_____________________________________________________________________________________________________________

Organizers

 Philippe G. LeFloch (Paris)

Jérémie Szeftel (Paris)

Ghani Zeghib (Lyon)

ANR Project

“Mathematical General Relativity. Analysis and geometry of spacetimes with low regularity”

Wednesday March 4, 2015

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris

Lecture room 15-25–326

 

14h François Fillastre (Cergy-Pontoise) Minkowski problem in Minkowski space

Abstract. T. Barbot, F. Beguin and A. Zeghib solved a smooth Lorentzian version of the Minkowski problem in dimension (2+1). More precisely they proved that if M is a flat 3-dimensional maximal globally hyperbolic spatially compact spacetime, then there exists a unique strictly convex smooth space-like surface in M with a prescribed smooth positive Gauss curvature. We will look at this problem for any dimensions. The existence part is solved in a generalized way (a measure is prescribed rather than a function). Concerning the regularity of the solution, the 2+1 case is specific. The arguments are based on tools from the geometry of convex sets. Joint work with Francesco Bonsante (Pisa).