You are currently browsing the tag archive for the ‘Math Fluids’ tag.
11th DFG–CNRS WORKSHOP Micro-Macro Modeling and Simulation of Liquid-Vapor Flows
organized with the financial support of
DFG, CNRS, and ITN
Wednesday March 2nd, 2016 (afternoon)
to Friday March 4th, 2016 (at noon)
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, Place Jussieu, Paris. Subway station: Jussieu
Lecture room 15-16 — 309
____________________________
Nina Aguillon (Paris)
Christophe Berthon (Nantes)
Christophe Chalons (Versailles)
Frédéric Coquel (Palaiseau)
Johannes Daube (Freiburg)
Bruno Després (Paris)
Christian Dickopp (Aachen)
Florence Drui (Châtenay-Malabry)
Robert Eymard (Marne-La-Vallée)
Jan Giesselman (Stuttgart)
Philippe Helluy (Strasbourg)
Mirko Kraenkel (Freiburg)
Dietmar Kroener (Freiburg)
Rüdiger Müller (Berlin)
Carlos Pares (Malaga)
Arnold Reusken (Aachen)
____________________________
Main organizer
Philippe G. LeFloch (Paris)
Co-organizers
Dietmar Kroener (Freiburg)
Frédéric Coquel (Palaiseau)
Christophe Berthon (Nantes) Numerical convergence rate for a diffusive limit of hyperbolic systems: p-system with damping
Abstract. The Navier–Stokes–Korteweg model, an extension of the compressible Navier–Stokes equations, is a diffuse interface model for liquid-vapour flows which allows for phase transitions. In the model, a small parameter represents the thickness of an interfacial area, where phase transitions occur. Its static version was studied by Hermsdoerfer, Kraus and Kroener and the corresponding interface conditions were obtained. Assuming convergence of an associated energy functional to a suitable surface measure, we will perform the sharp interface limit in the dynamic case. More precisely, by means of compactness, we will ensure that solutions to the diffusive Navier-Stokes-Korteweg equations converge to solutions of an appropriate sharp interface model as the interface thickness tends to zero. This is joint work with H. Abels (Regensburg), C. Kraus (Wuerzburg-Schweinfurt) and D. Kroener (Freiburg).
Abstract. In this talk we consider a one dimensional model for isothermal two-phase flows using Lagrangian coordinates. The model is of diffuse interface type with a non-monotone pressure law. We will present a priori error analysis of a semi-discrete discontinuous Galerkin method, which satisfies a discrete version of the energy inequality which is valid on the continuous level. It also satisfies a relative energy type stability theory. Combining this stability framework with suitable projection operators for the exact solution allows us to derive optimal order error estimates. We will also present numerical results obtained using a fully-discrete version of the scheme, which validate our theoretical results.
____________________________
PRACTICAL INFORMATIONS
How to come to the Laboratoire Jacques-Louis Lions
Hotels near the University Pierre et Marie Curie
____________________________
EARLIER WORKSHOPS “Micro-Macro Modeling and Simulation of Liquid-Vapor Flows”
Tenth Workshop, Freiburg, February 2015
Ninth Workshop, Paris, February 2014
Eight Workshop, Berlin, February 2013
Seventh Workshop, Paris, February 2012
Sixth Workshop, Stuttgart, January 2011
Fifth Workshop, Strasbourg, April 2010
Fourth Workshop, Aachen, February 2009
Third Workshop, Strasbourg, January 2008
Second Workshop, Bordeaux, November 2007
Opening Workshop, Kirchzarten, November 2005
___________________________________________________________________________________________________________________________________________
9th DFG–CNRS WORKSHOP
Micro-Macro Modeling and Simulation
of Liquid-Vapor Flows
organized with financial support from DFG and CNRS
____________________________
Tuesday February 25, 2014 at 1:30pm
to
Thursday February 27, 2014 at 1:00pm
____________________________
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, Place Jussieu, Paris.
Subway station: Jussieu
Lecture room 15-16 — 309
Schedule and abstracts here !
____________________________
____________________________
CONTRIBUTING SPEAKERS
____________________________
Main organizer
Philippe G. LeFloch (Paris)
Co-organizers
Benjamin Boutin (Rennes)
Frédéric Coquel (Palaiseau)
____________________________
PRACTICAL INFORMATIONS
How to come to the Laboratoire Jacques-Louis Lions
Hotels near the University Pierre et Marie Curie
____________________________
EARLIER WORKSHOPS “Micro-Macro Modeling and Simulation of Liquid-Vapor Flows”
Eight Workshop, Berlin, February 2013
Seventh Workshop, Paris, February 2012
Sixth Workshop, Stuttgart, January 2011
Fifth Workshop, Strasbourg, April 2010
Fourth Workshop, Aachen, February 2009
Third Workshop, Strasbourg, January 2008
Second Workshop, Bordeaux, November 2007
Opening Workshop, Kirchzarten, November 2005
___________________________________________________________________________________________________________________________________________
7th DFG–CNRS WORKSHOP
Two-Phase Fluid Flows. Modeling and Computational Methods
Main organizer:
Philippe G. LeFloch (Univ. Pierre et Marie Curie, Paris)
Co-organizers:
Christophe Berthon (Nantes) and Philippe Helluy (Strasbourg)
With financial support from the DFG and the CNRS
Tuesday Feb. 14, 2012 at 2pm to Thursday Feb. 16 at noon
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, Place Jussieu, Paris.
Subway station: Jussieu
Lecture room 15-16 — 309
SCHEDULE, list of participants, and abstracts
Gonca Aki (Berlin) An incompressible diffuse flow with phase transition
Mathieu Bachmann (Aachen) Numerical simulation of shock wave-bubble interactions using laser-induced cavitation bubbles
Frank Boyer (Marseille) Numerical methods for a three-component phase field model
Sergey L. Gavrilyuck (Marseille) Diffuse interface model for compressible fluid-compressible elastic-plastic solid interaction
Maren Hantke (Magdeburg) Exact solutions to the Riemann problem for compressible isothermal Euler equations for two phase flows, with and without phase transition
Jonathan Jung (Strasbourg) Computing bubble oscillations on GPU (graphics processing unit)
Mirco Kraenkel (Freiburg) Numerics for phase field models
Hélène Mathis (Nantes) Model adaptation for hyperbolic systems with relaxation
Khaled Saleh (Paris) A splitting method for the isentropic Baer-Nunziato two-phase flow model
Nicolas Seguin (Paris) Model adaptation in hierarchies of hyperbolic systems
Gabriele Witterstein (Munich) Existence of transition profiles for compressible flows
Christophe Zeiler (Stuttgart) Curvature driven liquid-vapor flow of compressible fluids
__________
PRACTICAL INFORMATIONS
How to come to the Laboratoire Jacques-Louis Lions ?
Hotels near the University Pierre et Marie Curie ?
__________
EARLIER WORKSHOPS “Micro-Macro Modeling and Simulation of Liquid-Vapour Flows”
Sixth Workshop, Stuttgart, Jan. 2011
Fourth Workshop, Aachen, Feb. 2009
Second Workshop, Bordeaux
Opening Workshop, Kirchzarten, Nov. 2005
___________
Seminar on Compressible Fluids
Tuesday January 10, 2012
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
4 Place Jussieu, 75258 Paris
Building 15/16. Lecture room 309
With the support of LRC MANON
- 14h00 : Philippe Helluy (Strasbourg) Résolution des équations de Maxwell-Vlasov sur GPU
Abstract. Je présenterai un couplage d’une méthode Galerkin-Discontinu et d’une méthode PIC (Particle-In-Cell) pour la résolution des équations de Vlasov-Maxwell. Ces méthodes ont déjà été implémentées à de nombreuses reprises. La nouveauté consiste ici à le faire sur une carte graphique avec le langage OpenCL, ce qui conduit à des façons différentes d’organiser l’algorithme de couplage.
- 15h30 : Christophe Berthon (Nantes) Schémas hydrostatiques décentrés pour les équations shallow-water
Abstract. We consider the numerical approximation of the shallow–water equations with non–flat topography. We introduce a new topographic discretization which makes all schemes to be well–balanced and robust. In contrast with the well–known hydrostatic reconstruction, the proposed numerical procedure does not involve any cut–off. Moreover, the proposed scheme is able to deal with dry areas. Several numerical benchmarks are presented to assert the interest of the method.
___________
Organizers: Frédéric Coquel, Edwige Godlewski, et Philippe LeFloch
___________
Seminar on Compressible Fluids
Wednesday March 30, 2011
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
4 Place Jussieu, 75258 PARIS
Jussieu campus. Building 15/16. Lecture room 309.
___________
- 10h00 : François Gay-Balmaz (ENS, Paris) Intégrateurs variationels pour les fluides géophysiques
Abstract. Récemment, des nouvelles méthodes numériques ont été formulées pour résoudre les équations d’Euler incompressible. Il s’agit d’intégrateurs variationels basés sur la discrétisation du groupe des difféomorphismes qui préservent le volume. Ces nouvelles méthodes ont des propriétés attrayantes : – elles conservent l’énergie et les théorèmes de circulation de Kelvin, – elles ne sont pas plus coûteuses que des méthodes de différences finies ordinaires, – elles respectent la structure géométrique et Hamiltonienne des équations, – elles sont applicables sur des grilles 2D ou 3D non structurées. Dans ce séminaire nous présentons ces nouvelles méthodes et montrons comment les généraliser aux modèles de fluides géophysiques (Boussinesq, équations primitives) tout en respectant les bonnes propriétés énoncées ci-dessus.
Abstract. We consider a nonlinear diffusion equation with a cubic-like diffusion function arising in the context of phase transitions (in the spirit of the Cahn–Hilliard equation). Because of the non-monotonicity of the diffusion function, the Cauchy problem is ill-posed. To restore the well-posedness, it is possible to take into consideration a generalized formulation determined by considering the forward-backward equation as the singular limit of a corresponding higher order equation, given by the addition of a third order term (two space and one time derivative) of Sobolev type, different with respect to the fourth-space derivative term considered in the case of Cahn–Hilliard equations. Because of some analogies with the case of hyperbolic conservation laws, such kind of solutions has been called entropy solutions for the forward-backward diffusion equation. The aim of the talk is to present and discuss the entropy framework for this equation, with particular attention given to solutions taking values in the zones where the diffusion function is monotone increasing. Joint works with A.Terracina, A. Tesei and P.Lafitte.
___________
Organizers: Frédéric Coquel, Edwige Godlewski, et Philippe LeFloch