You are currently browsing the category archive for the ‘COMPRESSIBLE FLUIDS’ category.

___________________________________________________________________________________________________________________________________________

7th DFG–CNRS WORKSHOP

Two-Phase Fluid Flows. Modeling and Computational Methods 

Main organizer:    

 Philippe G. LeFloch (Univ. Pierre et Marie Curie, Paris)

Co-organizers:

Christophe Berthon (Nantes) and Philippe Helluy (Strasbourg)

With financial support from the DFG and the CNRS


Tuesday Feb. 14, 2012 at 2pm to Thursday Feb. 16 at noon

Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, Place Jussieu, Paris.

Subway station: Jussieu

Lecture room 15-16 — 309


SCHEDULE, list of participants, and abstracts


INVITED SPEAKERS


Gonca Aki
 
(Berlin) An incompressible diffuse flow with phase transition

Mathieu Bachmann (Aachen) Numerical simulation of shock wave-bubble interactions using laser-induced cavitation bubbles

Frank Boyer (Marseille)  Numerical methods for a three-component phase field model

Sergey L. Gavrilyuck (Marseille) Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction

Maren Hantke (Magdeburg) Exact solutions to the Riemann problem for compressible isothermal Euler equations for two phase flows, with and without phase transition

Jonathan Jung (Strasbourg) Computing bubble oscillations on GPU (graphics processing unit)

Mirco Kraenkel (Freiburg) Numerics for phase field models

Hélène Mathis (Nantes) Model adaptation for hyperbolic systems with relaxation 

Khaled Saleh (Paris) A splitting method for the isentropic Baer-Nunziato two-phase flow model 

Nicolas Seguin (Paris)  Model adaptation in hierarchies of hyperbolic systems

Gabriele Witterstein (Munich) Existence of transition profiles for compressible flows

Christophe Zeiler (Stuttgart) Curvature driven liquid-vapor flow of compressible fluids

__________


PRACTICAL INFORMATIONS 

LIST OF PARTICIPANTS

How to come to the Laboratoire Jacques-Louis Lions ?

Hotels near the University Pierre et Marie Curie ?

__________


EARLIER WORKSHOPS “Micro-Macro Modeling and Simulation of Liquid-Vapour Flows”

Sixth Workshop, Stuttgart, Jan. 2011

Fourth Workshop, Aachen, Feb. 2009

Second Workshop, Bordeaux

Opening Workshop, Kirchzarten, Nov. 2005

___________

Seminar on Compressible Fluids

Tuesday January 10, 2012

Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie

4 Place Jussieu, 75258  Paris

Building 15/16. Lecture room 309

With the support of LRC MANON

  • 14h00 : Philippe Helluy (Strasbourg) Résolution des équations de Maxwell-Vlasov sur GPU

Abstract.  Je présenterai un couplage d’une méthode Galerkin-Discontinu et d’une méthode PIC (Particle-In-Cell) pour la résolution des équations de Vlasov-Maxwell. Ces méthodes ont déjà été implémentées à de nombreuses reprises. La nouveauté consiste ici à le faire sur une carte graphique avec le langage OpenCL, ce qui conduit à des façons différentes d’organiser l’algorithme de couplage.

  • 15h30 : Christophe Berthon (Nantes)  Schémas hydrostatiques décentrés pour les équations shallow-water

Abstract.  We consider the numerical approximation of the shallow–water equations with non–flat topography. We introduce a new topographic discretization which makes all schemes to be well–balanced and robust. In contrast with the well–known hydrostatic reconstruction, the proposed numerical procedure does not involve any cut–off. Moreover, the proposed scheme is able to deal with dry areas. Several numerical benchmarks are presented to assert the interest of the method.

___________

Organizers: Frédéric Coquel, Edwige Godlewski, et Philippe LeFloch

___________

Seminar on Compressible Fluids

Wednesday May 18, 2011

Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie

4 Place Jussieu, 75258  PARIS

Jussieu campus. Building 15/16. Lecture room 309.

___________

  • 11h – Siddhartha MISHRA (ETH, Zurich) Entropy stable high-order schemes for systems of conservation laws

Abstract. We design arbitrarily high-order schemes for systems of conservation laws that satisfy a discrete version of the entropy inequality. Consequently, these schemes are stable in L2. The proposed schemes are based on a combination of arbitrarily high-order entropy conservative schemes together with numerical diffusion operators. The numerical diffusion operators require an ENO reconstruction of the entropy variables. The resulting schemes are shown to be entropy stable for conservation laws in several space dimensions. Recent work extending these schemes to the fully discrete case and to unstructured meshes based on a shock-capturing space time Discontinuous Galerkin (DG) method will be mentioned. Numerical experiments illustrating the robust performance of the proposed schemes are presented. The talk is based on joint work with U. S. Fjordholm, A. Hiltebrand (ETH, Zurich) and E. Tadmor (University of Maryland, U.S.A).

___________

Organizers. Frédéric Coquel, Edwige Godlewski, Philippe LeFloch

___________

Seminar on Compressible Fluids

Wednesday March 30, 2011

Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie

4 Place Jussieu, 75258  PARIS

Jussieu campus. Building 15/16. Lecture room 309.

___________

Abstract. Récemment, des nouvelles méthodes numériques ont été formulées pour résoudre les équations d’Euler incompressible. Il s’agit d’intégrateurs variationels basés sur la discrétisation du groupe des difféomorphismes qui préservent le volume. Ces nouvelles méthodes ont des propriétés attrayantes : – elles conservent l’énergie et les théorèmes de circulation de Kelvin, – elles ne sont pas plus coûteuses que des méthodes de différences finies ordinaires, – elles respectent la structure géométrique et Hamiltonienne des équations, – elles sont applicables sur des grilles 2D ou 3D non structurées. Dans ce séminaire nous présentons ces nouvelles méthodes et montrons comment les généraliser aux modèles de fluides géophysiques (Boussinesq, équations primitives) tout en respectant les bonnes propriétés énoncées ci-dessus.

 

Abstract. We consider a nonlinear diffusion equation with a cubic-like diffusion function arising in the context of phase transitions (in the spirit of the Cahn–Hilliard equation). Because of the non-monotonicity of the diffusion function, the Cauchy problem is ill-posed. To restore the well-posedness, it is possible to take into consideration a generalized formulation determined by considering the forward-backward equation as the singular limit of a corresponding higher order equation, given by the addition of a third order term (two space and one time derivative) of Sobolev type, different with respect to the fourth-space derivative term considered in the case of Cahn–Hilliard equations. Because of some analogies with the case of hyperbolic conservation laws, such kind of solutions has been called entropy solutions for the forward-backward diffusion equation. The aim of the talk is to present and discuss the entropy framework for this equation, with particular attention given to solutions taking values in the zones where the diffusion function is monotone increasing. Joint works with A.Terracina, A. Tesei and P.Lafitte.

___________

Organizers: Frédéric Coquel, Edwige Godlewski, et Philippe LeFloch

___________

Seminar on Compressible Fluids

Wednesday March 16, 2011

Laboratoire Jacques-Louis Lions

Université Pierre et Marie Curie

4 Place Jussieu, 75258  PARIS

Jussieu campus. Building 15/16. Lecture room 309.

___________

Abstract. We will discuss the decay property for a class of symmetric hyperbolic systems with relaxation. The Shizuta-Kawashima stability condition gives the characterization of the standard decay structure for systems with symmetric relaxation matrices. Recently, we found several interesting systems with non-symmetric relaxation which have different decay structure. In this talk, we discuss these examples and report the recent progress on the stability theory for a class of symmetric hyperbolic systems.

Abstract. We investigate the late-time asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws containing stiff source term. On one hand, we determine the relevant asymptotic expansion, derive a reduced system in the limit, and discuss the role of an entropy condition to establish the diffusive nature of the reduced system. On the other hand, we propose a new numerical scheme of finite volume type, which allows us to recover the correct asymptotic regime. The associated discrete form of the diffusion system is achieved via a suitable discretization compatible with the stiff source term. Our theoretical results are illustrated with several models from continuum physics and numerical experiments demonstrating the relevance of the proposed theory and numerical strategy. (This is a joint work with C. Berthon and R. Turpault.)

___________

Organizers: Frédéric Coquel, Edwige Godlewski, et Philippe LeFloch

Philippe LeFloch, DIRECTOR OF RESEARCH AT CNRS Email address: pglefloch [at] gmail.com

IHP PROGRAM

Enter your email address to follow this blog and receive notifications of new posts by email.

Join 89 other followers

Archives

%d bloggers like this: