc. “Fifth International Colloquium on Numerical Analysis”, Plovdiv, August 1995, ed. D. Bainov.
  • P.G. LeFloch and J.-G. Liu, Discrete entropy and monotonicity criterion for hyperbolic conservation laws, C.R. Acad. Sc. Paris, Série I, 319 (1994), 881–886.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for scalar conservation laws in several space variables. General theory, SIAM J. Numer. Anal. 30 (1993), 675–700.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for scalar conservation laws in several space variables. The corrected antidiffusive-flux approach, Math. of Comput. 57 (1991), 169–210.
  • F. Coquel and P.G. LeFloch, Convergence of finite difference schemes for conservation laws in several space dimensions, C.R. Acad. Sc. Paris, Série 1, 310 (1990), 455–460.