You are currently browsing the category archive for the ‘GENERAL RELATIVITY’ category.
___________________________________________________________________________________________________________________________________________
Seminar on
Mathematical General Relativity
Organizers: Sergiu Klainerman (Princeton)
Philippe G. LeFloch (Univ. Pierre et Marie Curie) Gabriele Veneziano (Collège de France)
With the financial support of the Fondation des Sciences Mathématiques de Paris
_____________________________________
Monday March 7, 2011
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
Lecture rooms: 15/25 1-03 (morning) and 1-02 (afternoon)
11h Jacques Smulevici (AEI, Potsdam) Weakly regular T2 symmetric spacetimes
Abstract. Under weak regularity assumptions, only, we develop a fully geometric theory of vacuum Einstein spacetimes with T2–symmetry, establish the global well-posedness of the initial value problem for Einstein’s field equations, and investigate the global causal structure of the constructed spacetimes. Our weak regularity assumptions are the minimal ones allowing to give a meaning to the Einstein equations under the assumed symmetry and to solve the initial value problem. First of all, we introduce a frame adapted to the symmetry in which each Christoffel symbol can be checked to belong to Lp for some p. We identify certain cancellation properties taking place in the expression of the Riemann and Ricci curvatures, and this leads us to a reformulation of the initial value problem for the Einstein field equations when the initial data set has weak regularity. Second, we investigate the future development of a weakly regular initial data set. We check that the area R of the orbits of symmetry must grow to infinity in the future timelike directions, and we establish the existence of a global foliation by the level sets of the function R. Our weak regularity assumptions only require that R is Lipschitz continuous while the metric coefficients describing the initial geometry of the orbits of symmetry are in the Sobolev space H1 and the remaining coefficients have even weaker regularity. We develop here the compactness arguments required to cover the natural level of regularity associated with the energy of the system of partial differential equations determined from Einstein’s field equations. This is a joint work in collaboration with P.G. LeFloch (Paris).
14h Erwann Delay (Univ. Avignon) Recollement des TT tenseurs
Abstract. La méthode de Corvino-Schoen permet de recoller localement et de façon lisse deux solutions des équations de contraintes. Nous verrons que l’on peut d’une façon générale recoller deux éléments du noyau de certains opérateurs à symbole surjectif et non injectif. Par exemple on peut recoller deux champs de vecteurs à divergence nulle ou deux TT-tenseurs. On en déduit par exemple que sur toute boule riemannienne ouverte, l’ensemble des TT-tenseurs lisses à support compact est de dimension infinie. On simplifie ainsi la construction de données initiales CMC.
___________________________________________________________________________________________________________________________________________
Seminar on
Mathematical General Relativity
Organizers: Sergiu Klainerman (Princeton)
Philippe G. LeFloch (Univ. Pierre et Marie Curie) Gabriele Veneziano (Collège de France)
With the financial support of the Fondation des Sciences Mathématiques de Paris
_____________________________________
Monday February 14, 2011
Institut Henri Poincaré
Lecture room 01
11h – Qian Wang (IHES & Albert Einstein Institute, Potsdam) Breakdown criterion for Einstein Vacuum equations in CMC gauge
Abstract. I will report my recent work on the geometric criterion for the breakdown of Einstein vacuum space-times with the constant mean curvature (CMC) foliation. In this work, the criterion is formulated in terms of time-integrability of the sup- norms of the second fundamental form and derivatives of the lapse function associated to CMC foliation of the space-time. This result is obtained through deriving uniform lower bound on the null radius of injectivity of the light cones. I will sketch the main idea of the proof.
14h – Piotr Chrusciel (Vienna) On the general relativistic constraint equations
Abstract. I will present some new results with Rafe Mazzeo on the construction of solutions of the constraint equations with cylindrical ends.
___________________________________________________________________________________________________________________________________________
Seminar on
Mathematical General Relativity
Organizers: Sergiu Klainerman (Princeton)
Philippe G. LeFloch (Univ. Pierre et Marie Curie) Gabriele Veneziano (Collège de France)
With the financial support of the Fondation des Sciences Mathématiques de Paris
_____________________________________
Monday January 31rst, 2011
Institut Henri Poincaré
Lecture room 314
11h Lydia Bieri (Ann Arbor), Geometry of Spacetimes Solving the Einstein-Maxwell Equations in General Relativity and Gravitational Radiation
Abstract. A major goal of mathematical General Relativity (GR) and astrophysics is to precisely describe and finally observe gravitational radiation, one of the predictions of GR. In order to do so, one has to study the null asymptotical limits of the spacetimes for typical sources. Among the latter we find binary neutron stars and binary black hole mergers. In these processes typically mass and momenta are radiated away in form of gravitational waves. D. Christodoulou showed that every gravitational-wave burst has a nonlinear memory. In this talk, we discuss the null asymptotics for spacetimes solving the Einstein-Maxwell (EM) equations, compute the radiated energy and derive limits at null infinity and compare them with the Einstein vacuum (EV) case. The physical insights are based on geometric-analytic investigations of the solution spacetimes.
14h Jérémie Szeftel (ENS, Paris) Around the bounded L2 curvature conjecture in general relativity
Abstract. We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation on a curved background, where the metric is a rough solution to the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L2 bounds on the curvature tensor of the metric is a major step towards the proof of the bounded L2 curvature conjecture. This is a joint work with Sergiu Klainerman and Igor Rodnianski.
___________________________________________________________________________________________________________________________________________
Seminar on
Mathematical General Relativity
Organizers: Sergiu Klainerman (Princeton)
Philippe G. LeFloch (Univ. Pierre et Marie Curie) Gabriele Veneziano (Collège de France)
With the financial support of the Fondation des Sciences Mathématiques de Paris
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie 4 Place Jussieu, 75258 Paris
_____________________________________
Wednesday January 12, 2011
Building 15/16. Lecture room 309
14h00 Pieter Blue (Edinburgh) Decay for the Maxwell field outside a Kerr black hole
15h30 Thierry Barbot (Avignon) Particules dans les espaces-temps à courbure constante
______________
_______
Seminar on General Relativity
at JUSSIEU-MEUDON-IAP
Wednesday December 8, 2010
The lectures will take place at
the Institut d’Astrophysique de Paris (IAP)
______________
________
- 10h00: Nicole Capitaine (Observatoire de Paris) Les systèmes de référence astronomiques dans le cadre de la relativité génerale
- 11h30: Peter Wolf (Observatoire de Paris) Tester la relativité générale avec des horloges et gravimètres atomiques
Organizers : Luc Blanchet (IAP, Paris), Eric Gourgoulhon (LUTH, Meudon), Philippe G. LeFloch (Univ. P.M. Curie, 4 Place Jussieu, Paris).

